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Abstract 
We study the periodic solutions of the second-order differential equations of the form  

( )( ) ( ) ( )x xx x F t x x G t x H t  + + + + + + =3 23 0,  

where the functions ( )F t , ( )G t  and ( )H t  are periodic of period π2  in the variable t. 
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1. Introduction and Statement of the Main Results 
In this paper we shall study the existence of periodic solutions of the second-order differential equation of the 
form  

( )( ) ( ) ( )3 23 0,x xx x F t x x G t x H t+ + + + + + =                        (1) 

where the dot denotes derivative with respect to the time t, and the functions ( )F t , ( )G t  and ( )H t  are 
periodic of period 2π  in the variable t. 

We note that the second-order differential Equation (1), when 0F G H= = = , appears in the Ince’s catalog 
of equations possessing the Painlevé property (see [1]). Moreover, the differential equation 33 0x xx x+ + =   is 
well known in many areas of mathematics and physics, and it possesses the algebra ( )sl 3,  of Lie point 
symmetries (see for more details in the paper [2] and the references quoted there). 

In a recent paper [3] (see also [4] [5]), the second-order differential Equation (1) has been studied when 
0F H= = . A study of coupled quadratic unharmonic oscillators in terms of the Painlevé analysis and inte- 
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grability can be seen in [6], and studies on the second-order differential equations can be seen in [7]. Other 
approach to the periodic solutions of second-order differential equations can be found in [8]. 

Here we study the periodic solutions of the second-order differential Equation (1) when ( ) ( )F t f tε= , 
( ) ( )1G t g tε= + , and ( ) ( )kH t h tε=  with 1, 2k = . Our main results are the following ones. 
Theorem 1. We define the functions  

( ) ( )

( ) ( )

2π
1 0 0 0 00

2π
2 0 0 0 00

, , , sin d ,

, , , cos d ,

X Y F t X Y t t

X Y F t X Y t t

= −

=

∫

∫




                             (2) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , 3 ,F t X Y h t g t A t f t B t A t B t= − − − −  

( ) 0 0cos sin ,A t X t Y t= +  

( ) 0 0sin cos .B t X t Y t= − +  

Assume that the functions ( ) ( )F t f tε= , ( ) ( )1G t g tε= +  and ( ) ( )2H t h tε=  are 2π -periodic. Then for 
0ε ≠  sufficiently small and for every ( )0 0,X Y∗ ∗  solution of the system ( )0 0, 0j X Y =  for 1, 2j = , satisfy  

( )
( ) ( ) ( )0 0 0 0

1 2
, ,

0 0

,
det 0,

, X Y X YX Y ∗ ∗=

 ∂
≠  ∂ 

 
                              (3) 

the differential Equation (1) has a 2π -periodic solution ( ) ( ) ( )2
0 0, cos sinx t X t Y t Oε ε ε∗ ∗= + + .  

Theorem 1 is proved in section 3 using the averaging theory described in section 2. Two applications of 
Theorem 1 are the following. 

Corollary 1. We consider the differential Equation (1) with ( ) ( )21 cosF t tε= − , ( ) 21 sinG t tε= +  and 
( ) 2 sinH t tε= . Then for 0ε ≠  sufficiently small, this differential equation has a 2π -periodic solution 
( ) ( ) ( )2, 2 sin cos 3x t t t Oε ε ε= − + .  
Corollary 2. We consider the differential Equation (1) with ( ) ( )2 41 cos 2cosF t t tε= − + , 

 ( ) ( )2 41 sin 2sinG t t tε= + +  and ( ) ( )2 3sin sinH t t tε= + . Then for 0ε ≠  sufficiently small, this differential 
equation has a 2π -periodic solution ( ) ( ) ( )2, 21cos 7sin 20x t t t Oε ε ε= − + .  

Corollaries 1 and 2 are also proved in section 3. 
Theorem 2. Assuming that  

( ) ( )2π 2π

0 0
sin d 0, cos d 0,h t t t h t t t= =∫ ∫  

and setting  

( ) ( )

( ) ( )

2π
1 0 0 0 00

2π
2 0 0 0 00

, , , sin d ,

, , , cos d ,

X Y f t X Y t t

X Y f t X Y t t

= −

=

∫

∫




                             (4) 

with  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , 3 ,f t X Y g t A t f t B t A t B t= − − −  

( ) ( ) ( )0 0 0
cos sin sin d ,

t
A t X t Y t h tτ τ τ= + − −∫  

( ) ( ) ( )0 0 0
sin cos cos d .

t
B t X t Y t h tτ τ τ= − + − −∫  

Assume that ( ) ( )F t f tε= , ( ) ( )1G t g tε= +  and ( ) ( )H t h tε=  are 2π -periodic functions. Then for 
0ε ≠  sufficiently small and for every ( )0 0,X Y∗ ∗  solution of the system ( )0 0, 0j X Y =  for 1, 2j =  satisfy 

(3), the differential Equation (1) has a periodic solution  
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( ) ( ) ( )( ) ( )2
0 0 0

, cos sin sin d .
t

x t X t Y t h t Oε ε τ τ τ ε∗ ∗= + − − +∫  

Theorem 2 is proved in section 4. Two applications of Theorem 2 are the following. 
Corollary 3. We consider the differential Equation (1) with ( ) ( ) ( )( )sin 2 cos 2F t t tε= + , ( ) 1 sinG t tε= +  

and ( ) 22cosH t tε= . Then for 0ε ≠  sufficiently small, this differential equation has a 2π -periodic solution  

( ) ( ) ( )( ) ( )2 2, 2cos 15sin 31 2cos cos 1 .x t t t t t Oε ε ε= − + + − +  

Corollary 4. We consider the differential Equation (1) with ( ) sinF t tε= , ( ) 21 sinG t tε= +  and  
( ) ( )2cos 2H t tε= . Then for 0ε ≠  sufficiently small, this differential equation has a periodic solution  

( ) ( ) ( ) ( )28, 2 cos 1 cos 2 sin .
5

x t t t t Oε ε ε = − − + 
 

 

Corollaries 3 and 4 are also proved in section 4. 

2. Basic Results on Averaging Theory 
We state the results from the averaging method that we shall use for proving the results of this work. 

We consider differential systems of the form  

( ) ( ) ( )2
0 1 2, , , , ,F t F t F tε ε ε′ = + +x x x x                            (5) 

where ε  is a small parameter, and the functions 0 1, : nF F ×Ω→   and ( )2 0 0: , nF ε ε×Ω× − →   are 
2  functions, T-periodic in the variable t, and Ω  is an open subset of n . Suppose that the unperturbed 

system  

( )0 , ,F t′ =x x                                        (6) 

has a submanifold of dimension n of T-periodic solutions, i.e. of periodic solutions of period T. 
We denote by ( ), ,0tx z  the solution of system (6) such that ( )0, ,0 =x z z . We consider the first variational 

equation of system (6) on the periodic solution ( ), ,0tx z , i.e.  

( )( )0 , , ,0 ,D F t t′ = xy x z y                                    (7) 

where y  is an n n×  matrix. Let ( )M tz  the fundamental matrix of system (7) such that ( )0M z  is the 
identity matrix of n . 

By assumption there exists an open set V such that ( )Cl V ⊂ Ω  and for each ( )Cl V∈z , ( ), ,0tx z  is 
T-periodic. Therefore we have the following result. 

Theorem 3. We suppose that there is an open and bounded set V with ( )Cl V ⊂ Ω  such that for each 
( )Cl V∈z , the solution ( ), ,0tx z  is T-periodic, and let ( ): Cl nV →  be the function defined by  

( ) ( ) ( )( )1
10

, , ,0 d .
T
M t F t x t t−= ∫ zz z                                (8) 

If there is Vα ∈  with ( ) 0α =  and ( )( )( )det d d 0α ≠z , then there is a T-periodic solution ( ),t εx  
of system (5) satisfying ( ) ( ) ( ), , ,0t t Oε ε= +x x z .  

Theorem 3 is due to Malkin [9] and Roseau [10], for a new and shorter proof (see [11]). 

3. Proof of Theorem 1 and Its Two Corollaries 
Proof of Theorem 1. Introducing the variable y x=  , we can write the second-order differential Equation (1) as 
the following first-order differential system  

( )( ) ( ) ( )3 2

,

3 .

x y

y xy x F t y x G t x H t

=

= − − − + − −





                         (9) 

Doing the rescaling ( ) ( ), ,x y X Yε ε= , we obtain the system  
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( ) ( ) ( )( ) ( )( )2 2 33 .

X Y

Y X h t g t X f t Y XY f t X Xε ε

=

= − + − − − − + − −





                (10) 

System (10) with 0ε =  is the unperturbed system, otherwise system (10) is the perturbed system. The 
unperturbed system has a unique singular point, the origin of coordinates. The solution ( ) ( )( ),X t Y t  of the 
unperturbed system such that ( ) ( )( ) ( )0 00 , 0 ,X Y X Y=  is  

( ) ( )0 0 0 0cos sin , sin cos .X t X t Y t Y t X t Y t= + = − +  

Note that all these periodic orbits have period 2π . Using the notation introduced in section 2. We have that 
( ),X Y=x , ( )0 0,X Y=z , ( ) ( )0 , ,F t Y X= −x , ( ) ( ) ( ) ( )( )1 , 0, 3F t h t g t X f t Y XY= − − − −x  and  
( ) ( )( )2 3

2 , 0,F t f t X X= − −x . 
The fundamental matrix solution ( )M tz  is independent of the initial condition z , and denoting it by 
( )M t  we obtain  

( )
cos sin

.
sin cos

t t
M t

t t
 

=  − 
 

Now we compute the function ( ) ( ) ( )( )1 0 0 2 0 0, , ,X Y X Y=z    given in (8), and we get the functions (2) of 
the statement of Theorem 1. 

By Theorem 3 each zero ( )0 0,X Y∗ ∗  of system ( ) ( )1 0 0 2 0 0, , 0X Y X Y= =   satisfying (3), provides a 2π - 
periodic solution ( ) ( )( ), , ,X t Y tε ε  of system (10) with 0ε ≠  sufficiently small such that  

( ) ( )( ) ( ) ( )* * * *
0 0 0 0, , , cos sin , sin cos .X t Y t X t Y t X t Y t Oε ε ε= + − + +  

Going back through the change of variables for every periodic solution ( ) ( )( ), , ,X t Y tε ε  of system (10) 
with 0ε ≠  sufficiently small, we obtain a 2π -periodic solution ( ) ( ) ( )* * 2

0 0, cos sinx t X t Y t Oε ε ε= + +  of 
the differential Equation (1) with 0ε ≠  sufficiently small. This completes the proof of Theorem 1.        □ 

Proof of Corollary 1. We must apply Theorem 1 with  

( ) ( ) ( )2 21 cos , sin , sin .f t t g t t h t t= − = =  

We compute the functions 1  and 2  of the statement of Theorem 1, and we obtain  

( ) ( ) ( ) ( )1 0 0 0 0 2 0 0 0 0
π π, 4 3 3 , , .
4 4

X Y X Y X Y X Y= − + = − −   

System 1 2 0= =   has the zero ( ) ( )0 0, 2 3, 2 3X Y∗ ∗ = − . Since the Jacobian (3) at this zero is 23π 8 , we 
obtain using Theorem 1 the periodic solution given in the statement of the corollary.                    □ 

Proof of Corollary 2. We apply Theorem 1 with  

( ) ( ) ( )2 4 2 4 31 cos 2cos , sin 2sin , sin sin .f t t t g t t t h t t t= − + = + = +  

Computing the functions 1  and 2  of Theorem 1 we get  

( ) ( ) ( ) ( )1 0 0 0 0 2 0 0 0 0
π π, 7 4 8 , , 3 .
4 2

X Y X Y X Y X Y= − + = − +   

System 1 2 0= =   has the zero ( ) ( )0 0, 21 20, 7 20X Y∗ ∗ = − . Since the Jacobian (3) at this zero is 25π 2  
the corollary follows.                                                                       □ 

4. Proof of Theorem 2 and Its Corollaries 
Proof of Theorem 2. As in the proof of Theorem 1, the second-order differential Equation (1) can be written as 
the first order differential system (9). Doing the rescaling ( ) ( ), ,x y X Yε ε= , we obtain the system  

( ) ( ) ( )( ) ( )( )2 2 33 .

X Y

y X h t g t X f t Y XY f t X Xε ε

=

= − − + − − − + − −





              (11) 
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System (11) with 0ε =  is the unperturbed system, otherwise it is the perturbed system. 
The solution ( ) ( )( ),X t Y t  of the unperturbed system such that ( ) ( )( ) ( )0 00 , 0 ,X Y X Y=  is  

( ) ( ) ( )

( ) ( ) ( )
0 0 0

0 0 0

cos sin sin d ,

sin cos cos d .

t

t

X t X t Y t h t

Y t X t Y t h t

τ τ τ

τ τ τ

= + − −

= − + − −

∫

∫
 

Note that these periodic orbits have period 2π . Using the notation introduced in section 2. We have that 
( ),X Y=x , ( )0 0,X Y=z , ( ) ( )0 , ,F t Y X h= − −x , ( ) ( ) ( )( )1 , 0, 3F t g t X f t Y XY= − − −x  and  
( ) ( )( )2 3

2 , 0,F t f t X X= − −x . 
The fundamental matrix solution ( )M tz  is independent of the initial condition z  and it is  

( )
cos sin

.
sin cos

t t
M t

t t
 

=  − 
 

We compute the function ( ) ( ) ( )( )1 0 0 2 0 0, , ,X Y X Y=z    given in (8), and we get the functions (4) of the 
statement of Theorem 2. 

By Theorem 3, each zero ( )0 0,X Y∗ ∗  of system ( ) ( )1 0 0 2 0 0, , 0X Y X Y= =   satisfying (3), provides a 2π - 
periodic solution ( ) ( )( ), , ,X t Y tε ε  of system (11) with 0ε ≠  sufficiently small such that  

( )
( )

( ) ( )

( ) ( )
( )

* *
0 0 0

* *
0 0 0

cos sin sin d,
.

, sin cos cos d

t

t

X t Y t h tX t
O

Y t X t Y t h t

τ τ τε
ε

ε τ τ τ

 + − −   = +      − + − − 

∫

∫
 

Going back through the change of variables for every periodic solution ( ) ( )( ), , ,X t Y tε ε  of system (11) 
with 0ε ≠  sufficiently small, we obtain a 2π -periodic solution  

( ) ( ) ( )( ) ( )* * 2
0 0 0

, cos sin sin d
t

x t X t Y t h t Oε ε τ τ τ ε= + − − +∫  

of the differential Equation (1) for 0ε ≠  sufficiently small. This completes the proof of Theorem 2.       □ 
Proof of Corollary 3. We apply Theorem 2 with  

( ) ( ) ( ) ( ) ( ) 2sin 2 cos 2 , sin , 2cos .f t t t g t t h t t= + = =  

We compute the functions 1  and 2  of the statement of Theorem 2, and we obtain  

( ) ( ) ( ) ( )1 0 0 0 0 2 0 0 0 0
π π, 2 4 , , 1 8 .
2 2

X Y X Y X Y X Y= + − = + −   

System 1 2 0= =   has the solution ( ) ( )0 0, 2 31,15 31X Y∗ ∗ = − . Since the Jacobian (3) is 231π 4 , by 
Theorem 2 we obtain the periodic solution of the statement of the corollary.                           □ 

Proof of Corollaryc 4. We apply Theorem 2 with  

( ) ( ) ( ) ( )2sin , sin , 2cos 2 .f t t g t t h t t= = =  

We compute the functions 1  and 2  of the statement of Theorem 2, and we obtain  

( ) ( ) ( )1 0 0 0 2 0 0 0
3π 11π, 8 5 , , .
4 4

X Y Y X Y X= + =   

System 1 2 0= =   has the solution ( ) ( )0 0, 0, 8 5X Y∗ ∗ = − . Since the Jacobian (3) is 2165π 16− , by 
Theorem 2 we obtain the periodic solution of the statement of the corollary.                           □ 
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