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PLANE NON-SINGULAR CURVES WITH AN ELEMENT OF “LARGE” ORDER IN ITS

AUTOMORPHISM GROUP

ESLAM BADR AND FRANCESC BARS

Abstract. Let Mg be the moduli space of smooth, genus g curves over an algebraically closed field K of zero

characteristic. Denote by Mg(G) the subset of Mg of curves δ such that G (as a finite non-trivial group) is

isomorphic to a subgroup of Aut(δ) and let M̃g(G) be the subset of curves δ such that G ∼= Aut(δ) where Aut(δ)

is the full automorphism group of δ. Now, for an integer d ≥ 4, let MPl
g be the subset of Mg representing smooth,

genus g plane curves of degree d (in this case, g = (d−1)(d−2)/2) and consider the sets MPl
g (G) := MPl

g ∩Mg(G)

and M̃Pl
g (G) := M̃g(G) ∩MPl

g .

In this note we first determine, for an arbitrary but a fixed degree d, an algorithm to list the possible values

m for which MPl
g (Z/m) is non-empty where Z/m denotes the cyclic group of order m. In particular, we prove

that m should divide one of the integers: d− 1, d, d2 − 3d+3, (d− 1)2, d(d− 2) or d(d− 1). Secondly, consider

a curve δ ∈ MPl
g with g = (d− 1)(d− 2)/2 such that Aut(δ) has an element of “very large” order, in the sense

that this element is of order d2 − 3d + 3, (d − 1)2, d(d − 2) or d(d − 1). Then we investigate the groups G for

which δ ∈ M̃Pl
g (G) and also we determine the locus M̃Pl

g (G) in these situations. Moreover, we work with the

same question when Aut(δ) has an element of “large” order ℓd, ℓ(d− 1) or ℓ(d− 2) with ℓ ≥ 2 an integer.

1. Introduction

It is well known that any δ ∈ MPl
g (G) corresponds to a set {Cδ} of non-singular plane models in P2(K) such

that any two of them are K-isomorphic through a projective transformation P ∈ PGL3(K) (where PGL3(K)

is the classical projective linear group of 3× 3 invertible matrices over K), and their automorphism groups are

conjugate. If C is a non-singular plane model of δ which is defined by the homogenous equation F (X;Y ;Z) = 0

then Aut(C) is a finite subgroup of PGL3(K) and also we have ρ(G) ≼ Aut(C) for some injective representation

ρ : G ↪→ PGL3(K). Moreover, ρ(G) = Aut(C) whenever δ ∈ M̃Pl
g (G).

We denote by ρ(MPl
g (G)) the set of all elements δ ∈ MPl

g (G) such that G acts on a plane model associated

to δ as Pρ(G)P−1 for some P inside PGL3(K). This gives us the following disjoint union decomposition:

MPl
g (G) = ∪[ρ]∈Aρ(M

Pl
g (G))

where A := {ρ | ρ : G ↪→ PGL3(K)}/ ∼ such that ρa ∼ ρb if and only if ρa(G) = Pρb(G)P−1 for some

P ∈ PGL3(K). A similar decomposition follows for M̃Pl
g (G).

For a fixed degree d, it is a difficult task to list the [ρ]′s and the groups G such that ρ(MPl
g (G)) is non-empty,

see Henn work [9] and Komiya-Kuribayashi work [12] for degree 4 and [2] for degree 5. For a cyclic group

G ∼= Z/m of order m, Dolgachev in [5] determined the [ρ]′s and m such that ρ(MPl
3 (Z/mZ)) is non-trivial and

moreover he associated to such locus (once ρ and m are fixed), a normal form, i.e. a certain projective equation

which depends on some parameters together with some algebraic restrictions to these parameters such that any

element of the locus ρ(MP l

g (Z/mZ)) corresponds to certain specialization of the parameters. In §2, following
Dolgachev technique, we obtain a general algorithm in order to determine [ρ]′s and m such that ρ(MPl

g (Z/mZ))
might be non-trivial and also to such locus (once ρ and m are fixed) we associate a normal form (see Remark

7 for a link to an implementation of the algorithm in SAGE, and the appendix for listing the results that are

given by the algorithm until degree 9). As a consequence of the algorithm (Theorem 6) we obtain that m
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always divides one of the following integers: d2 − 3d+3, (d− 1)2, d(d− 2) or d(d− 1), which we believe that is

well-known to the specialists.

Secondly, there is a lot of interest on non-singular curves having a large automorphism group: For K = C a

curve δ ∈ Mg has large automorphism group if it has a neighborhood (with respect to the complex topology) in

Mg such that any other curve inside the neighborhood has a smaller automorphism group. For such situations δ

admits a model defined over Q, δ/Aut(δ) corresponds to the projective line and the Galois cover δ → δ/Aut(δ)

is a Belyi morphism, in particular it is ramified exactly at 3 points (the last property of a Belyi morphism that

is ramified at three points and is a Galois cover, characterizes curves with large automorphism group). For

more details, we refer to Wolfart [14]. Another notion in the literature for δ to be of large automorphism group

is assuming that |Aut(δ)| > 4(g− 1). In particular, for δ ∈ MPl
g it means that |Aut(δ)| > 2(d2 − 3d+2)− 4 (in

this case δ → δ/Aut(δ) is a map from δ to a projective line which is ramified at 3 or 4 points, see [6, p.258-260]).

The above definitions of large automorphism group are very restrictive to our proposes of plane curves

δ ∈ MPl
g and in this paper we say that an element σ ∈ Aut(δ) is “very large” if its order is exactly one of the

integers d2 − 3d+ 3, (d− 1)2, d(d− 2) or d(d− 1). We say that σ ∈ Aut(δ) is “large” if its order is exactly one

of the following integers: ℓd, ℓ(d− 1) or ℓ(d− 2) for some integer ℓ ≥ 2.

In what follows ξm denotes a primitive m-th root of unity in K and we obtain, in particular, the following

results (in §3.1 to §3.4) for δ ∈ MPl
g (Z/m) such that m is “very large” in the above sense.

Theorem 1. Let δ ∈ MPl
g be a non-singular plane curve of degree d ≥ 4 and let σ ∈ Aut(δ) where σ is “very

large”. Then one of following cases occurs.

(1) if σ has order d(d−1) with d ≥ 5 then Aut(δ) =< σ > and δ is K-isomorphic to Xd+Y d+XZd−1 = 0.

In particular for d ≥ 5, MPl
g (Z/d(d− 1)Z) is an irreducible locus with one element, and

˜MPl
g (Z/d(d− 1)) = MPl

g (Z/d(d− 1)) = ρ(MPl
g (Z/d(d− 1)))

where ρ(Z/d(d − 1)Z) =< diag(1, ξd−1
d(d−1), ξ

d
d(d−1)) >. For the case d = 4, one can read Remark 12 in

§3.1 for further details.

(2) if σ has order (d− 1)2 then Aut(δ) =< σ > and δ is K-isomorphic to Xd+Y d−1Z+XZd−1 = 0. Also,

MPl
g (Z/(d− 1)2Z) is an irreducible locus with one element, and

˜MPl
g (Z/(d− 1)2) = MPl

g (Z/(d− 1)2) = ρ(MPl
g (Z/(d− 1)2))

with ρ(Z/(d− 1)2Z) =< diag(1, ξ(d−1)2 , ξ
(d−1)(d−2)
(d−1)2 ) >.

(3) if σ has order d(d− 2) then δ is K-isomorphic to Xd + Y d−1Z + Y Zd−1 = 0 and for d ̸= 4, 6 we have

Hd := Aut(δ) =< σ, τ |τ2 = σd(d−2) = 1, and τστ = σ−(d−1) > .

Again, MPl
g (Z/d(d− 2)Z)) is an irreducible locus with one element, and

M̃g(Hd) = MPl
g (Z/d(d− 2)) = ρ(MPl

g (Z/d(d− 2)))

where ρ(Z/d(d − 2)Z) =< diag(1, ξd(d−2, ξ
−(d−1)
d(d−2) ) >. The automorphism groups for d = 4, 6 are given

explicitly in §3.3, Proposition 15.

(4) if σ has order d2−3d+3 then δ is K-isomorphic to the Klein curve Kd : Xd−1Y +Y d−1Z+Zd−1X = 0

and for d ≥ 5 we have HKd
:= Aut(δ) =< σ, τ |σd2−3d+3 = τ3 = 1 andστ = τσ−(d−1) >. The locus

MPl
g (Z/(d2 − 3d+ 3)Z)) is irreducible with one element, and

˜Mg(HKd
) = MPl

g (Z/(d2 − 3d+ 3)) = ρ(MPl
g (Z/(d2 − 3d+ 3)))

where ρ(Z/(d2 − 3d + 3)Z) =< diag(1, ξd2−3d+3, ξ
−(d−2)
d2−3d+3) >. We refer to Remark 18 of §3.4 for the

classical case d = 4.

Remark 2. The above situations do not fit with curves that have large automorphism group in the classical

definition. For example, the curve δ : Xd+Y d−1Z+XZd−1 = 0 is defined over Q, δ/Aut(δ) is a projective line

and the morphism δ → δ/Aut(δ) is ramified at two points of ramification index (d− 1)2 and at d− 1-points of
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ramification index d− 1. Therefore this curve has no a large automorphism group in any of the classical sense

because it ramifies at more than 4 points. But it has “very large” elements in its automorphism group.

Now assuming that m is “large” in the sense that m ∈ {ℓd, ℓ(d − 1), ℓ(d − 2) : ℓ ≥ 2}, we obtain different

results in §4 and §5, some of them are listed below:

Theorem 3. Let δ ∈ MPl
g be a non-singular plane curve of degree d ≥ 4 that admits an automorphism

σ ∈ Aut(δ) of “large” order. Then

(1) if σ has order ℓ(d − 1) with ℓ ≥ 2, we always have d ≡ 0 or 1 (mod ℓ) and Aut(δ) is cyclic of order

ℓ′(d − 1) with ℓ|ℓ′. If ℓ = 1, the same conclusion holds if σ is a homology (By an homology we mean

that Pρ(σ)P−1 = diag(1, ξam, ξbm) such that at least one of a and b is zero for some P ∈ PGL3(K)).

(2) if σ has order ℓd with ℓ ≥ 3 then d ≡ 1 or 2 (mod ℓ), Aut(δ) fixes a line and a point off that line (in

particular, following the same notations of §3, it is an exterior group as in Theorem 9 (2) with N of

order d). When ℓ = 2, Aut(δ) could also be conjugate to a subgroup of Aut(Fd) where Fd is the Fermat

curve Xd + Y d + Zd = 0 (in such cases we say that δ is a descendent of the Fermat curve, see the

precise definition in §3).
(3) if σ has order ℓ(d−2) with ℓ ≥ 2 then always d ≡ 0(mod ℓ) and, roughly speaking, for d > 6 and d ̸= 10,

we can think about Aut(δ) in a short exact sequence 1 → Z/k → Aut(δ) → D → 1 with k divides d and

D is the Dihedral group D2(d−2) or Dd−2. For more accurate details, we refer to §4.2

Remark 4. In the above situations where m is “large”, we also obtain that every element in MPl
g (Z/m) is

given by a certain specialization of the parameters in a fixed normal form for the full locus MPl
g (Z/m). This

phenomena is not true in general for an arbitrary m. In other words, with the aid of the algorithm in §2, we
prove that ρ(MPl

g (Z/m)) has the property of being represented by an unique fixed normal form. But the moduli

MPl
g (Z/m) with m not “large” or “very large” is not in general given by a single equation with some parameters

(counter examples are provided in [1]).

Remark 5. Take K = C. Then, one should expect to have non-singular plane curves which have a “large”

element in the automorphism group and no plane model (up to C-isomorphism) defined over the algebraic

closure of Q inside C. Let us reproduce the situation that has been mentioned in [1, §2.1] for d = 5 and a

“large” element of order 8, as an explicit example of the above phenomena. Any element in MPl
6 (Z/8) has,

up to K-isomorphism, a plane models of the form X5 + Y 4Z +XZ4 + βX3Z2 = 0 for certain/s β (note that

β ̸= ±2 for non-singularity). We constructed in [1] a bijection map

φ : MPl
6 (Z/8Z) → A1(K) \ {−2, 2}/ ∼

α 7→ [β] = {β,−β}

where a ∼ b ⇔ b = a or a = −b, and we know that the non-singular plane model X5+Y 4Z+XZ4+βX3Z2 = 0

has a bigger automorphism group than Z/8Z if and only if β = 0.

2. Cyclic automorphism group of non-singular plane curves

Fix and integer d ≥ 4, and consider δ ∈ MPl
g such that the group G ∼= Aut(δ) is non-trivial. Let C :

F (X;Y ;Z) = 0 in P2(K) be a non-singular plane model of degree d over an algebraically closed field K of

characteristic zero. Suppose that Aut(C) = ρ(G) ≤ PGL3(K) for some ρ : G ↪→ PGL3(K) (any other plane

model of δ is given by PC : F (P (X;Y ;Z)) = 0 for some P ∈ PGL3(K) moreover Aut(PC) is conjugate

through P to Aut(C), and we say that PC is K-equivalent or K-isomorphic to C). Assume that ρ(σ) ∈ Aut(C)

is an element of order m hence by a change of variables in P2 (in particular, changing the plane model to a

K-equivalent one associated to δ), we can consider ρ(σ) as the automorphism (x : y : z) 7→ (x : ξamy : ξbmz)

where ξm is a primitive m-th root of unity in K and a, b are integers such that 0 ≤ a ̸=b ≤ m − 1. Moreover,

if ab ̸= 0 then m and gcd(a, b) are coprime (we can reduce to gcd(a, b) = 1) and if a = 0 then gcd(b,m) = 1.

Also, such an automorphism is identified with type m, (a, b) and we write ρa,b,m(Z/mZ) for the subgroup given
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by the diagonal matrix diag(1, ξam, ξbm) in PGL3(K). In particular δ ∈ ρa,b,m(MPl
g (Z/m)) and δ ∈ ˜ρ(MPl

g (G)),

of course ρa,b,m may be interpreted as the restriction to < σ > of ρ.

Our aim here is to investigate which cyclic groups could appear inside Aut(δ), thus to determine all possible

types m, (a, b) for which the moduli ρa,b,m(MPl
g (Z/m)) might be non-empty. We follow a similar approach as

Dolgachev in [5] which deal with the same question for d = 4 (see also [3, §2.1]).
Throughout this paper, we use the following notations.

• Type m, (a, b) is identified with the corresponding automorphism [X; ζamY ; ζbmY ] where ζm is a primitive

m-th root of unity. Saying that m, (a, b) is a generator of ρ(Z/m) for certain ρ : Z/m ↪→ PGL3(K)

means that any element of ρ(Z/m) is a power of the associated automorphism to Type m, (a, b).

• Li,∗ denotes a degree i, homogeneous polynomial in K[X,Y, Z] such that the variable ∗ ∈ {X,Y, Z}
does not appear.

• S(u)m := {j : u ≤ j ≤ d− 1, d− j = 0 (mod m)}.
• Sd,X

u m, (a, b) := {i : u ≤ i ≤ d− u and ai+ (d− i)b = 0 (mod m)}.
• Sd−1,X

u m, (a, b) := {i : 1 ≤ i ≤ d− u and ai+ (d− 1− i)b = 0 (mod m)}
• S(1)j,Xm,(a,b) := {i : 0 ≤ i ≤ j and ai+ (j − i)b = a (mod m)}.
• S(2)j,Xm,(a,b) := {i : 0 ≤ i ≤ j and ai+ (j − i)b = 0 (mod m)}.
• Sj,Y

m,(a,b) := {i : 0 ≤ i ≤ j and bi+ (d− j)a = a (mod m)}.
• Sj,Z

m,(a,b) := {i : 0 ≤ i ≤ j and ai+ (d− j)b = a (mod m)}.
• Γm := {(a, b) ∈ N2 : g.c.d (a, b) = 1, 1 ≤ a ̸= b ≤ m− 1}.
• the points P1 := (1 : 0 : 0), P2 := (0 : 1 : 0) and P3 := (0 : 0 : 1) inside P2(K) are called the reference

points.

• α ∈ K∗ and it can always be 1 by a change of variables.

where u, j,m, d, a and b are all non-negative integers.

Theorem 6. Let δ ∈ MPl
g be a non-singular projective plane curve of degree d ≥ 4 over an algebraically

closed field K of zero characteristic. If H is a non-trivial cyclic subgroup of Aut(δ) of order m, then δ ∈
ρa,b,m(MPl

g (Z/m)) for the following list (1)-(6) of values of a, b,m. We associate to each locus a normal form,

that is unique up to K-equivalence. Any plane model in P2(K) of an element δ ∈ ρa,b,m(MPl
g (Z/m)) is obtained

by a certain specialization of the parameters in the normal form and, any specialization of the parameters (under

certain restrictions in the parameters) gives a plane non-singular model of an element of this locus: a

(1) The curve δ ∈ ρm,0,1(M
Pl
g (Z/m)) with m|d− 1 and a plane model of the curve is of the form

Zd−1L1,Z +
( ∑
j∈S(2)m

Zd−jLj,Z

)
+ Ld,Z .

(2) The curve δ ∈ ρm,0,1(M
Pl
g (Z/m)) with m|d and a plane model of the curve has the form

Zd +
( ∑
j∈S(1)m

Zd−jLj,Z

)
+ Ld,Z .

(3) All reference points lie on δ: The curve δ ∈ ρm,a,b(M
Pl
g (Z/m)) with m | (d2 − 3d + 3) and (a, b) ∈ Γm

such that a = (d − 1)a + b = (d − 1)b (mod m). In particular δ has a plane non-singular model where

all reference points lie on it, and a plane non-singular model of δ is given by certain specialization of

α, βj,i, αi,j , γi,j ∈ K of the equation

Xd−1Y + Y d−1Z + αZd−1X +

+

⌊ d
2 ⌋∑

j=2

Xd−j
( ∑
i∈S(1)j,X

m,(a,b)

βj,iY
iZj−i

)
+ Y d−j

( ∑
i∈Sj,Y

m,(a,b)

αj,iZ
iXj−i

)
+ Zd−j

( ∑
i∈Sj,Z

m,(a,b)

γj,iX
j−iY i

)
,

aWe warn the reader that it may happen for a projective equation which is obtained by a certain type m(a, b) that it is not

geometrically irreducible or non-singular for any specialization of the parameters and hence ρa,b,m(MPl
g (Z/m)) is the empty set

and then should be discarded from the list.
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(4) Two reference points lie on δ: One of the following subcases occurs.

(4.1) δ ∈ ρm,a,b(M
Pl
g (Z/m)) where m | d(d− 2) and (a, b) ∈ Γm such that (d− 1)a+ b ≡ 0 (modm) and

a + (d − 1)b ≡ 0 (modm) . Moreover, a plane model C of δ is given by a certain specialization of

the parameters of the equation

Xd +
( d−1∑
j=2

Xd−j
∑

i∈S(2)j,X
m,(a,b)

βj,iY
iZj−i

)
+
(
Y d−1Z + αY Zd−1 +

∑
i∈Sd,X

2 m,(a,b)

βd,iY
iZd−i

)
= 0,

(4.2) δ ∈ ρm,a,b(M
Pl
g (Z/m)) where m|(d − 1)2 and (a, b) ∈ Γm such that (d − 1)a + b ≡ 0 (modm) and

(d − 1)b ≡ 0 (modm). Furthermore, a plane non-singular model C of δ is obtained by a certain

specialization of the parameters of the equation

Xd +

d−2∑
j=2

Xd−j
( ∑
i∈S(2)j,X

m,(a,b)

βj,iY
iZj−i

)
+X

(
αZd−1 +

∑
i∈Sd−1,X

1 m,(a,b)

β(d−1),iY
iZd−1−i

)
+

+
(
Y d−1Z +

∑
i∈Sd,X

2 m,(a,b)

βd,iY
iZd−i

)
= 0

(4.3) δ ∈ ρm,a,b(M
Pl
g (Z/m)) where m|(d − 1) and (a, b) ∈ Γm such that (d − 1)b ≡ 0 (modm) and

(d− 1)a ≡ 0 (modm). In such case a plane non-singular model C of δ has the form

Xd +
d−2∑
j=2

(
Xd−j

∑
i∈S(2)j,X

m,(a,b)

βj,iY
iZj−i

)
+

∑
i∈Sd,X

2 m, (a,b)

βd,iY
iZd−i +

+ X
(
Zd−1 + αY d−1 +

∑
i∈Sd−1,X

2 m, (a,b)

β(d−1),iY
iZd−1−i

)
,

(5) One reference points lie on δ: Then δ ∈ ρm,a,b(M
Pl
g (Z/m)) with m| d(d− 1) and (a, b) ∈ Γm such that

da ≡ 0 (modm) and (d− 1)b ≡ 0 (modm). Also, a plane model of δ is given by the form

Xd + Y d +
d−2∑
j=2

(
Xd−j

∑
i∈S(2)j,X

m,(a,b)

βj,iY
iZj−i

)
+

∑
i∈Sd,X

1 m, (a,b)

βd,iY
iZd−i +

+ X
(
αZd−1 +

∑
i∈Sd−1,X

1 m, (a,b)

β(d−1),iY
iZd−1−i

)
= 0

(6) None of the reference points lie on a plane model C of δ, then δ ∈ ρm,a,b(M
Pl
g (Z/m)) where m|d and

(a, b) ∈ Γm such that da ≡ 0 (modm) and db ≡ 0 (modm). Furthermore, we have

Xd + Y d + Zd +

d−1∑
j=2

(
Xd−j

∑
i∈S(2)j,X

m,(a,b)

βj,iY
iZj−i

)
+

∑
i∈Sd,X

1 m, (a,b)

βd,iY
iZd−i = 0.

Here, α, βi,j , γi,j , αi,j are parameters which specialize, for a concrete δ as above, at values in K with always

α ̸= 0.

Remark 7. The above result and its proof give an algorithm to list, for every fixed degree d, all cyclic groups

that could appear with an equation (up to K-isomorphism). For the complete algorithm and its implementation

in SAGE, see the link http://mat.uab.cat/∼eslam/CAGPC.sagews. Also see the appendix for a list of Types

that could appear for degree d ≤ 9 (i.e. the possible non-trivial ρm,a,b(M
Pl
g (Z/m)) loci for a fixed degree d ≤ 9)

with their equations that are given by parameters. These equations assign to specializations of the parameters,

plane models of the elements of the loci ρm,a,b(M
Pl
g (Z/m)).

Proof. Without loss of generality, we consider a plane model C : F (X;Y ;Z) = 0 of δ such that the cyclic

element order m acts as the diagonal matrix diag(1, ξam, ξbm) in the plane equation F (X;Y ;Z) = 0. Let φ be a

generator of order m := |H|. One can choose coordinates so that φ is represented by
(
x; y, z

)
7→
(
x; ξamy, ξbmz

)
where a, b are integers with 0 ≤ a ̸= b ≤ m − 1 ( one can assume that a < b with gcd(b,m) = 1 if a = 0 and
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with gcd(a, b) = 1 otherwise):

Case I : Suppose first that a = 0 and write: F (X;Y ;Z) = λZd +
(∑d−1

j=1 Z
d−jLj,Z

)
+ Ld,Z .

If λ = 0, then by non-singularity L1,Z ̸= 0 and (d − 1)b = 0 (modm). Hence, m|d − 1 and we can take a

generator (a, b) = (0, 1). Therefore, by checking each monomial’s invariance, we obtain that Lj,Z ̸= 0 only if

j ∈ S(2)m and we get types m, (0, 1) of (1).

If λ ̸= 0 then db ≡ 0(modm). From which we obtain m|d and (a, b) = (0, 1) is a generator for each such m.

By the same discussion as before, we have types m, (0, 1) of the form Zd+
(∑

j∈S(1)m
Zd−jLj,Z

)
+Ld,Z , which

proves (2).

Case II : Suppose that a ̸= 0 then necessarily, m > 2 and we distinguish between the following four subcases:

i.: All reference points lie in C,

ii.: Two reference points lie in C,

iii.: One reference point lies in C,

iv.: None of the reference points lie in C.

• If all reference points lie on C, then the possibilities for the defining equation are now:

C :

⌊ d
2 ⌋∑

j=1

(
Xd−jLj,X + Y d−jLj,Y + Zd−jLj,Z

)
.

Because a ̸= b with a ̸= 0, we can assume that C : Xd−1Y + Y d−1Z + αZd−1X +
∑⌊ d

2 ⌋
j=2

(
Xd−jLj,X +

Y d−jLj,Y + Zd−jLj,Z

)
. The first three factors implies that a ≡ (d − 1)a + b ≡ (d − 1)b (modm).

In particular, m|d2 − 3d + 3. The defining equation (3) follows immediately by checking monomials’

invariance in each Lj,B . For example, rewrite Lj,X as
∑j

i=0 βj,iY
iZj−i then βj,i = 0 if m - ai+ (j − i)b

or equivalently i /∈ S(1)j,Xm,(a,b), since diag(1; ξam; ξbm) ∈ Aut(C).b

• If two reference points lie on C, then by re-scaling the matrix φ and permuting the coordinates, we can

assume that (1; 0; 0) /∈ C. The equation is then C : Xd+Xd−2L2,X+Xd−3L3,X+...+XLd−1,X+Ld,X = 0,

since L1,X is not invariant by φ because ab ̸= 0. Moreover, Zd and Y d are not in Ld,X , by the assumption

that only (1; 0; 0) /∈ C. Assume first that Y d−1Z and Y Zd−1 are in Ld,X . Then (d− 1)a+ b≡0 (modm)

and a+ (d− 1)b≡0 (modm). In particular, m|d(d− 2) and for each such type m, (a, b), the equation is

reduced to Xd +
(∑d−1

j=2 Xd−j
∑j

i=0 βj,iY
iZj−i

)
+
(
Y d−1Z + αY Zd−1 +

∑d−2
i=2 βd,iY

iZd−i
)
= 0. It is

straightforward to see that if i /∈ S(2)j,Xm,(a,b) (resp. i /∈ Sd,X
2 m, (a, b)) then βj,i = 0 (resp. βdi = 0). This

proves (4.1). Secondly, assume that Y d−1Z ∈ Ld,X and Y Zd−1 /∈ Ld,X . Then, by the non-singularity,

Zd−1 is in Ld−1,X . That is (d − 1)a + b ≡ 0 (modm) and (d − 1)b ≡ 0 (modm). Therefore m|(d − 1)2

and we have the form

Xd + αXZd−1 + Y d−1Z +

d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i +

d−1∑
i=1

β(d−1),iXY iZd−1−i +

d−2∑
i=2

βd,iY
iZd−i = 0.

Consequently, by checking the monomials’ invariance, we conclude that if i /∈ S(2)j,Xm,(a,b) then βj,i = 0, if

i /∈ Sd−1,X
1 m, (a, b) then β(d−1),i = 0, if i /∈ Sd,X

2 m, (a, b) then βd,i = 0 and the result follows for (4.2).

Up to a permutation of Y and Z, it remains to consider the case for which Y d−1Z and Y Zd−1 are not

in Ld,X . By the non-singularity, Zd−1 and Y d−1 should be in Ld−1,X consequently, (d−1)b ≡ 0 (modm)

and (d− 1)a ≡ 0 (modm). Therefore, m|(d− 1) and the form is reduced to

Xd +XZd−1 + αXY d−1 +
d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i +

d−2∑
i=2

βd,iY
iZd−i +

d−2∑
i=1

β(d−1),iXY iZd−1−i = 0,

and the equation (4.3) is now clear by the fact that βj,i = 0 whenever m - ai+ (j − i)b.

bIt is to be noted that for a fixed m and (a0, b0) ∈ Lm where Lm := {(a, b) ∈ Γm : a ≡ (d− 1)a+ b ≡ (d− 1)b (modm)}, the
type m, (a0, b0) is K-isomorphic to any type m, (a′, b′) ∈< m, (a, b) >. So, to complete the classification for m, it suffices to choose

another (a, b) ∈ Lm− < (a0, b0) > and repeat until we get Lm = ∅.
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• If one reference points lie in the C, then by normalizing the matrix φ and permuting the coordinates,

we can assume that (1; 0; 0), (0; 1; 0) /∈ C. We then write

C : Xd + Y d +Xd−2L2,X +Xd−3L3,X + ...+XLd−1,X + Ld,X = 0,

such that Zd /∈ Ld,X . Also, by the non-singularity, we have Zd−1 ∈ Ld−1,X . In particular, da ≡
0 (modm) and (d− 1)b ≡ 0 (modm) and m| d(d− 1). The above equation become

Xd + Y d + αXZd−1 +

d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i +

d−1∑
i=1

βd,iY
iZd−i +

d−1∑
i=1

β(d−1),iXY iZd−1−i = 0

Following the same line of argument as before, we conclude (5).

• If none of the reference points lie in C then C : Xd + Y d + Zd +
(∑d−1

j=2 X
d−jLj,X

)
+ Ld,X = 0, where

L1,X does not appear since ab ̸= 0 and L1,X is not invariant under φ. Clearly da ≡ db ≡ 0 (modm) and

therefore m|d. Moreover

C : Xd + Y d + Zd +
d−1∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd,X

1 m, (a,b)

βd,iY
iZd−i = 0.

This completes the proof of our result. �

Corollary 8. Let H be a non-trivial cyclic subgroup of Aut(δ) where δ ∈ MPl
g with d ≥ 4. Then the order of

H divides one of the integers d− 1, d, d2 − 3d+ 3, (d− 1)2, d(d− 2), d(d− 1). Consequently automorphisms

of δ have orders ≤ d(d− 1).

3. Characterization of curves δ ∈ MPl
g whose Aut(δ) has “very large” elements

We study here non-singular plane curves δ ∈ MPl
g that admits a σ ∈ Aut(δ) of “very large” or “large” order:

d2−3d+3, (d−1)2, d(d−2), d(d−1), ℓ(d−1) or ℓd with ℓ ≥ 2. In particular we are interested in investigating

the full automorphism group and the corresponding non-singular plane equations (up to K-isomorphism) of

such curves.

Before a detailed study of the automorphism groups for such δ’s, we recall the following general results

concerning Aut(δ) for δ ∈ MPl
g which will be useful throughout this paper. In some cases we will use the

notation of the GAP library for small finite groups to indicate some of them.

Because linear systems g2d are unique (up to multiplication by P ∈ PGL3(K) in P2(K) [10, Lemma 11.28]), we

always consider a non-singular plane model C of δ, which is given by a projective plane equation F (X;Y ;Z) = 0

and Aut(C) is a finite subgroup of PGL3(K) that fixes the equation F and is isomorphic to Aut(δ). Any other

plane model of δ is given by PC : F (P (X;Y ;Z)) = 0 with Aut(PC) = PAut(C)P−1 for some P ∈ PGL3(K)

and PC isK-equivalent orK-isomorphic to C. By an abuse of notation, we also denote a non-singular projective

plane curve of degree d by C. Therefore, Aut(C) satisfies one of the following situations (see Mitchel [13] for

more details):

(1) fixes a point Q and a line L with Q /∈ L in PGL3(K),

(2) fixes a triangle (i.e. a set of three non-concurrent lines),

(3) Aut(C) is conjugate to a representation inside PGL3(K) of one of the finite primitive group namely, the

Klein group PSL(2, 7), the icosahedral group A5, the alternating group A6, the Hessian group Hess216
or to one of its subgroups Hess72 or Hess36.

It is classically known that if a subgroup H of automorphisms of a non-singular plane curve C fixes a point

on C then H is cyclic [10, Lemma 11.44], and recently Harui in [8, §2] provided the lacked result in the literature

on the type of groups that could appear for non-singular plane curves. Before introducing the statement of

Harui, we need to define the terminology of being a descendent of a plane curve. For a non-zero monomial

cXiY jZk with c ∈ K \ {0} we define its exponent as max{i, j, k}. For a homogenous polynomial F , the core

of F is defined to be the sum of all terms of F with the greatest exponent. Let C0 be a smooth plane curve,

a pair (C,H) with H ≤ Aut(C) is said to be a descendant of C0 if C is defined by a homogenous polynomial

whose core is a defining polynomial of C0 and H acts on C0 under a suitable change of the coordinate system.
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Theorem 9 (Harui). If H ≼ Aut(C) where C is a non-singular plane curve of degree d ≥ 4 then H satisfies

one of the following.

(1) H fixes a point on C and then cyclic.

(2) H fixes a point not lying on C and satisfies a short exact sequence of the form 1 → N → H → G′ → 1,

where N a cyclic group of order dividing d and G′ (which is a subgroup of PGL2(K)) is conjugate to

a cyclic group Z/mZ of order m with m ≤ d− 1, a Dihedral group D2m of order 2m where |N | = 1 or

m|(d− 2), the alternating groups A4, A5 or the symmetry group S4.

(3) H is conjugate to a subgroup of Aut(Fd) where Fd is the Fermat curve Xd + Y d + Zd. In particular,

|H| | 6d2 and (C,H) is a descendant of Fd.

(4) H is conjugate to a subgroup of Aut(Kd) where Kd is the Klein curve curve XY d−1 +Y Zd−1 +ZXd−1

hence |H| | 3(d2 − 3d+ 3) and (C,H) is a descendant of Kd.

(5) H is conjugate to a finite primitive subgroup of PGL3(K) that are mentioned above.

Now assume, as usual, that C is a non-singular plane model of degree d ≥ 4 with σ ∈ Aut(C) of exact order

m that acts on F (X;Y ;Z) = 0 as (x, y, z) 7→ (x, ξamy, ξbmz). In the next sections, mainly in the proofs, we recall

the abuse of notation of refereing to C as a non-singular plane curve (up to K-isomorphism) instead of being a

non-singular plane model of some δ ∈ MPl
g .

3.1. The locus MPl
g (Z/(d(d− 1))).

The following result appears in Harui [8, §3].

Proposition 10 (Harui). For any d ≥ 5, δ ∈ ˜MPl
g (Z/(d(d− 1))) if and only if δ has a plane model given by

C : Xd + Y d +XZd−1 = 0.

Moreover we prove the following:

Proposition 11. For d ≥ 4, δ ∈ MPl
g (Z/d(d − 1)) if and only if δ has a non-singular plane model that is

K-equivalent to C : Xd + Y d + αXZd−1 = 0 where α ̸= 0 (always we can assume α = 1 by a K-isomorphic

model to C). Consequently, MPl
g (Z/d(d−1)Z) is an irreducible locus with one element. Furthermore, for d ≥ 5,

˜MPl
g (Z/d(d− 1)) = MPl

g (Z/d(d− 1)) = ρ(MPl
g (Z/d(d− 1)))

where ρ(Z/d(d− 1)Z) =< diag(1, ξd−1
d(d−1), ξ

d
d(d−1)) >.

Remark 12. Recall that for d = 4, the automorphism group of X4+Y 4+αXZ3 = 0 is isomorphic to Z/4}A4,

the element of Ext1(A4,Z/4)c which is given by {(δ, g) ∈ µ12×H : δ4 = χ(g)}/±1, where µn is the group of n-th

roots of unity, H is the group A4 and χ is the character χ : H → µ3 defined by χ(S) = 1 and χ(T ) = ρ where

S, T are generators of H of order 2 and 3 respectively with the representation H =< S, T |S2 = 1, T 3 = 1, ... >

and ρ is a 3rd-primitive root of unity, see [9] (or also [3]).

Proof. If δ has a non-singular plane model which is isomorphic to C : Xd + Y d + αXZd−1 = 0 then δ ∈
MPl

g (Z/d(d−1)) because [X; ζd−1
d(d−1)Y ; ζdd(d−1)Z] is an element of Aut(C) of order d(d−1). Conversely, suppose

that δ ∈ MPl
g (Z/d(d − 1)) and fix as usual, by an abuse of notation, a plane non-singular model C (up to

K-isomorphism) of δ. Since d(d− 1) does not divide any of the integers d− 1, d, d2− 3d+3, d(d− 2), (d− 1)2

then by Theorem 6, C is projectively equivalent to type d(d− 1), (a, b) of the form (5) for some (a, b) ∈ Γd(d−1)

such that da ≡ 0 modd(d− 1) and (d− 1)b ≡ 0 modd(d− 1). In particular a = (d− 1)k and b = dk′ for some

integers k and k′ and since we have [X; ζd−1
d(d−1)Y ; ζdd(d−1)Z]d(k

′−k)+k = [X; ζ
(d−1)k
d(d−1)Y ; ζdk

′

d(d−1)Z] then m, (a, b)

with m = d(d− 1), a = d− 1 and b = d is a generator of such types. Hence

cWe use the notation Ext1(A,B) in the category of groups, by groups G, up to isomorphism, where there is an exact sequence

of groups as 1 → B → G → A → 1.
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S(2)j,Xm,(a,b) := {i : 0 ≤ i ≤ j and (d− 1)i+ (j − i)d = 0mod d(d− 1)}

= {i : 0 ≤ i ≤ j and d(d− 1) |(dj − i)}

= ∅ ∀j = 2, ..., d− 2 (because 0 < dj − i < d(d− 1)),

Also

Sd,X
1 := {i : 1 ≤ i ≤ d− 1 and (d− 1)i+ (d− i)d = 0mod d(d− 1)}

= {i : 1 ≤ i ≤ d− 1 and d(d− 1) |d− i}

= ∅
∮
(because 0 < d− i < d(d− 1)),

Sd−1,X
1 := {i : 1 ≤ i ≤ d− 1 and (d− 1)i+ (d− 1− i)d = 0mod d(d− 1)}

= {i : 1 ≤ i ≤ d− 1 and d(d− 1) |i}

= ∅.

Therefore, by substituting in the form (5) of Theorem 6, C is isomorphic to Xd + Y d + αXZd−1 where α ̸= 0.

The last part is an immediate consequence of Proposition 10. �

3.2. The moduli MPl
g (Z/(d− 1)2).

Proposition 13. For any d ≥ 4, if δ ∈ MPl
g has a non-singular plane model that is isomorphic to

C : Xd + Y d−1Z + αXZd−1 = 0

for some α ̸= 0, then δ ∈ ˜MPl
g (Z/(d− 1)2).

Proof. The result is is well-known for d = 4 (see [9] or [3] for more details), so we assume that d ≥ 5. We

have [X; ζd−1Y ;Z] ∈ Aut(C) which is a homology of order d − 1 ≥ 4 hence Aut(C) should fix a point, a line

or a triangle ( see §5 of Mitchell [13]). Since [X; ζ(d−1)2Y ; ζ
(d−1)(d−2)
(d−1)2 Z] ∈ Aut(C) is of order (d− 1)2 then also

(d− 1)2 | |Aut(C)|. Now assume that Aut(C) fixes a triangle and neither a line nor a point is fixed by Aut(C)

then it follows by the proof of Theorem 9 (see [8, §4]), that C is either a descendent of the Fermat curve Fd or

the Klein curve Kd. But, none of these curves admits automorphisms of order (d−1)2, since elements of Aut(Fd)

(resp. Aut(Kd)) have orders at most 2d (resp. d2 − 3d + 3). Secondly, if Aut(C) fixes a point not lying on C

then we can think about Aut(C) in a short exact sequence 1 → N → Aut(C) → G′ → 1 as in Theorem 9 (2).

Since |N | and (d−1)2 are coprime, then (d−1)2||G′| which is not possible for any of the groups Z/m,A4, S4, A5

or D2m with m ≤ d − 1. Consequently, Aut(C) fixes a point on C and hence it is cyclic of order divisible by

(d− 1)2 and ≤ d(d− 1). That is, Aut(C) is cyclic of order (d− 1)2. In particular δ ∈ ˜MPl
g (Z/(d− 1)2). �

The following is an analogue of Proposition 11:

Proposition 14. For d ≥ 4, δ ∈ MPl
g (Z/(d − 1)2) if and only if δ has a non-singular plane model which is

isomorphic to C : Xd + Y d−1Z + αXZd−1 = 0 with α ̸= 0. Therefore MPl
g (Z/(d − 1)2Z) is an irreducible

locus with one element and ˜MPl
g (Z/d(d− 1)) = MPl

g (Z/d(d− 1)) = ρ(MPl
g (Z/d(d− 1))) where ρ(Z/d(d− 1)Z)

is < diag(1, ξ(d−1)2 , ξ
(d−1)(d−2)
(d−1)2 ) >. Furthermore, if G is a non-cyclic automorphism group of a non-singular

plane curve and (d− 1)2 | |G| then G does not contain any element of such order.

Proof. We only need to show that δ ∈ MPl
g (Z/(d−1)2) only if δ has a non-singular plane model that is isomorphic

to C : Xd + Y d−1Z + αXZd−1 = 0 with α ̸= 0, since the remaining parts are immediate consequences of

Proposition 13. Up to projective equivalence, we consider a model C of δ in ρ(MPl
g (Z/d(d − 1))) and since

(d− 1)2 - d− 1, d, d2 − 3d+3, d(d− 2), d(d− 1) then C is isomorphic to type (d− 1)2, (a, b) of the form (4.2)

of Theorem 6. In particular (a, b) ∈ Γ(d−1)2 such that (d− 1)a+ b ≡ 0mod (d− 1)2, (d− 1)b ≡ 0mod (d− 1)2

and a = (d− 1)k − k′, b = (d− 1)k′ for some integers k and k′. But we have

[X; ζ(d−1)2Y ; ζ
(d−1)(d−2)
(d−1)2 Z](d−1)k−k′

= [X; ζ
(d−1)k−k′

(d−1)2 Y ; ζ
(d−1)k′

(d−1)2 Z].
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That is m = (d− 1)2, a = 1 and b = (d− 1)(d− 2) is a generator of such types. Moreover

S(2)j,X := {i : 0 ≤ i ≤ j and i+ (j − i)(d− 1)(d− 2) = 0mod (d− 1)2}

= {i : 0 ≤ i ≤ j and (d− 1)2 |j(d− 1)− di}

= ∅ ∀j = 2, ..., d− 2.

The last equality follows because (d− 1)2 |j(d− 1)− di implies that d− 1|i thus i = 0. But then we must have

(d− 1)2 |j(d− 1) which is impossible since 0 < j < d− 1. Also, we have

Sd,X
2 := {i : 2 ≤ i ≤ d− 2 and i+ (d− i)(d− 1)(d− 2) = 0mod (d− 1)2}

⊆ {i : 2 ≤ i ≤ d− 2 and d− 1 |i}

= ∅,

Sd−1,X
1 := {i : 1 ≤ i ≤ d− 1 and i+ (d− 1− i)(d− 1)(d− 2) = 0mod (d− 1)2}

= {i : 1 ≤ i ≤ d− 1 and (d− 1)2 |di}

= ∅.

Substituting into equation (4.2) yields that C is isomorphic to the equation Xd + Y d−1Z + αXZd−1 = 0 and

we are done. �

3.3. The moduli MPl
g (Z/d(d− 2)). Assume that δ ∈ MPl

g has a non-singular plane model isomorphic to the

curve C : Xd + Y d−1Z + αY Zd−1 = 0 of degree d ≥ 4. The full automorphism group of δ is given by the

following result:

Proposition 15. Consider δ ∈ MPl
g with the above property. Therefore Aut(δ) is is the central extension

< σ, τ | σ2 = τd(d−2) = 1 and στσ = τ−(d−1) > of D2(d−2) by Z/d whenever d ̸= 4, 6. In particular Aut(δ) is

of order 2d(d − 2). For d = 6, it is a central extension of S4 by Z/6 thus |Aut(C)| = 144 and for d = 4, δ is

isomorphic to the Fermat quartic curve F4 hence Aut(δ) ≃ (Z/4)2 o S3.

Proof. Let µ ∈ K such that µd(d−2) = α, then C is projectively equivalent, through the transformation

[X;µY ;µ−(d−1)Z], to the curve C ′ : Xd + Y d−1Z + Y Zd−1 = 0 and hence it follows, by §6 of Harui [8], that

Aut(C ′) is isomorphic to Z2
4oS3 (for d = 4), a central extension of S4 by Z/d (for d = 6) and a central extension

of D2(d−2) by Z/d (d ̸= 4, 6). Finally, it is to be noted that σ := [X;Z;Y ] and τ := [X; ζd(d−2)Y ; ζ
−(d−1)
d(d−2) Z]

generate Aut(C ′) for d ̸= 4, 6 which completes the proof. �

Similarly to Propositions 11 and 14, we prove:

Proposition 16. A curve δ of d ≥ 4 belongs to MPl
g (Z/d(d − 2)) if and only if it has plane models that are

isomorphic to C : Xd + Y d−1Z + Y Zd−1 = 0. Hence MPl
g (Z/d(d − 2)) is irreducible and consists of a single

element. Furthermore ˜MPl
g (Hd) = MPl

g (Z/d(d − 1)) = ρ(MPl
g (Z/d(d − 1))) where Hd is the concrete central

extension of D2(d−2) by Z/d (d ̸= 4, 6), a central extension of S4 by Z/d (d = 6) or ≃ (Z/4)2 o S3 (d = 4),

which are detailed in Proposition 15, and ρ(Z/d(d− 2)Z) =< diag(1, ξd(d−2), ξ
−(d−1)
d(d−2) ) >.

Proof. It suffices to prove the “only if” statement since otherwise is straightforward by Proposition 15. We

have by Theorem 6 and because d(d − 2) - d − 1, d, d2 − 3d + 3, (d − 1)2, d(d − 1) that any plane model of

δ is isomorphic to type d(d − 2), (a, b) of the form (4.1) of Theorem 6. That is (a, b) ∈ Γd(d−2) such that

(d− 1)a+ b ≡ 0 modd(d− 2) and a+ (d− 1)b ≡ 0 modd(d− 2). In particular, a = k and b = dk′ + k for some

integers k and k′ such that k and dk′ + k are coprime and d− 2|k + k′. Consequently we can take a generator
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k = 1 and k′ = d− 3, since [X; ζd(d−2)Y ; ζ
d(d−3)+1
d(d−2) Z]k = [X; ζkd(d−2)Y ; ζdk

′+k
d(d−2)Z]. Therefore

S(2)j,X := {i : 0 ≤ i ≤ j and i+ (j − i)
(
d(d− 3) + 1

)
= 0mod d(d− 2)}

= {i : 0 ≤ i ≤ j and d(d− 2) |j(d− 1)− di}

= ∅ ∀j = 2, ..., d− 2 (because if d(d− 2) |j(d− 1)− di then d|j a contradiction)

Sd,X
2 := {i : 2 ≤ i ≤ d− 2 and i+ (d− i)

(
d(d− 3) + 1

)
= 0mod d(d− 2)}

⊆ {i : 2 ≤ i ≤ d− 2 and d− 2 |d− 1− i}

= ∅.

Hence C is isomorphic to Xd + Y d−1Z + αY Zd−1 with α ̸= 0. �

3.4. The moduli MPl
g (Z/(d2− 3d+3). The next result is well-known in the literature, see for example [8, §3].

Proposition 17. If δ ∈ MPl
g has a non-singular plane model of degree d ≥ 5 that is K- equivalent to

C : Xd−1Y + Y d−1Z + αZd−1X = 0,

where α ̸= 0. Then Aut(δ) is isomorphic to < τ, σ| τd2−3d+3 = σ3 = 1 and τσ = στ−(d−1) >, a semidirect

product of Z/3 by Z/(d2 − 3d+ 3) and hence Aut(δ) is of order 3(d2 − 3d+ 3).

Proof. Through the transformation [X;µY ;µ−(d−2)Z] where µ is defined by the equation α = µd2−3d+3 in K,

C is isomorphic to the Klein curve Kd. It follows, by Harui [8] §3, that Aut(C) is a semidirect product of Z/3
acting on Z/(d2 − 3d+ 3). Finally we note that τ := [X; ζd2−3d+3Y ; ζ

−(d−2)
d2−3d+3Z] and [Z;X;Y ] are generators of

Aut(Kd) and also satisfy the given representation. �

Remark 18. The automorphism group of the Klein quartic curve is isomorphic to PSL2(F7), the unique simple

group of order 168 (see [9]). This completes the result for any degree d ≥ 4.

The following result should be well-known in the literature, we write it for completeness.

Proposition 19. We have δ ∈ MPl
g (Z/(d2 − 3d+ 3)) only if δ is isomorphic to the Klein curve

Kd : Xd−1Y + Y d−1Z + Zd−1X = 0.

In particular, MPl
g (Z/(d2 − 3d+ 3)) is irreducible being a set with one element and also

˜MPl
g (Aut(Kd)) = MPl

g (Z/(d2 − 3d+ 3)) = ρ(MPl
g (Z/(d2 − 3d+ 3)))

where ρ(Z/d2 − 3d+ 3Z) =< diag(1, ξd2−3d+3, ξ
−(d−2)
d2−3d+3) >.

Proof. Since d2−3d+3 - d−1, d, d(d−1), d(d−2), (d−1)2 for every d ≥ 5 then C is K-equivalent to a plane

curve of type d2−3d+3, (a, b) of the form (3) in Theorem 6 for some (a, b) ∈ Γd2−3d+3 such that a = (d−1)a+b =

(d−1)b (mod d2−3d+3). In particular every solution is of the form a = k and b = (d2−3d+3)k′− (d−2)k for

some integers k and k′. Because [X; ζd2−3d+3Y ; ζd
2−4d+5

d2−3d+3 ]
k = [X; ζkd2−3d+3Y ; ζ

(d2−3d+3)k′−(d−2)k
d2−3d+3 ], we can take

a generator a = 1 and b = d2 − 4d+ 5. Consequently

S(1)j,X := {i : 0 ≤ i ≤ j and i+ (j − i)(d2 − 4d+ 5) = 1mod (d2 − 3d+ 3)}

= {i : 0 ≤ i ≤ j and (d2 − 3d+ 3) |
(
j(d− 2)− i(d− 1) + 1

)
}

= ∅ ∀j = 2, ..., ⌊d
2
⌋.

The last equality comes from the fact |j(d− 2)− i(d− 1) + 1| < d2 − 3d+ 3 then j(d− 2)− i(d− 1) + 1 = 0.

This in turns gives d|2j − i− 1 which is impossible because 0 < 2j − i− 1 < d. Also

Sj,Z := {i : 0 ≤ i ≤ j and i+ (d− j)(d2 − 4d+ 5) = 1mod (d2 − 3d+ 3)}

= {i : 0 ≤ i ≤ j and (d2 − 3d+ 3) |
(
(d− j)(d− 2)− i+ 1

)
}

= ∅ ∀j = 2, ..., ⌊d
2
⌋ (since 0 < (d− j)(d− 2)− i+ 1 < d2 − 3d+ 3)
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Moreover

Sj,Y := {i : 0 ≤ i ≤ j and (d2 − 4d+ 5)i+ (d− j) = 1mod (d2 − 3d+ 3)}

= {i : 0 ≤ i ≤ j and (d2 − 3d+ 3) |
(
(d− j)− (d− 2)i− 1

)
}

= ∅ ∀j = 2, ..., ⌊d
2
⌋,

since |(d − j) − (d − 2)i − 1| < d2 − 3d + 3 and if (d − j) − (d − 2)i − 1 = 0 then d − 2|j − 1 a contradiction

because always 0 < j − 1 < d− 2. Therefore C is isomorphic to Xd−1Y + Y d−1Z + αZd−1X with α ̸= 0. The

full automorphism of the Klein curve is classified by Proposition 17 and the second statement is proved. �

4. Characterization of curves δ ∈ MPl
g whose Aut(δ) has “large” elements

In the previous section we proved that if m is “very large”, the moduli MPl
g (Z/m) is given by one element,

therefore are irreducible set. In general it is difficult, for an arbitrary m, to decide whether the set MPl
g (Z/m)

is irreducible or not. We introduced in [1] a weaker concept than irreducibility that we call “ES-irreducibility”,

where a loci ρ(MPl
g (G)) or MPl

g (G) is said to be ES-irreducible if it is defined, up to K-isomorphism of plane

curves, via a single projective equation of degree d together with certain parameters that are associated to the

equation under some algebraic constraints, in other words, by an unique normal form up to K-isomorphism.

Also any element of the locus corresponds to a specific specialization of the parameters and vice versa. In

particular the “very large”-m loci MPl
g (Z/m) that appeared in §2 are ES-irreducible. It is not true in general

that MPl
g (Z/m) is ES-irreducible, see counter examples in [1], and therefore is not irreducible as a subset of the

moduli space Mg.

We show here that a “large”-m locus MPl
g (Z/m) is ES-irreducible and we obtain further details of such loci.

The situations where m ∈ {ℓd, ℓ(d − 1)} are strongly related to inner and outer Galois points (we refer to [15]

for more details) which will help in determining, more precisely, the automorphism groups of these loci in some

cases.

One can read Henn [9] or [3] for the well-known results in the literature on quartic curves. Hence, in what

follows, we assume that d ≥ 5.

4.1. Outer and inner Galois points with d ≥ 5.

We are interested in non-singular plane curves δ ∈ MPl
g of an arbitrary but a fixed degree d ≥ 5 whose

automorphism groups contain homologies of period d (resp. d − 1). Recall that a homology is a finite planar

transformation such that by a change of variables it is the same as certain type m, (a, b) with ab = 0 (see

Mitchell [13]). When a homology ω of period d or d− 1 is present inside Aut(δ), the genus of δ/ < ω > is zero

and δ has a unique outer (resp. inner) Galois point P (see [8, Lemma 3.7] for existence and [15] for the definition

of an inner or an outer Galois point as well as the uniqueness in such casesd). Furthermore if a non-singular

plane curve δ of degree d ≥ 5 has an outer (resp. an inner) Galois point P , then τ(P ) is also an outer (resp. an

inner) Galois point of δ for any τ ∈ Aut(δ). Consequently if δ has an unique inner Galois point then it should

be fixed by the full automorphism group Aut(δ) hence by [10, Lemma 11.44], Aut(δ) is a cyclic group provided

that Char(K) = 0.

4.1.1. The loci MPl
g (Z/ℓ(d− 1)) with 2 ≤ ℓ ≤ d.

Lemma 20. The locus MPl
g (Z/ℓ(d− 1)) where 2 ≤ ℓ ≤ d is not empty only if d ≡ 0 (mod ℓ) or d ≡ 1 (mod ℓ).

Proof. Since ℓ(d− 1) - d− 1, d, d2 − 3d+ 3, d(d− 2) then ℓ(d− 1)|d(d− 1) or (d− 1)2 by Corollary 8. �

dAn outer Galois point, if it exists, is always unique except when the curve is isomorphic to the Fermat curve, in such case there

are exactly 3 outer Galois points.
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Proposition 21. Assume that d ≥ 5 and 2 ≤ ℓ ≤ d with d ≡ 0 (mod ℓ), then δ ∈ MPl
g (Z/ℓ(d− 1)) if and only

if δ has a non-singular plane model that is K-isomorphic to

(1) C : Xd + Y d + αXZd−1 +
∑

2≤ℓk≤d−2

βℓk,ℓkX
d−ℓkY ℓk,

In particular Aut(δ) is a cyclic group of order divisible by ℓ(d− 1).

Proof. (⇐) Since σ := [X; ζd−1
ℓ(d−1)Y ; ζℓℓ(d−1)Z] ∈ Aut(C) is of order ℓ(d − 1) then δ ∈ MPl

g (Z/ℓ(d − 1)) and

moreover C is not a descendant of the Klein curve Kd because ℓ(d − 1) - 3(d2 − 3d + 3). Also C is not a

descendant of the Fermat curve Fd, since 2(d− 1) - 6d2 and ℓ(d− 1) > 2d for ℓ ≥ 3 but Aut(Fd) has elements

of order at most 2d. On the other hand, σℓ = [X;Y ; ζℓ
2

ℓ(d−1)Z] ∈ Aut(C) is a homology of period d − 1 ≥ 4

with center P3 and axis Z = 0. Therefore the point P3 is an inner Galois point of C (by Harui [8, §3]) and it is

unique (by Yoshihara [15, §2, Theorem 4’]) hence should be fixed by Aut(C). Consequently Aut(C) is a cyclic

group of order divisible by ℓ(d− 1).

(⇒) Conversely, ℓ(d− 1) - d− 1, d, d2 − 3d+ 3, (d− 1)2 or d(d− 2) therefore δ has a non-singular plane model

which is isomorphic to type ℓ(d− 1), (a, b) of the form (5) of Theorem 6. In particular (a, b) ∈ Γℓ(d−1) such that

ℓ(d− 1)|da and ℓ(d− 1)|(d− 1)b therefore a = (d− 1)k and b = ℓk′ for some integers k and k′. If we consider

any integer m such that k ≡ m (mod ℓ) then [X; ζd−1
ℓ(d−1)Y ; ζℓℓ(d−1)Z](k

′−m)(d−1)+k′
= [X; ζ

k(d−1)
ℓ(d−1) Y ; ζℓk

′

ℓ(d−1)Z].

Consequently we can take k = 1 = k′ as a generator and we get

Sd,X
1 := {i : 1 ≤ i ≤ d− 1 and (d− 1)i+ (d− i)ℓ = 0mod ℓ(d− 1)}

= {i : 1 ≤ i ≤ d− 1 and ℓ(d− 1)|(d− 1)i− (i− 1)ℓ}

⊆ {i : 1 ≤ i ≤ d− 1 and (d− 1) |(i− 1)} = {1}.

Since ℓ(d− 1) - (d− 1)(ℓ+ 1) then Sd,X
1 = ∅. Also

Sd−1,X
1 := {i : 1 ≤ i ≤ d− 1 and (d− 1)i+ (d− 1− i)ℓ = 0mod ℓ(d− 1)}

⊆ {i : 1 ≤ i ≤ d− 1 and (d− 1) |i} = {d− 1}.

But ℓ(d− 1) - (d− 1)2 by the hypothesis on ℓ, therefore Sd−1,X
1 = ∅. Moreover

S(2)j,X := {i : 0 ≤ i ≤ j and (d− 1)i+ (j − i)ℓ = 0mod ℓ(d− 1)}

⊆ {i : 0 ≤ i ≤ j and (d− 1) |j − i}={j} (since 0 ≤ j − i < d− 1)

By assumption, σ ∈ Aut(δ) therefore S(2)j,Xm,(a,b) = ∅ if ℓ - j and {j} otherwise. Substituting into equation (5)

in Theorem 6, we obtain the defining equation (1). �

We also obtain a similar result when d ≡ 1 (mod ℓ):

Proposition 22. Assume that d ≥ 5 and 2 ≤ ℓ ≤ d with d ≡ 1 (mod ℓ), then δ ∈ MPl
g (Z/ℓ(d− 1)) if and only

if δ has a non-singular plane model that is K-isomorphic to

(2) Xd + Y d−1Z + αXZd−1 +
∑

2≤ℓk≤d−2

βℓk,0X
d−ℓkZℓk

In such case, Aut(δ) is again cyclic of order divisible by ℓ(d− 1).

Proof. (⇐) We need only to redefine σ to be the automorphism [X; ζℓ(d−1)Y ; ζ
(ℓ−1)(d−1)
ℓ(d−1) Z] and the rest of the

argument will be quite similar.

(⇒) It follows by Corollary 8 that δ has a non-singular plane model which is isomorphic to type ℓ(d−1), (a, b) of

the form (4.2) of Theorem 6. In particular (a, b) ∈ Γℓ(d−1) such that ℓ(d− 1)|(d− 1)a+ b, (d− 1)b therefore b =

(d−1)k′ and a = ℓk−k′ for some integers k and k′. But [X; ζℓ(d−1)Y ; ζ
(ℓ−1)(d−1)
ℓ(d−1) Z]ℓk−k′

= [X; ζaℓ(d−1)Y ; ζbℓ(d−1)Z]
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therefore it suffices to consider k = 1 and k′ = ℓ− 1 and we obtain

Sd−1,X
1 := {i : 1 ≤ i ≤ d− 1 and i+ (d− 1− i)(ℓ− 1)(d− 1) = 0mod ℓ(d− 1)}

= {i : 1 ≤ i ≤ d− 1 and ℓ(d− 1) |di} = ∅ (because 0 < i < ℓ(d− 1)),

Sd,X
2 := {i : 2 ≤ i ≤ d− 2 and i+ (d− i)(ℓ− 1)(d− 1) = 0mod ℓ(d− 1)}

= {i : 2 ≤ i ≤ d− 2 and ℓ(d− 1)|di− (d− 1)}

⊆ {i : 2 ≤ i ≤ d− 2 and d− 1|di} = ∅ (because 0 < i < d− 1),

S(2)j,X := {i : 0 ≤ i ≤ j and i+ (j − i)(ℓ− 1)(d− 1) = 0mod ℓ(d− 1)}

= {i : 0 ≤ i ≤ j and ℓ(d− 1)|di− j(d− 1)}

⊆ {i : 0 ≤ i ≤ j and d− 1|di} = {0}.

But ℓ(d − 1)|j(d − 1) whenever i = 0 thus ℓ|j. Therefore equation (2) is obtained by substituting in the form

(4.2) of Theorem 6. �

The following corollaries are immediate consequences of Propositions 21 and 22:

Corollary 23. The loci MPl
g (Z/ℓ(d − 1)) with 2 ≤ ℓ ≤ d and d ≥ 5 are empty or ES-irreducible given by one

normal form.

Corollary 24. The automorphism group of any δ∈ MPl
g (Z/ℓ(d− 1)) with 2 ≤ ℓ ≤ d is cyclic and always

contains a homology of period d− 1. In particular δ has a unique inner Galois point.

Remark 25. The converse of Corollary 24 is also true. In the sense that, if C is a non-singular projective

plane curve of degree d ≥ 5 such that Aut(C) contains a homology σ of order d − 1 with center P then C has

an inner Galois point P by [8, Lemma 3.7] and moreover it is unique by [15, Theorem 4]. This point should be

fixed by Aut(C) which in turns implies that Aut(C) is cyclic by [10, Lemma 11.44]. .

4.1.2. The loci MPl
g (Z/ℓd) with 2 ≤ ℓ ≤ d− 1.

Lemma 26. The locus MPl
g (Z/ℓd) where 2 ≤ ℓ ≤ d− 1 is not empty only if d = 1 (mod ℓ) or d ≡ 2 (mod ℓ).

Proof. The result follows by Corollary 8, since ℓd - d− 1, d, d2 − 3d+ 3, (d− 1)2. �

Proposition 27. Assume that d ≥ 5 and 3 ≤ ℓ ≤ d− 1 with d ≡ 1 (mod ℓ), then δ ∈ MPl
g (Z/ℓd) if and only if

δ has a non-singular plane model that is K-isomorphic to

(3) C̃ : Xd + Y d + αXZd−1 +
∑

2≤ℓk≤d−2

βℓk,0X
d−ℓkZℓk

where α ̸= 0. In this case, Aut(δ) should fix a line and a point off that line and every automorphism of δ is

projectively equivalent to a transformation of the form [α1X + α3Z;Y ; γ1X + γ3Z].

Proof. (⇐) Since σ := [X; ζℓℓdY ; ζdℓdZ] ∈ Aut(C̃) is of order ℓd then δ ∈ MPl
g (Z/ℓd) and moreover σℓ ∈ Aut(C̃)

is a homology of period d > 4 with center P2 and axis Y = 0. In particular, by [13], Aut(C̃) fixes a line and

a point off that line or it fixes a triangle. Assume that it fixes a triangle and neither a point nor line is leaved

invariant, then C̃ is a descendant of the Klein curve Kd or the Fermat curve Fd which is impossible because

ℓd - 3(d2 − 3d + 3) and elements of Aut(Fd) have orders at most 2d < ℓd. Consequently a line and a point off

that line is leaved invariant. Also it follows by [8] §3, that the point P2 is an outer Galois point of C̃. Moreover

it is unique because C̃ is not isomorphic to the Fermat curve Fd ( [15] §2 Theorem 4′) hence this point should be

fixed by Aut(C̃). Furthermore the axis Y = 0 should also be fixed (see [13], Theorem 4) that is automorphisms

of C̃ are of the form [α1X + α3Z;Y ; γ1X + γ3Z].

(⇒) Conversely, one may follow the same line of argument in Proposition 21 to conclude that C̃ is isomorphic to

type ℓd, (ℓk, dk′) of the form (5) of Theorem 6 and to figure out that we can assume k = 1 = k′ as a generator,
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since [X; ζℓℓdY ; ζdℓdZ](k
′−m)d+k = [X; ζℓkℓdY ; ζdk

′

ℓd Z] where k ≡ m (mod ℓ). In this case, we get

Sd,X
1 := {i : 1 ≤ i ≤ d− 1 and ℓi+ (d− i)d = 0mod ℓd}

= {i : 1 ≤ i ≤ d− 1 and ℓd |i(d− ℓ)− d}

⊆ {i : 1 ≤ i ≤ d− 1 and d|i} = ∅.

Similarly Sd−1,X
1 ⊆ {i : 1 ≤ i ≤ d − 1 and d |i} = ∅. Furthermore i ∈ S(2)j,X iff ℓd|ℓi − (j − i)d thus d|i and

i = 0. That is i ∈ S(2)j,X ̸= ∅ only if ℓ|j which completes the proof. �

Remark 28. For ℓ = 2, proposition 27 is true with the same proof if we assume that δ is not a descendent of

the Fermat curve of degree d.

There is a similar statement to the previous results when ℓ|d − 2. We state only the result since the proof

can be obtained through similar techniques:

Proposition 29. Assume that d ≥ 5 and 2 ≤ ℓ ≤ d− 1 with d ≡ 2 (mod ℓ), then δ ∈ MPl
g (Z/ℓd) if and only if

δ has a non-singular plane model that is K-isomorphic to

(4) Ĉ : Xd + Y d−1Z + αY Zd−1 +
∑

2≤i=ℓk+1≤d−2

βd,iY
iZd−i = 0.

Moreover Ĉ is a descendant of the Fermat curve Fd (only if ℓ = 2) or Aut(δ) fixes a line and a point off this

line (in particular automorphisms of Ĉ have the form [X;β2Y + β3Z; γ2Y + γ3Z]).

Remark 30. Unfortunately it may happen here that different families of groups appear as the full automorphism

of δ ∈ MPl
g (Z/ℓd) depending on the specialization of the parameters.

Corollary 31. The loci MPl
g (Z/ℓd) with 2 ≤ ℓ ≤ d− 1 and d ≥ 5 are empty or ES-irreducible.

It is well known by [8, Lemma 3.7] that if Aut(δ) has a homology of period d then δ has an outer Galois

point. Moreover if δ is isomorphic to the Fermat curve of degree d, then it has two more outer Galois points

and it is unique otherwise [15, Theorem 4’ and Proposition 5’]. Furthermore we conclude the following:

Corollary 32. For any δ ∈ MPl
g (Z/ℓd) with 3 ≤ ℓ ≤ d− 1, Aut(δ) always contains a homology of period d. In

particular δ has an unique outer Galois point.

4.2. On the loci MPl
g (Z/ℓ(d− 2)Z).

We investigate here the finite groups G that contain cyclic subgroups of order ℓ(d− 2) and for which the locus

MPl
g (G) may be not empty. This question is completely solved when d = 4 (see [9]) and d = 5 (see [2]) therefore

we assume in this part that d ≥ 6 and also ℓ ≥ 2.

Lemma 33. The locus MPl
g (Z/ℓ(d− 2)) with d ≥ 6 and ℓ ≥ 2 is non-empty only if d ≡ 0 (mod ℓ).

Proof. We have d ≥ 6 > 2+ 2
ℓ−1 therefore ℓ(d−2) > d and ℓ(d−2) - d−1 or d. Also (d−1)2 = d(d−2)+1, d(d−1) =

d(d− 2)+ d and d2 − 3d+3 = (d− 1)(d− 2)+ 1 thus ℓ(d− 2) - (d− 1)2, d(d− 1) or d2 − 3d+3, since (d− 2) - d
or 1. Now the result follows by Corollary 8. �

We treat first the situation when ℓ is even:

Proposition 34. Suppose that ℓ ≥ 2 is an even integer such that ℓ|d with d ≥ 6. Any δ ∈ MPl
g (Z/ℓ(d − 2)Z)

has a plane non-singular model of the form

(5) Xd + Y d−1Z + αY Zd−1 +

⌊ d
2ℓ ⌋∑

k=1

β2ℓk,ℓkX
d−2ℓkY ℓkZℓk = 0

In this case, the locus MPl
g (Z/ℓ(d− 2)Z) is ES-irreducible.
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Proof. If δ ∈ MPl
g (Z/ℓ(d−2)Z) then δ has an automorphism σ of order ℓ(d−2). Consequently τ := σ

ℓ
2∈ Aut(δ)

is of order 2(d − 2), that is δ ∈ MPl
g (Z/2(d − 2)Z). Therefore we need only to deal with the case ℓ = 2. It

follows by Lemma 33 that a non-singular plane model C(a,b) of δ should be isomorphic to type 2(d − 2), (a, b)

of the form (4.1) of Theorem 6 for some (a, b) ∈ Γ2(d−2) and 2(d − 1)|(d − 1)a + b, a + (d − 1)b. Clearly

(1, d− 3) ∈ Γ2(d−2) is a solution of this system and [X; ξ2(d−2)Y ; ξd−3
2(d−2)Z] ∈ Aut(C(1,d−3)). On the other hand,

2|a− b and d−2|a+ b, in particular a = k+(d−2
2 )k′ and b = −k+(d−2

2 )k′ for some integers k and k′ and we get

2| ± k+ (d2 )k
′. Consequently [X; ξ2(d−2)Y ; ξd−3

2(d−2)Z]k+( d−2
2 )k′

= [X; ξa2(d−2)Y ; ξb2(d−2)Z] and m = 2(d− 2), a = 1

and b = d − 3 is a generator of the set of solution of our system. Furthermore the associated sets Sd,X
2 and

S(2)j,X for j = 2, ..., d− 1 are computed as follows:

Sd,X
2 := {i : 2 ≤ i ≤ d− 2 and 2(d− 2)|i+ (d− i)(d− 3)}

⊆ {i : 2 ≤ i ≤ d− 2 and (d− 2)|2(i− 1)}

= {d
2
}

since 0 < 2(i− 1) < 2(d− 2) therefore 2(i− 1) = d− 2. Also we have

S(2)j,Xm,(a,b) := {i : 0 ≤ i ≤ j and 2(d− 2)|i+ (j − i)(d− 3)}

⊆ {i : 0 ≤ i ≤ j and (d− 2)|j − 2i},

But |j − 2i| ≤ d − 1 therefore j − 2i = 0 or ±(d − 2). In particular, S(2)j,X = ∅ if j is odd and { j
2 ,

j±(d−2)
2 }

if j is even. Moreover 0 ≤ i ≤ j thus when j is even and < d − 2, S(2)j,X = { j
2} and when j = d − 2,

S(2)d−2,X ={0, d−2
2 , d− 2}. Consequently, we obtain the form

Xd + Y d−1Z + αY Zd−1 +X2
(
βd−2,0Z

d−2 + β0,d−2Y
d−2
)
+

∑
j=2,4,...,d−2,d

βj, j2
Xd−jY

j
2Z

j
2 = 0

Because [X; ξℓ(d−2)Y ; ξd−3
ℓ(d−2)Z] ∈ Aut(C1,d−3) hence βd−2,0 = β0,d−2 = 0 moreover βj,( j

2 )
= 0 if 2ℓ - j. To deal

ℓ > 2 even one obtain the result y impose that the automorphism associated to Type ℓ, (a, b) leaves invariant

the equation. �

Proposition 35. Let ℓ ≥ 2 be an even integer such that ℓ|d with d ≥ 6 and let G be a finite group inside

PGL3(K). Then δ ∈ MPl
g (Z/ℓ(d− 2)Z) ∩ M̃Pl

g (G) only if one of the following situations occurs:

(1) d = 6 and G is conjugate to a central extension of S4 by Z/6Z. In this case, G is of order 144 and

M̃Pl
g (G) is an irreducible set that is given by one element which has a plane non-singular model of the

form X6 + Y 5Z + Y Z5 = 0.

(2) d > 6 and G is conjugate to < σ, τ |τ2 = σd(d−2) = 1, τστ = σ−(d−1) >, a central extension of order

2d(d − 2) of D2(d−2) by Z/dZ. Also M̃Pl
g (G) is an irreducible set and is given by one element with a

non-singular plane model isomorphic to Xd + Y d−1Z + Y Zd−1 = 0.

(3) d = 6 and G is isomorphic to SmallGroup(16, 8) in GAP library. Furthermore any element of
˜MPl

10 (SmallGroup(16, 8)) has a non-singular plane model, K-isomorphic, to X6+Y 5Z+Y Z5+β4,2X
2Y 2Z2 =

0 for certain β4,2 ̸= 0.

(4) d = 10 and G is isomorphic to SmallGroup(32, 19) in GAP library. Similarly ˜MPl
36 (SmallGroup(32, 19))

consists of a curves which has a non-singular plane model (up to K-equivalence) of the form X10+Y 9Z+

Y Z9 + β6,4X
6Y 2Z2 + β2,8X

2Y 4Z4 = 0 with (β6,4, β2,8) ̸= (0, 0).

(5) d ̸= 6, 10 and G is an element Ext1(N,D2(d−2)) where N is a cyclic group of order 2r(|d). Moreover

G contains < σ, τ : τ2 = σℓ(d−2) = 1 and τστ = σ−(d−1) > as a subgroup. Also every element of

M̃Pl
g (G) has a non-singular plane model of the form (5) of Proposition 34 such that β2kℓ,ℓ,k ̸= 0 for

some k ∈ {1, ..., ⌊ d
2ℓ⌋}.

Proof. It is sufficient, by Proposition 34, to consider non-singular plane curves that is defined by equation (5).

First, assume that β2ℓk,ℓk = 0 for all k = 1, ..., ⌊ d
2ℓ⌋, thus elements of M̃Pl

g (G) have a plane model which is
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isomorphic to the form Xd + Y d−1Z + αY Zd−1 = 0. The full automorphism group in such case is well known

by Proposition 15. This proves (1) and (2).

Secondly, suppose that β2ℓj,ℓj ̸= 0 for some j ∈ {1, ..., ⌊ d
2ℓ⌋}. It is to be noted that the form (5) of Proposition

34 always admits a a bigger automorphism group namely, G0 :=< σ, τ > of order 2ℓ(d − 2) where σ :=

[X; ξℓ(d−2)Y ; ξd−3
ℓ(d−2)Z] and τ := [X;µZ;µ−1Y ] with µd−2 = α. Consequently Aut(C) is not cyclic, since G0

does being isomorphic to < σ, τ |τ2 = σℓ(d−2) = 1, and τστ = σ−(d−1) >. Also C is not a descendant of the

Klein curve Kd because |G0| - 3(d2 − 3d+ 3). Moreover Aut(C) is not conjugate to any of the finite primitive

subgroups of PGL3(K), since ℓ(d− 2) ≥ 8 and non of these groups contains elements of order > 7 (in fact, the

Klein group PSL(2, 7) is the only primitive group in PGL3(K) with elements of order 7). On the other hand,

C is not a descendant of the Fermat curve, since ℓ(d−2) > 2d for all ℓ > 2 and elements of Aut(Fd) have orders

at most 2d also for ℓ = 2, 4(d− 2) - 6d2 because d ≥ 6 and is even.

Now it follows by the above argument that Aut(C) should fix a line and a point off that line where the fixed

point does not belong to C. But we have σ, τ ∈ Aut(C) therefore the line must be X = 0 and the point is P1.

In particular, automorphisms of C are of the form [X;β′
2Y + β′

3Z; γ′
2Y + γ′

3Z] and we can think about Aut(C)

in a short exact sequence 1 → N → Aut(C) → ρ(Aut(C)) → 1 with N =< diag(ξr
′

d ; 1; 1) > a cyclic group of

order dividing d, ρ(Aut(C)) is conjugate to a cyclic group Z/mZ of order m ≤ d − 1, a Dihedral group D2m

where m|(d − 2) (recall that diag(−1; 1; 1) ∈ N), the alternating groups A4, A5 or the permutation group S4

and ρ : PBD(2, 1) ↪→ PGL2(K) is the canonical map where PBD(2, 1) is the subgroup of PGL3(K) that all

the entries in the third column and third row are zero except the one in the diagonal which has value 1. It

suffices to consider the case ℓ = 2, since MPl
g (Z/ℓ(d − 2)Z) ⊆ MPl

g (Z/2(d − 2)Z). Hence ρ(Aut(C)) contains

the element ρ(τ) =

(
0 µ

µ−1 0

)
of order 2 and the element ρ(σ) =

(
1 0

0 ξd−4
2(d−2)

)
of order d− 2 (only if 4 - d− 2)

and d−2
2 (otherwise) therefore ρ(Aut(C)) always contains a dihedral subgroup and then it is not conjugate to a

cyclic group Z/mZ. Now if 4 - d− 2 (resp. 4|d− 2 and d ̸= 6, 10) then ρ(Aut(C)) has elements of order > 5. In

particular, it is not conjugate to any of the groups A4, S4 or A5. Thus ρ(Aut(C)) is conjugate to D2(d−2) but

also we have 4(d− 2)||Aut(C)| therefore 2||N | and the case (5) is proved. It remains now to determine the full

automorphism group when d = 6 or 10:

For d = 6, the equation (5) in Proposition 10 become X6 + Y 5Z + Y Z5 + β2,4X
2Y 2Z2 = 0 with β2,4 ̸= 0.

Let η ∈ Aut(C) then η is of the form [X;β2Y ; γ3Z] or [X;β3Z; γ2Y ], since the monomials X2Y 4 and X2Z4 are

not in the defining equation of C. Hence we must have β5
2γ3 = β2γ

5
3 = β2

2γ
2
3 = 1, which in turns implies that

|Aut(C)| = 16. Therefore Aut(C) is conjugate to < σ, τ |τ2 = σ8 = 1 and τστ = σ3 > with σ := [X; ξ8Y ; ξ38Z]

and τ := [X;Z;Y ] which is SmallGroup(16, 8) in Gap list. By a quite similar argument, one conclude that

when d = 10, the plane non-singular model is reduced to X10 + Y 9Z + Y Z9 + β6,4X
6Y 2Z2 + β2,8X

2Y 4Z4 with

(β6,4, β2,8) ̸= (0, 0). Also |Aut(C)| = 32 where Aut(C) =< σ, τ > with τ := [X;Z;Y ] and σ := [X; ξ16Y ; ξ−9
16 Z]

and hence Aut(C) is isomorphic to SmallGroup(32, 19).

This completes the proof. �

Corollary 36. The locus ˜MPl
g (Z/ℓ(d− 2)Z) is always empty for any even integer ℓ ≥ 2.

Now we treat the situation for which ℓ is odd:

Proposition 37. Suppose that ℓ ≥ 2 is an odd integer such that ℓ|d with d ≥ 6. Any non-singular plane model

of δ ∈ MPl
g (Z/ℓ(d− 2)Z) is K-isomorphic to the form

(6) Xd + Y d−1Z + αY Zd−1 +
n∑

k=1

β2ℓk,ℓkX
d−2ℓkY ℓkZℓk = 0,

where n = d
2ℓ if d is even and ⌊d−1

2ℓ ⌋ otherwise. In particular, the loci MPl
g (Z/ℓ(d− 2)Z) are ES-irreducible.

Proof. Again, by Lemma 33, any plane non-singular model of δ is K-isomorphic to type ℓ(d − 2), (a, b) of

the form (4.1) of Theorem 6 for some (a, b) ∈ Γℓ(d−2) and ℓ(d − 1)|(d − 1)a + b, a + (d − 1)b. In particular,

2a = (d− 2)k′0 + ℓk0 and 2b = (d− 2)k′0 − ℓk0 for some integers k0 and k′0 and we distinguish between whether
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d is even or odd as follows: If d is even then so is k0 and a = ℓk+ (d−2
2 )k′, b = −ℓk+ (d−2

2 )k′ for some integers

k and k′. Moreover ℓ|d2k
′, since ℓ(d− 2)|(d− 1)a+ b and consequently [X; ξℓ(d−2)Y ; ξ

(ℓ−1)(d−2)−1
ℓ(d−2) Z]ℓk+( d−2

2 )k′
=

[X; ξaℓ(d−2)Y ; ξbℓ(d−2)Z]. Therefore a = 1 and b = (ℓ − 1)(d − 2) − 1 is a generator of the set of solutions of the

system. As usual, it remains to determine the sets Sd,X
2 and S(2)j,X for j = 2, ..., d−1 with m = ℓ(d−2), a = 1

and b = (ℓ−1)(d−2)−1. In fact these sets are the same as seen in the proof of Proposition 34 and the rest will

be typical except possibly we use the automorphism [X; ξℓ(d−2)Y ; ξ
−(d−1)
ℓ(d−2) Z] instead of [X; ξℓ(d−2)Y ; ξd−3

ℓ(d−2)Z]

to obtain the required equation in this case. If d is odd then k0 and k′0 have the same parity and a =
1
2 (ℓk0 + k′0(d− 2)), b = 1

2 (−ℓk0 + k′0(d− 2)). Also 2| ± k0 + (dℓ )k
′
0, since ℓ(d − 2)|(d − 1)a + b, a + (d − 1)b

and in particular, we can replace k0 by 2k − (dℓ )k
′
0 for some integer k. Consequently ξbℓ(d−2) = ξ

−(d−1)a
ℓ(d−2) and

[X; ξℓ(d−2)Y ; ξ
−(d−1)
ℓ(d−2) Z]a = [X; ξaℓ(d−2)Y ; ξbℓ(d−2)Z]. Hence a = 1 and b = (ℓ− 1)(d− 2)− 1 is again a generator

of the set of solutions. Finally, the sets Sd,X
2 and S(2)j,X for j = 2, ..., d − 1 with m = ℓ(d − 2), a = 1 and

b = (ℓ− 1)(d− 2)− 1 are given below:

Sd,X
2 := {i : 2 ≤ i ≤ d− 2 and ℓ(d− 2)|i+ (d− i) ((ℓ− 1)(d− 2)− 1)}

= {i : 2 ≤ i ≤ d− 2 and d− 2|d
ℓ
(i− 1)}

= ∅

The last inclusion can be easily deduced because 0 < d
ℓ (i− 1) < d

ℓ (d− 2). Therefore d
ℓ (i − 1) = µ(d − 2) for

some 1 ≤ µ ≤ d
ℓ − 1. This in turns gives d

ℓ |µ (since d
ℓ is odd) which is not possible. Also, we have

S(2)j,X := {i : 0 ≤ i ≤ j and ℓ(d− 2)|i+ (j − i) ((ℓ− 1)(d− 2)− 1)}

= {i : 0 ≤ i ≤ j and ℓ(d− 2)|(d− 1)j − di}

⊆ {i : 0 ≤ i ≤ j and (d− 2)|j − 2i}

Because |j−2i| ≤ d−1 therefore j−2i = 0,±(d−2) and S(2)j,Xm,(a,b) =


∅, if j ∈ {1, 3, ..., d− 4}
{0, d− 2}, if j = d− 2

{ j
2} otherwise

Moreover we obtain the form

Xd + Y d−1Z + αY Zd−1 +X2
(
βd−2,0Z

d−2 + βd−2,d−2Y
d−2
)
+

∑
j=2,4,...,d−1

βj, j2
Xd−jY

j
2Z

j
2 = 0

But [X; ξℓ(d−2)Y ; ξ
−(d−1)
ℓ(d−2) Z] ∈ Aut(C) then βd−2,0 = βd−2,d−2 = 0 moreover βj, j2

= 0 if ℓ - j
2 .

This completes the proof. �

The full automorphism group of the elements of the locus MPl
g (Z/ℓ(d − 2)Z) with ℓ ≥ 3 odd is determined

by the result:

Proposition 38. Let ℓ ≥ 3 be an odd integer such that ℓ|d with d ≥ 6 and let G be a finite group inside

PGL3(K). Then δ ∈ MPl
g (Z/ℓ(d− 2)Z) ∩ M̃Pl

g (G) only if one of the following situations occurs:

(1) d = 6 and G is conjugate to a central extension of S4 by Z/6Z. In this case, G is of order 144 and

M̃Pl
g (G) is an irreducible set that is given by the single element X6 + Y 5Z + Y Z5 = 0.

(2) d > 6 and G is conjugate to < σ, τ |τ2 = σd(d−2) = 1, τστ = σ−(d−1) >, a central extension of order

2d(d − 2) of D2(d−2) by Z/dZ. Also M̃Pl
g (G) is an irreducible set and is given by one element with a

non-singular plane model isomorphic to Xd + Y d−1Z + Y Zd−1 = 0.

(3) ℓ = 5, d = 10 and G is conjugate to SmallGroup(80, 25). In this case every δ ∈ MPl
36 (SmallGroup(80, 25))

has a non-singular plane model which is K-equivalent to X10 + Y 9Z + Y Z9 + β10,5Y
5Z5 = 0 with

β10,5 ̸= 0.

(4) ℓ > 3, d ̸= 10 and G is an element of Ext1(N,D2m) where N is a cyclic group order dividing d and

m = d − 2 with 2 - d and ℓ| |N | or m = d−2
2 with 2|d and 2ℓ| |N |. Moreover G contains a subgroup

which is isomorphic to < σ, τ : τ2 = σℓ(d−2) = 1 and τστ = σ−(d−1) > as a subgroup. Also, every
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element δ ∈ M̃Pl
g (G) has a plane model that is K- equivalent to (6) such that β2ℓj,ℓj ̸= 0 for some

j ∈ {1, 2, ..., n}.

Proof. We could apply the same argument of Proposition 35 to conclude the following:

• Case (1) or (2) occurs if and only if β2ℓk,ℓk = 0 for all k ∈ {1, 2, ..., n}.
• Every plane non-singular model C of δ ∈ MPl

g (Z/ℓ(d−2)Z) (which is isomorphic to equation (6)) admits

always G0 as a subgroup of order 2ℓ(d − 2) with σ := [X; ξℓ(d−2)Y ; ξ
−(d−1)
ℓ(d−2) Z] and τ := [X;µZ;µ−1Y ]

where µd−2 = α. In particular, Aut(δ) is not cyclic

• δ is not a descendant of the the Klein curve and also Aut(δ) is not conjugate to any of the finite primitive

groups inside PGL3(K).

• If ℓ ̸= 3 or d ̸= 6, δ is not a descendant of the Fermat curve.

Assuming that ℓ ̸= 3 or d ̸= 6 and following the same ideas, we can think about Aut(C) in a short exact sequence

1 → N → Aut(C) → ρ(Aut(C)) → 1 where ρ(Aut(C)) contains the element ρ(τ) =

(
0 µ

µ−1 0

)
of order 2 and

the element ρ(σ) =

(
1 0

0 ξ
d
ℓ

d−2

)
of order d − 2 (only if 2 - d) and d−2

2 (otherwise). In particular, ρ(Aut(C)) is

not cyclic. Moreover, if 2 - d (resp. 2|d and d ̸= 10) then ρ(Aut(C)) is not conjugate to A4, S4 or A5 , since

it has an element of order > 5. Consequently ρ(Aut(C)) is conjugate to D2(d−2) or D2( d−2
2 ) (only if 2|d) and

|Aut(C)| = 2(d− 2)||N | or (d− 2)|N |. Therefore |N | should be divisible by ℓ or 2ℓ, since 2ℓ(d− 2)||Aut(C)|.
If d = 10 then ℓ = 5 and the equation (6) in Proposition 37 is reduced to X10 + Y 9Z + Y Z9 + β1Y

5Z5 = 0.

Also N =< diag(ξ10; 1; 1) > and ρ(Aut(C)) is not conjugate to A4 or A5, since D8 ≼ ρ(Aut(C)). Therefore

ρ(Aut(C)) is conjugate to S4, D16 or D8. If ρ(Aut(C)) ≡ S4 then there exists an element τ ′ ∈ PGL2(K) such

that ρ(σ)2τ ′ and τ ′−1ρ(τ)ρ(σ)2 are of order 2 and moreover ρ(σ)2(ρ(τ)τ ′ρ(τ)) = ρ(τ)ρ(σ)2τ ′. The first relation

gives τ ′ =

(
µ1 ξa4
1 µ1

)
, and then imposing the second condition to get ∃λ ∈ K∗ such that λµ = −µ1, λµ1 =

−µ, λµ1 = µ−1ξa4 and λµ−1ξa4 = µ1 hence −1 = λ2 = 1 a contradiction. If ρ(Aut(C)) ≡ D16 then there must

be an element τ ′ ∈ PGL2(K) of order 2 such that τ ′ρ(σ)2 has order 8 with ρ(τ), ρ(σ) ∈< τ ′, ρ(σ)2 >= D16. In

particular (τ ′ρ(σ)2)2 = ρ(σ) or ρ(σ)−1 (being the only elements of order 4 inside D16) hence τ ′ =

(
0 µ2

µ3 0

)
.

In this case τ ′τ ′ρ(σ)2 is of order 2 < 8 a contradiction. We then conclude that ρ(Aut(C)) is conjugate to D8

and |Aut(C)| = 80. More precisely, Aut(C) is generated by σ := [X; ξ40Y ; ξ−9
40 Z] and τ := [X;Z;Y ] which is

isomorphic to < σ, τ : τ2 = σ40 = 1 and τστ = σ−9 > ∼= SmallGroup(80, 25).

Finally it remains to treat the case ℓ = 3 and d = 6 where C : X6 + Y 5Z + Y Z5 + β1Y
3Z3 = 0 is

a descendant of the Fermat sextic curve through a transformation P ∈ PGL3(K). Since C admits an au-

tomorphism σ := [X; ξ12Y ; ξ−5
12 Z] of order 12 then σ4 = [ωX;Y ;Z] ∈ Aut(C) is a homology of order 3.

Also homologies of order 3 inside Aut(F6) are divided into S1 := {[ωX;Y ;Z], [X;ωY ;Z], [X;Y ;ωZ]} and

S2 := {[ω2X;Y ;Z], [X;ω2Y ;Z], [X;Y ;ω2Z]} where both sets lie in different conjugacy classes in PGL3(K).

Consequently Pσ4P−1 ∈ S1 and because the elements of S1 are conjugate to each others inside Aut(F6),

we need only to consider the situation Pσ4P−1 = σ4. Thus P = [X;µ2Y + µ3Z; γ2Y + γ3Z] and C is

transformed to the form Ĉ : X6 + ν0Y
6 + ν1Z

6 + G(Y,Z) where ν0 := γ2µ2

(
γ4
2 + βµ2

2γ
2
2 + µ4

2

)
(= 1) and

ν1 := γ3µ3

(
γ4
3 + βµ2

3γ
2
3 + µ4

3

)
(= 1). In particular, (γ2µ2)(γ3µ3) ̸= 0 and [ξb6Y ; ξa6X;Z], [ξb6Z;Y ; ξa6X] /∈

Aut(Ĉ). Hence PσP−1 = [X;Z; ξb6Y ] ∈ Aut(Ĉ) with b = 1 or 5, since elements of order 12 in Aut(F6)

are [X; ξa6Z; ξb6Y ], [ξb6Y ; ξa6X;Z] or [ξb6Z;Y ; ξa6X] such that gcd(6, a+ b) = 1 and moreover any such element is

conjugate inside Aut(F6) to [X;Z; ξb6Y ] with b = 1 or 5. On the other hand, PτP−1 ∈ Aut(Ĉ) is of order 2

thus µ3 = µ2, γ3 = γ2 or µ3 = −µ2, γ3 = −γ2, which in turns reduces Ĉ to X6 +(Y ±Z)6. This is not possible

because [X;Z; ξb6Y ] with b = 1 or 5 does not retain Ĉ, therefore C is not be a descendant of the Fermat curve.

This completes the proof. �
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Appendix A. Tables of Type m(a, b) for degree d ≤ 9

In this appendix we introduce tables for the types of cyclic groups with respect to low degrees and the equa-

tions that are obtained as a result of §2. In particular we list the possible m, (a, b) such that ρm,a,b(M
Pl
g (Z/m))

may be non-trivial, and we associate a normal form F (X;Y ;Z) = 0 for such loci where any element of the locus

has a plane non-singular model for some specialization of the parameters. The notation of the parameters, for

a fixed degree d, are unrelated from one type to another one: for example, we use, by an abuse of notation, βi,j

as the parameter of the monomial Xd−jY iZj−i in any normal form.

It might happen that two types m, (a, b) and m, (a′, b′) are isomorphic through a permutation of the variables

or F (X;Y ;Z) decomposes into a product X.G(X;Y ;Z). The following tables are obtained by compiling the

SAGE code of Theorem 6 and then removing those types which are isomorphic to a certain type or are irreducible,

see the programm in http://mat.uab.cat/∼eslam/CAGPC.sagews

Table 1. Quartics

Type: m, (a, b) F (X;Y ;Z)

12, (3, 4) X4 + Y 4 + αXZ3

9, (1, 6) X4 + Y 3Z + αXZ3

8, (1, 5) X4 + Y 3Z + αY Z3

7, (1, 5) X3Y + Y 3Z + αZ3X

6, (3, 4) X4 + Y 4 + αXZ3 + β2,2X
2Y 2

4, (1, 2) X4 + Y 4 + Z4 + β2,0X
2Z2 + β3,2XY 2Z

4, (0, 1) Z4 + L4,Z

3, (1, 2) X4 +X
(
Z3 + αY 3

)
+ β2,1X

2Y Z + β4,2Y
2Z2

3, (0, 1) Z3L1,Z + L4,Z

2, (0, 1) Z4 + Z2L2,Z + L4,Z

Table 2. Quintics

Type: m, (a, b) F (X;Y ;Z)

20, (4, 5) X5 + Y 5 + αXZ4

16, (1, 12) X5 + Y 4Z + αXZ4

15, (1, 11) X5 + Y 4Z + αY Z4

13, (1, 10) X4Y + Y 4Z + αZ4X

10, (2, 5) X5 + Y 5 + αXZ4 + β2,0X
3Z2

8, (1, 4) X5 + Y 4Z + αXZ4 + β2,0X
3Z2

5, (1, 2) X5 + Y 5 + Z5 + β3,1X
2Y Z2 + β4,3XY 3Z

5, (0, 1) Z5 + L5,Z

4, (1, 2) X5 +X
(
Z4 + αY 4

)
+ β2,0X

3Z2 + β3,2X
2Y 2Z + β5,2Y

2Z3
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4, (0, 1) Z4L1,Z + L5,Z

3, (1, 2) X5 + Y 4Z + αY Z4 + β2,1X
3Y Z +X2

(
β3,0Z

3 + β3,3Y
3
)
+ β4,2XY 2Z2

2, (0, 1) Z4L1,Z + Z2L3,Z + L5,Z

Table 3. Sextics

Type: m, (a, b) F (X;Y ;Z)

30, (5, 6) X6 + Y 6 + αXZ5

25, (1, 20) X6 + Y 5Z + αXZ5

24, (1, 19) X6 + Y 5Z + αY Z5

21, (1, 17) X5Y + Y 5Z + αXZ5

15, (5, 6) X6 + Y 6 + αXZ5 + β3,3X
3Y 3

12, (1, 7) X6 + Y 5Z + αY Z5 + β6,3Y
3Z3

10, (5, 6) X6 + Y 6 + αXZ5 + β2,2X
4Y 2 + β4,4X

2Y 4

8, (1, 3) X6 + Y 5Z + αY Z5 + β4,2X
2Y 2Z2

6, (1, 2) X6 + Y 6 + Z6 + β3,0X
3Z3 + β4,2X

2Y 2Z2 + β5,4XY 4Z

6, (1, 3) X6 + Y 6 + Z6 + β2,0X
4Z2 + β6,3Y

3Z3 +X2
(
β4,0Z

4 + β4,3Y
3Z

)
6, (0, 1) Z6 + L6,Z

5, (1, 2) X6 +XZ5 + αXY 5 + β3,1X
3Y Z2 + β4,3X

2Y 3Z + β6,2Y
2Z4

5, (1, 4) X6 +XZ5 + αXY 5 + β2,1X
4Y Z + β4,2X

2Y 2Z2 + β6,3Y
3Z3

5, (0, 1) Z5L1,Z + L6,Z

4, (1, 3) X6 + Y 5Z + αY Z5 + β6,3Y
3Z3 + β2,1X

4Y Z +X2
(
β4,0Z

4 + β4,2Y
2Z2 + β4,4Y

4
)

3, (0, 1) Z6 + Z3L3,Z + L6,Z

2, (0, 1) Z6 + Z4L2,Z + Z2L4,Z + L6,Z

Table 4. degree 7

Type: m, (a, b) F (X;Y ;Z)

42, (6, 7) X7 + Y 7 + αXZ6

36, (1, 30) X7 + Y 6Z + αXZ6

35, (1, 29) X7 + Y 6Z + αY Z6

31, (1, 26) X6Y + Y 6Z + αXZ6

21, (3, 7) X7 + Y 7 + αXZ6 + β3,0X
4Z3

18, (1, 12) X7 + Y 6Z + αXZ6 + β3,0X
4Z3

14, (2, 7) X7 + Y 7 + αXZ6 + β2,0X
5Z2 + β4,0X

3Z4

12, (1, 6) X7 + Y 6Z + αXZ6 + β2,0X
5Z2 + β4,0X

3Z4

9, (1, 3) X7 + Y 6Z + αXZ6 + β3,0X
4Z3 + β5,3X

2Y 3Z2

7, (1, 2) X7 + Y 7 + Z7 + β4,1X
3Y Z3 + β5,3X

2Y 3Z2 + β6,5XY 5Z

7, (1, 3) X7 + Y 7 + Z7 + β3,1X
4Y Z2 + β5,4X

2Y 4Z + β6,2XY 2Z4

7, (0, 1) Z7 + L7,Z



22 E. BADR AND F. BARS

6, (1, 2) X7 +XZ6 + αXY 6 + β3,0X
4Z3 + β4,2X

3Y 2Z2 + β5,4X
2Y 4Z + β7,2Y

2Z5

6, (2, 3) X7 +XZ6 + αXY 6 + β2,0X
5Z2 + β3,3X

4Y 3 + β4,0X
3Z4 + β5,3X

2Y 3Z2 + β7,3Y
3Z4

6, (0, 1) Z6L1,Z + L7,Z

5, (1, 4) X7 + Y 6Z + αY Z6 + β2,1X
5Y Z + β4,2X

3Y 2Z2 + β6,3XY 3Z3 +X2
(
β5,0Z

5 + β5,5Y
5
)

4, (1, 2) X7 + Y 6Z + αXZ6 + β2,0X
5Z2 + β3,2X

4Y 2Z + β5,2X
2Y 2Z3 + β6,4XY 4Z2 + β7,2Y

2Z5+

+X3
(
β4,0Z

4 + β4,4Y
4
)

3, (1, 2) X7 +XZ6 + αXY 6 + β2,1X
5Y Z + β4,2X

3Y 2Z2 + β6,3XY 3Z3 + β7,2Y
2Z5 + β7,5Y

5Z2+

X4
(
β3,0Z

3 + β3,3Y
3
)
+X2

(
β5,1Y Z4 + β5,4Y

4Z
)

3, (0, 1) Z6L1,Z + Z3L4,Z + L7,Z

2, (0, 1) Z6L1,Z + Z4L3,Z + Z2L5,Z + L7,Z

Table 5. degree 8

Type: m, (a, b) F (X;Y ;Z)

56, (7, 8) X8 + Y 8 + αXZ7

49, (1, 42) X8 + Y 7Z + αXZ7

48, (1, 41) X8 + Y 7Z + αY Z7

43, (1, 37) X7Y + Y 7Z + αXZ7

28, (7, 8) X8 + Y 8 + αXZ7 + β4,4X
4Y 4

24, (1, 17) X8 + Y 7Z + αY Z7 + β8,4Y
4Z4

16, (1, 9) X8 + Y 7Z + αY Z7 + β8,5Y
5Z3 + β8,3Y

3Z5

14, (7, 8) X8 + Y 8 + αXZ7 + β2,2X
6Y 2 + β4,4X

4Y 4 + β6,6X
2Y 6

12, (1, 5) X8 + Y 7Z + αY Z7 + β8,4Y
4Z4 + β4,2X

4Y 2Z2

8, (1, 2) X8 + Y 8 + Z8 + β4,0X
4Z4 + β5,2X

3Y 2Z3 + β6,4X
2Y 4Z2 + β7,6XY 6Z

8, (1, 3) X8 + Y 8 + Z8 + β4,2X
4Y 2Z2 + β8,4Y

4Z4 +X2
(
β6,1Y Z5 + β6,5Y

5Z
)

8, (1, 4) X8 + Y 8 + Z8 + β2,0X
6Z2 + β4,0X

4Z4 + β5,4X
3Y 4Z + β6,0X

2Z6 + β7,4XY 4Z3

8, (0, 1) Z8 + L8,Z

7, (1, 2) X8 +XZ7 + αXY 7 + β4,1X
4Y Z3 + β5,3X

3Y 3Z2 + β6,5X
2Y 5Z + β8,2Y

2Z6

7, (1, 3) X8 +XZ7 + αXY 7 + β3,1X
5Y Z2 + β5,4X

3Y 4Z + β6,2X
2Y 2Z4 + β8,5Y

5Z3

7, (1, 6) X8 +XZ7 + αXY 7 + β2,1X
6Y Z + β4,2X

4Y 2Z2 + β6,3X
2Y 3Z3 + β8,4Y

4Z4

7, (0, 1) Z7L1,Z + L8,Z

6, (1, 5) X8 + Y 7Z + αY Z7 + β2,1X
6Y Z + β4,2X

4Y 2Z2 + β8,4Y
4Z4

+X2
(
β6,0Z

6 + β6,3Y
3Z3 + β6,6Y

6
)

4, (0, 1) Z8 + Z4L4,Z + L8,Z

3, (1, 2) X8 + Y 7Z + αY Z7 + β8,4Y
4Z4 + β2,1X

6Y Z + β4,2X
4Y 2Z2 +X5

(
β3,0Z

3 + β3,3Y
3
)
+

+X3
(
β5,1Y Z4 + β5,4Y

4Z
)
+X2

(
β6,0Z

6 + β6,3Y
3Z3 + β6,6Y

6
)
+X

(
β7,2Y

2Z5 + β7,5Y
5Z2

)
2, (0, 1) Z8 + Z6L2,Z + Z4L4,Z + Z2L6,Z + L8,Z
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Table 6. degree 9

Type: m, (a, b) F (X;Y ;Z)

72, (8, 9) X9 + Y 9 + αXZ8

64, (1, 56) X9 + Y 8Z + αXZ8

63, (1, 55) X9 + Y 8Z + αY Z8

57, (1, 50) X8Y + Y 8Z + αXZ8

36, (4, 9) X9 + Y 9 + αXZ8 + β4,0X
5Z4

32, (1, 24) X9 + Y 8Z + αXZ8 + β4,0X
5Z4

24, (8, 9) X9 + Y 9 + αXZ8 + β3,3X
6Y 3 + β6,6X

3Y 6

21, (1, 13) X9 + Y 8Z + αY Z8 + β6,3X
3Y 3Z3

18, (2, 9) X9 + Y 9 + αXZ8 + β2,0X
7Z2 + β4,0X

5Z4 + β6,0X
3Z6

16, (1, 8) X9 + Y 8Z + αXZ8 + β2,0X
7Z2 + β4,0X

5Z4 + β6,0X
3Z6

12, (4, 9) X9 + Y 9 + αXZ8 + β3,3X
6Y 3 + β4,0X

5Z4 + β6,6X
3Y 6 + β7,3X

2Y 3Z4

9, (1, 2) X9 + Y 9 + Z9 + β5,1X
4Y Z4 + β6,3X

3Y 3Z3 + β7,5X
2Y 5Z2 + β8,7XY 7Z

9, (1, 3) X9 + Y 9 + Z9 + β3,0X
6Z3 + β5,3X

4Y 3Z2 + β6,0X
3Z6 + β7,6X

2Y 6Z + β8,3XY 3Z5

9, (0, 1) Z9 + L9,Z

8, (1, 2) X9 +XZ8 + αXY 8 + β4,0X
5Z4 + β5,2X

4Y 2Z3 + β6,4X
3Y 4Z2 + β7,6X

2Y 6Z + β9,2Y
2Z7

8, (1, 4) X9 +XZ8 + αXY 8 + β2,0X
7Z2 + β4,0X

5Z4 + β5,4X
4Y 4Z + β6,0X

3Z6 + β7,4X
2Y 4Z3 + β9,4Y

4Z5

8, (1, 6) X9 +XZ8 + αXY 8 + β3,2X
6Y 2Z + β4,0X

5Z4 + β6,4X
3Y 4Z2 + β7,2X

2Y 2Z5 + β9,6Y
6Z3

8, (0, 1) Z8L1,Z + L9,Z

7, (1, 6) X9 + Y 8Z + αY Z8 + β2,1X
7Y Z + β4,2X

5Y 2Z2 + β6,3X
3Y 3Z3+

+β8,4XY 4Z4 +X2
(
β7,0Z

7 + β7,7Y
7
)

6, (2, 3) X9 + Y 9 + αXZ8 + β2,0X
7Z2 + β3,3X

6Y 3 + β4,0X
5Z4 + β5,3X

4Y 3Z2+

+β7,3X
2Y 3Z4 + β7,3Y

3Z6 + β8,6Y
6Z2 +X3

(
β6,0Z

6 + β6,6Y
6
)

4, (1, 2) X9 +XZ8 + αXY 8 + β2,0X
7Z2 + β3,2X

6Y 2Z + β5,2X
4Y 2Z3 + β8,4XY 4Z4+

β9,2Y
2Z7 + β9,6Y

6Z3 +X5
(
β4,0Z

4 + β4,4Y
4
)
+X3

(
β6,0Z

6 + β6,4Y
4Z2

)
+X2

(
β7,2Y

2Z5 + β7,6Y
6Z

)
4, (0, 1) Z8L1,Z + Z4L5,Z + L9,Z

3, (0, 1) Z9 + Z6L3,Z + Z3L6,Z + L9,Z

2, (0, 1) Z8L1,Z + Z6L3,Z + Z4L5,Z + Z2L7,Z + L9,Z
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