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Abstract

Background: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in 
vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 
6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson’s disease. Methamphetamine, a widely abused 
psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken 
to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the 
consequent motor impairment.
Methods: For this purpose, we treated mice with a toxic regimen of methamphetamine (4 mg/kg, 3 consecutive i.p. injections, 
3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post 
methamphetamine treatment.
Results: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and 
dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by 
methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but 
did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra 
indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-
TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by 
Hc-TeTx.
Conclusions: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced 
neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.
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Introduction
The C-terminal domain of heavy chain tetanus toxin (Hc-TeTx) 
is a nontoxic fragment with demonstrated capacity to protect 
against cell death induced by 1-methyl-4-phenylpyridinium 
(MPP+) in vitro (Chaïb-Oukadour et al., 2009). The efficacy of the 
recombinant Hc-TeTx fragment in vivo was later confirmed by 
using the Hc-TeTx against dopaminergic lesion induced by MPP+ 
(Mendieta et al., 2009) or 6-hydroxydopamine (6-OHDA) in rats 
(Mendieta et al., 2012; Sánchez-González et al., 2014). Hc-TeTx 
has also been used as a neurotrophic agent to prevent dam-
age in neurodegenerative models such as amyotrophic lateral 
sclerosis and ischemia (Moreno-Igoa et al., 2010; Toivonen et 
al., 2010; Calvo et al., 2011; Radenovic et al., 2014). Moreover, 
Hc-TeTx fragment can be retrogradely transported to the CNS; 
hence, it shares the same machinery of retrograde transport 
with neurotrophin receptors, tropomyosin-related kinases and 
p75NTR, nerve growth factor and brain-derived neurotrophic fac-
tor (Deinhardt et al., 2006). Indeed, several studies have used 
Hc-TeTx fragment injected i.m. as a carrier to deliver neuro-
trophic molecules into the brain (Larsen et al., 2006; Payne et al., 
2006; Ciriza et al., 2008; Li et al., 2009).

Methamphetamine (METH) is an illicit but popular amphet-
amine-type stimulant with high addictive potential (UNODC, 
2014). However, its prolonged use can lead to severe behavioral, 
motor, and cognitive deficits in drug abusers (Volkow et al., 2001; 
Barr et al., 2006; Scott et al., 2007; Darke et al., 2008; Hadamitzky 
et  al., 2011; Rusyniak, 2011; Dean et  al., 2013; Granado et  al., 
2013). Neuroimaging studies on human addicts have revealed 
that abuse of METH can induce neurodegenerative changes 
(Volkow et al., 2001; Chang et al., 2007). Brain analyses of chronic 
METH users have provided evidence of dopaminergic system 
alterations such as decreases in dopamine (DA), dopamine 
transporter (DAT), and the tyrosine hydroxylase (TH) in several 
brain regions, including the amygdala, prefrontal cortex, cau-
date-putamen, and the nucleus accumbens (Wilson et al., 1996; 
Moszczynska et al., 2004; Kitamura et al., 2007; McCann et al., 
2008). In agreement with persistent neurotoxic effects of METH 
on nigrostriatal pathway, individuals with a history of METH use 
are twice to three times as likely to develop Parkinson’s disease 
(PD) (Callaghan et al., 2012; Curtin et al., 2015). In addition, in 
the striatum of rodents, METH causes degeneration of dopa-
minergic fibers (Ricaurte et al., 1984; Ricaurte and McCann 1992; 
Ares-Santos et  al., 2014) and kills some of its corresponding 
cell bodies in the substantia nigra pars compacta (SNpc) (Ares-
Santos et al., 2014). The toxicity of METH involves mitochondrial 
dysfunctions, glial activation (Thomas et al., 2004; Thomas and 
Kuhn, 2005; Xu et al., 2005), excitotoxicity, oxidative and nitrosa-
tive stress, and activation of apoptotic and necrotic pathways 
(Wang et al., 2008; Yamamoto et al., 2010; Granado et al., 2011b; 
Downey and Loftis, 2014).

Our aim in this study was to investigate whether Hc-TeTx 
might also be effective in ameliorating the neurotoxic and/or 
motor impairing effects of acute METH treatment. Based on pre-
vious animal studies (Mendieta et al., 2012; Sánchez-González 
et al., 2014), we administered i.m. the recombinant fragment 
of Hc-TeTx for 3 consecutive days after acute METH treatment 
in mice and examined DA degeneration by evaluating TH and 
DAT fiber loss in the striatum and stereological neuronal count 
in the substantia nigra. The inflammatory and oxidative pro-
cesses induced by METH were also examined in these mice. 
The findings indicate the efficiency of Hc-TeTx in ameliorating 
acute METH-induced striatal terminal degeneration and motor 
impairments.

Materials and Methods

Animals and Treatment

Adult male C57BL/6J mice (20–25 g, Harlan Iberica, Barcelona, 
Spain) were housed in groups of 4 to 6 per cage at the Cajal 
Institute in conditions of constant temperature at 21ºC ± 2ºC in 
a 12-h-light/-dark cycle (lights on at 8:00 am) with free access 
to food and water. All experimental procedures conformed to 
European Community guidelines (2003/65/CE) and were approved 
by Cajal Institute’s Bioethics Committee (following DC86/609/EU).

Mice received 3 injections of METH (4 mg/kg, i.p.) with a 3-hour 
interval between injections as described in detail previously and 
shown to cause significant striatal toxicity (Granado et al., 2010, 
2011a; Ares-Santos et  al., 2012, 2014; ElAli et  al., 2012; Urrutia 
et  al., 2013, 2014). This regimen is very close to other studies 
where 4 doses of 5 mg/kg at 2-hour intervals were used to induce 
toxicity (Good et al., 2011; Chiu et al., 2014; Raineri et al., 2015). 
Control mice were given saline. Doses are expressed as free base. 
METH was obtained from Sigma-Aldrich (Madrid, Spain).

The animals were administered Hc-TeTx fragment (40 μg/kg) 
in the gastrocnemius muscle for 3 consecutive days, with the 
first 1 hour following the last METH injection and the other 2 
at 24 and 48 hours after last METH injection as described pre-
viously (Mendieta et al., 2012). Controls received the vehicle 
(SSI, saline solution). The Hc-TeTx fragment was synthetized in 
accordance with Herrando-Grabulosa et al. (2013). Animals were 
sacrificed 1, 3, or 7 days posttreatment with METH.

Measurement of Rectal Temperature

Rectal temperature was measured using a digital readout 
thermocouple (BAT-12 thermometer, Physitemp Instruments; 
Clifton, NJ) with a resolution of 0.1ºC and accuracy of ±0.1°C 
attached to a RET-3 Rodent Sensor. The sensor was inserted 2 cm 
into the mouse rectum, while the mouse was lightly restrained 
by holding in the hand. A steady readout was obtained within 
10 seonds of probe insertion. Temperature readings were taken 
every 30 minutes immediately before and after METH injections 
and hourly thereafter. The purpose of measuring the tempera-
ture was to verify that indeed hyperthermia was induced by the 
administered dose of METH. Animals that did not show hyper-
thermia (only 2) were excluded from the study to ensure uni-
form experimental groups.

Immunohistochemistry

Immunostaining was carried out in free-floating brain sections 
(50 μm) with standard avidin-biotin immunohistochemical pro-
tocols (Granado et al., 2010; Suarez et al., 2014; Ruiz-DeDiego 
et al., 2015). The sections were incubated overnight with spe-
cific primary antisera (Ab-I), a rabbit TH antiserum (Chemicon 
International, Temecula, CA) diluted 1:1000; rat monoclonal 
antibody against DAT (Chemicon International), diluted 1:1000; 
a rabbit anti glial fibrillary acidic protein antibody (GFAP) 
(DakoCytomation, Denmark) diluted 1:1000 and rabbit poly-
clonal anti ionized calcium binding adaptor molecule 1 (Iba1), 
a microglia/macrophage-specific calcium-binding protein 
(1:1000), Wako Pure Chemical Industries, Ltd Osaka, Japan) in 
phosphate buffered saline with Tween solutions containing 
normal goat serum. After careful washing, the sections were 
incubated with the secondary biotinylated secondary antisera 
(Vector) at room temperature and developed using diaminoben-
zidine. The reaction was monitored every 5 minutes using an 
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optical microscope (Leica). After washing, the sections were 
mounted on gelatin-coated slides, air dried, and dehydrated in 
ascending concentrations of ethanol, cleared with xylene, and 
coverslipped under Permount. For immunofluorescence experi-
ments, we used Alexa fluor 488 and Alexa fluor 594 conjugated 
secondary antibodies (1:500; Invitrogen, Eugene, OR). The sec-
tions were mounted in Mowiol solution (Calbiochem, San Diego, 
CA). Controls were performed to confirm the specificity of the 
primary and secondary antibodies.

Quantification of expression of TH, DAT, GFAP, and Iba-1 was 
performed with the aid of an image analysis system (Analytical 
Imaging Station, Imaging Research Inc., Linton, UK) using a 4x 
lens for TH and DAT and 20x for GFAP and Iba-1, converting color 
intensities into a gray scale and quantifying the area of staining 
as a percentage of the total striatal area. Thus, the total area of 
striatum in the controls as represented in the figures is not 100% 
due to the fact that the staining does not cover the entire striatal 
surface (Darmopil et al., 2008; Granado et al., 2010, 2011a; Ortiz 
et al., 2010; Ares-Santos et al., 2012, 2014). Measurements were 
carried out in 6 to 8 animals/treatment and using 4 to 5 sections/
animal. For TH and DAT, only matched rostrocaudal sections in 
all animals were quantified. It should be noted that the micro-
glia undergo a dramatic transformation from their resting rami-
fied state into an activated amoeboid morphology that express 
Iba1 (Eyo and Dailey, 2013). Thus, Iba1 staining reflects activated 
microglia (Buchanan et al., 2010; Granado et al., 2011b).

Amino-Cupric-Silver Staining

Animals were anaesthetized with sodium pentobarbital (50 mg/
kg, i.p.) and perfused transcardially with 4% paraformaldehyde 
in 0.2 M borate buffer (pH 7.4). Brains were left overnight in the 
skull and afterwards removed. Brain sections of 50  μm were 
obtained in a vibratome and stored in 4% paraformaldehyde 
for amino-cupric-silver technique (A–Cu–Ag) or immunohisto-
chemistry. Neuronal degeneration was analyzed by the A–Cu–
Ag stain, which stains degenerating perikarya, dendrites, stem 
axons, and their terminal ramifications (synaptic endings) (de 
Olmos et al., 1994; Switzer, 2000; Ares-Santos et al., 2014).

Stereological Quantification in SNpc

The degeneration of neurons in the SNpc was assessed by 
counting TH-immunoractive (TH-ir)  neurons, (stained neurons) 
unilaterally in every 4th section of the SNpc of all experimen-
tal groups (n = 4–9/group) in which TH immunostaining was 
performed. The optical fractionator, Stereoinvestigator pro-
gram (Microbrightfield Bioscience, Colchester, VT), was used by 
an experienced observer unaware of treatment conditions as 
described previously (Ares-Santos et al., 2012; Espadas et al., 
2012). The outlines of the striatum and SNpc (including SN pars 
lateralis) were drawn at low power (2x) using defined anatomic 
landmarks (Granado et al., 2008a, 2008b; Baquet et al., 2009; 
Ares-Santos et al., 2012; Urrutia et al., 2014) and the numbers of 
cells were counted at higher power (100x for the SNpc). To avoid 
double counting, neurons were counted when their nuclei were 
optimally visualized, which occurred in only one focal plane. 
Some neurons with extremely faint signs of TH expression were 
not counted as TH expressing neurons. Results are expressed as 
bilateral estimations.

Locomotor Activity and Motor Coordination

Basal horizontal movements were recorded using a multicage 
activity meter (Columbus Instruments, Columbus, OH) with a 

set of 8 individual cages measuring 20 × 20 × 28 cm. Horizontal 
movement was detected by 2 arrays of 16 infrared beams. The 
software allowed a distinction to be made between repeti-
tive interruptions of the same photobeam and interruptions 
of adjacent photobeams. This latter measure was used as an 
index of ambulatory activity. Mice were habituated to the cages 
in 30-minute sessions for 3  days prior to the experiment. We 
tested the horizontal movements, time in movements, and 
total distance travelled on days 1, 3, and 7 after treatment with 
METH. Motor coordination was measured right after the loco-
motor activity evaluation using an accelerating Rotarod appa-
ratus (Hugo Basile, Rome, Italy). Mice underwent 3 consecutive 
trials separated by 15-minute inter-trial intervals. The Rotarod 
apparatus accelerate from 4 to 40 rpm in 300 seconds (Gonzalez-
Aparicio and Moratalla, 2014). The time it took the mouse to fall 
off the Rotarod was recorded as measure of latency. Mice were 
habituated 1 day prior to the experiment and were tested at 1, 3, 
and 7 days after METH treatment.

Statistics

Data are presented as mean ± SEM. The results of rectal tem-
perature measurements were analyzed using 2-way ANOVA 
for repeated measures. Data from motor behavior and striatal 
image analysis were analyzed using 1-way ANOVA. Analysis of 
stereological quantification of TH-positive cells for each group 
was compared using Student’s t test. Relevant differences post-
ANOVA were analyzed pair-wise using Student-Newman-Keuls 
test to determine specific group differences. The criterion for 
significance was P < .05.

Results

Hc-TeTx Fragment Attenuates METH-Induced 
Decreases in TH and DAT Expression in the Striatum

Previous studies showed that METH decreases TH-fiber density 
in the mouse striatum and that this decrease lasts for more than 
30 days (Granado et al., 2010, 2011a, 2011b; Ares-Santos et al., 2014). 
In the present work, we found that Hc-TeTx treatment attenuated 
METH-induced reduction in TH. Thus, METH induced an approxi-
mately 90% decrease at day 1, 80% at day 3, and a 44% decrease 
in TH at 7 days posttreatment compared with saline-treated ani-
mals (Figure 1A,C). Hc-TeTx significantly attenuated this reduc-
tion to approximately 70% on day 1, 60% on day 3 (P < .001), and 
32% at day 7 (P < .05) (Figure 1A,C). Although this attenuation took 
place in all animals treated with Hc-TeTx, the protection was 
only partial. Hc-TeTx alone had no effect of its own on TH levels 
(Figure 1A,C). Similarly, we found that Hc-TeTx was able to signifi-
cantly attenuate DAT reduction to approximately 75%, 65%, and 
63% at 1, 3, and 7 days (P < .001), respectively, compared with 95%, 
89%, and 86% striatal DAT loss at 1, 3, and 7 days posttreatment 
with METH alone (Figure 1B,D). Again, these protections were only 
partial but were seen in all animals. Hc-TeTx alone had no effect 
of its own on DAT levels (Figure 1B,D).

METH Induces Hyperthermia

METH treatment resulted in robust hyperthermia (Figure 1E). 
The purpose of this measurement was to validate effective-
ness of METH and establish uniform experimental groups. It 
should be noted, however, that although hyperthermia in gen-
eral may contribute to neuronal damage, it is not a requisite for 
METHinduced dopaminergic neurotoxicity. This contention is 
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based on a large body of evidence including the report that reser-
pine, which strongly potentiates METH toxicity, actually blocks 
METHinduced hyperthermia (Albers and Sonsalla, 1995; Thomas 
et al., 2008; Granado et al., 2011a, 2011b; Ares-Santos et al., 2012).

It is worth noting that both groups of mice (METH alone and 
METH + Hc-TeTx) had similar hyperthermic response and that 
Hc-TeTx treatment was initiated 1 hour after the last METH 
injection (Figure 1E). As indicated in the Methods section, the 
METH group was divided in 2 groups with similar hyperthermia. 
One of these groups was further treated with Hc-TeTx (3 x 40 
μg/kg i.m.), while the other received saline at the same time 
points. In summary, both DA markers (TH and DAT) indicate that 
Hc-TeTx protects against the loss of DA fibers induced by METH 
in the striatum despite equal hyperthermic response.

Hc-TeTx Fragment Attenuates METH-Induced DA 
Terminal Degeneration in the Striatum as Assessed 
by A–Cu–Ag Staining

To further confirm that Hc-TeTx protects striatal terminal loss 
induced by acute METH treatment, we examined the striatum 
by A-Cu-Ag staining, which specifically stains somatodendritic 
and terminal degeneration (de Olmos et al., 1994; Ares-Santos 
et al., 2014). Three days after METH treatment, there was a 
dramatic increase in striatal silver staining (24% of A-Cu-Ag 
staining area, P < .001 vs saline). This staining was considerably 
reduced by Hc-TeTx treatment, as the increase in amino-cupric 
silver signal was only 4% of A-Cu-Ag staining (P < .001) (Figure 
2). As in previous studies by our laboratory (Ares-Santos et al., 
2014), there was a time-dependent decrease of silver stain-
ing, suggesting removal of debris by macrophages after 7 days. 

Accordingly, 7 days post-METH we found an increase of only 9% 
of A-Cu-Ag staining area (P < .05), while in the Hc-TeTx group 
this increase remained at 4% (P < .05) (Figure 2). The degenera-
tion in both groups was still evident by day 7, and again, Hc-TeTx 
treatment, while having no effect of its own, significantly atten-
uated METH-induced damage (Figure 2). In all cases, however, 
the recovery was partial.

Hc-TeTx Fragment Has Differential Effects on METH-
Induced Microgliosis or Astrogliosis in the Striatum

Microgliosis and astrogliosis are important hallmarks of inflam-
matory effects of toxic doses of METH (Halpin et  al., 2014). 
Here, we found that METH treatment resulted in 69% and 126% 
increase (P < .05) in Iba-1 staining, reflective of an increase in 
microgliosis, by day 3 and 7, respectively, compared with the 
saline-treated mice (Figure  3A). Hc-TeTx did not affect the 
increase in METH-induced microgliosis at either time point. In 
contrast, the increase in GFAP staining, reflective of astrogliosis 
induced by METH on day 3 (approximately 25-fold over baseline, 
P < .001), was further enhanced by approximately 33% (P < .05) 
by Hc-TeTx (Figure 3B). However, the increase in GFAP staining 
by day 7 following METH treatment was significantly reduced 
by Hc-TeTx by approximately 48% (P < .001) (Figure 3B). Hc-TeTx 
alone did not affect either Iba-1 or GFAP staining (Figure 3A-B).

Hc-TeTx Fragment Attenuates METH-Induced 
Increases in nNOS

Neuronal nitric oxide synthase (nNOS) is an important indi-
cator of nitric oxide production, which is implicated in 

Figure 1. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) attenuated methamphetamine (METH)-induced decreases in tyrosine hydroxylase (TH) and 

dopamine transporter (DAT) expression in the striatum. Hc-TeTx (Hc) prevents the striatal TH and DAT decrease induced by METH. Photomicrographs of striatal sec-

tions stained for TH (A) and DAT (B) from mice at 1, 3, and 7 days after METH with and without Hc-TeTx treatment. Histograms show the percentage of striatal stained 

area of TH-immunoractive (TH-ir) (C) and DAT-ir (D) in the striatum. (E) METH (4 mg/kg, 3 consecutive administrations each 3 hours apart) produced hyperthermia in 

mice after the injections Arrows indicate drug injections. Data represent mean ± SEM, n = 6–8/group, using 4–5 sections/animal. *P < .05, ***P < .001 vs saline group, #P < .05, 

###P < .001 vs METH only. Bar indicates 500 µm.
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METH-induced neurotoxicity in the striatum (Deng and Cadet 
et al., 1999; Friend et al., 2014). Our results on nNOS immuno-
histochemistry indicate that Hc-TeTx prevents the increase of 
nNOS by METH treatment (Figure 4). Quantification studies of 
nNOS-ir were carried out evaluating the stained area and the 
number of nNOS-positive neurons in the 2 quadrants depicted 
in Figure  4B, 2 hemispheres per section, 4 to 6 sections/ani-
mal. METH administration increased the stained area of nNOS 
on day 3 (approximately 29%, P < .001), which was normalized 
by Hc-TeTx (P < .01) (Figure  4A,C). There was less increase in 
nNOS-ir on day 7 (approximately 12%, P < .05), which was fur-
ther reduced by Hc-TeTx below the baseline (approximately 
17%, P < .001) (Figure  4C). A  similar pattern of Hc-TeTx effect 
was observed for nNOS-positive cells in the striatum, where 
Hc-TeTx prevented the increase of nNOS at both 3 and 7 days 
post METH treatment (Figure  4D). Hc-TeTx by itself had no 
effect on nNOS (Figure 4).

Hc-TeTx Fragment Mitigates METH-Induced 
Reductions in TH-ir Neurons in SNpc at 7 Days 
Posttreatment

As we showed previously (Ares-Santos et al., 2014), METH treat-
ment resulted in significant reduction in the number of TH-ir 
neurons in SNpc at day 3 (11,476 ± 471) and day 7 (11,563 ± 715) 
compared with saline-treated animals (17,126 ± 377) (P < .01, 
P < .001) (Figure  5). These reductions represent approximately 
33% neuronal loss as demonstrated by stereological counts. 
Although Hc-TeTx treatment appears to prevent some of these 
losses at both time points, only at day 7 posttreatment was the 
mitigating effect of Hc-TeTx (approximately 20%) statistically 
significant (P < .05) (Figure 5B). Hc-TeTx by itself had no effects 
on TH-ir in SNpc (Figure 5). Close microscopic observations of 
TH-positive neurons in the SNpc revealed neurons with less 
TH-ir signal and neurons with citoarchitecture damage in both 

Figure 2. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) attenuated methamphetamine (METH)-induced increases in amino-cupric-silver tech-

nique (A–Cu–Ag) staining in the striatum. METH induced an increase in A–Cu–Ag staining indicative of cell damage that was mitigated by treatment with Hc-TeTx 

(Hc). Photomicrographs of A–Cu–Ag-stained sections of the striatum of mice at 3 and 7 days after METH with and without Hc treatment. Histograms show the 

proportional stained area in the striatum. Data represent mean ± SEM, n = 6–8/group. *P < .05, **P < .01, ***P < .001 vs saline group; #P < .05, ###P < .001 vs METH group. 

Bar indicates 500 μm.

Figure 3. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) had a differential effect on methamphetamine (METH)-induced microgliosis vs astrogliosis 

in the striatum. Although METH had a consistent effect on both micro- and astrogliosis, Hc-TeTx (Hc) had varied interactions with METH vis-a-vis these markers of 

central inflammatory responses. Photomicrographs of ionized calcium binding adaptor molecule 1 (Iba-1) (A) and glial fibrillary acidic protein antibody (GFAP)-stained 

(B) sections of the striatum of mice at 3 and 7 days after METH with and without Hc-TeTx (Hc) treatment. Histograms show the proportional stained area in the stria-

tum. Data represent mean ± SEM, n = 6–8/group. *P < .05, **P < .01, ***P < .001 vs saline group, ###P < .001 vs METH group. Bar indicates 50 μm.
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groups of mice (METH and METH + Hc-TeTx) compared with the 
saline group (Figure 5C). Citoarchitecture damage was evident 
by broken cell membranes in both nuclei and cytoplasm (see 
examples in Figure 5). Overall, the data suggest that TH-positive 
cells of both groups undergo a similar damaging process with 
some protection afforded at a later time point by Hc-TeTx.

Hc-TeTx Fragment Prevents the Reduction of Motor 
Behavior Post-METH Treatment

Consistent with previous reports (Ares-Santos et  al., 2014), 
1 day after METH treatment there was a significant decrease 
in locomotor activity as assessed by horizontal activity 
(53% decrease, P < .001; Figure  6A), time in movement (68% 

decrease, P < .001; Figure 6B), and total distance travelled (68% 
decrease, P < .01; Figure  6C) compared with saline. All these 
effects were significantly reduced by Hc-TeTx treatment 
(24% decrease in horizontal activity, P < .001; 20% decrease in 
movement time, P < .001; and 22% decrease in total distance, 
P < .01) compared with the saline-treated group. Similarly, the 
decrease in Rotarod motor coordination induced by METH 
on days 1 (approximately 49%, P < .001) and 3 (approximately 
35%, P < .001) posttreatment were also reduced by Hc-TeTx 
to approximately 14% on day 1 and 5% on day 3, practically 
normalizing the effect on Rotarod performance (Figure  6D). 
Hc-TeTx by itself had no effect on any behavioral parameter. 
At day 7, the motor coordination was recovered and no differ-
ences were found between groups.

Figure 4. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) blocked methamphetamine (METH)-induced increases in neuronal nitric oxide synthase 

(nNOS) expression in the striatum. METH caused an in increase in the expression of nNOS in the striatum, which was totally blocked by Hc-TeTx (Hc). Photomicro-

graphs of nNOS-stained sections of the striatum of mice at 3 and 7 days after METH with and without Hc-TeTx treatment (A). Schematic representation of mouse 

striatum (B). Histograms of nNOS-stained area (C) and nNOS-positive cells (D). Data represent mean ± SEM, n = 6–8/group. *P < .05, ***P < .001 vs saline; ##P < .01, ###P < .001 

vs METH. Bar indicates 100 μm.

Figure 5. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) mitigated methamphetamine (METH)-induced dopaminergic neuron loss in substantia 

nigra pars compacta (SNpc) at 7 days posttreatment. METH induced loss of tyrosine hydroxylase (TH)-ir neurons in substantia nigra. (A) Left, high magnification pho-

tomicrographs of nigral sections stained for TH in saline, METH, and Hc-TeTx + METH-treated animals after 3 and 7 days. Bar indicates 200 μm. (B) Histogram shows 

number of TH-positive neurons in SNpc of mice at 3 and 7 days after METH with and without Hc-TeTx (Hc) treatment. Hc-TeTx reduced METH-induced neuronal loss 

at 7 days posttreatment. Cells were counted by unbiased stereology in midbrain sections. Data represent mean ± SEM, n = 4–9/group. *P < .05, ***P < .001 vs saline, #P < .05 

vs METH. (C) High magnification photomicrographs show examples of TH-ir neurons for saline, METH, and Hc-TeTx + METH-treated groups. METH (3 x 4 mg/kg) caused 

loss of TH-ir neurons as observed at 3 and 7 days posttreatment. The toxic effects by METH were found in both groups as evidenced by lighter TH staining and broken 

membrane cells. Bar indicates 10 μm.
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Discussion

In recent years, the efficacy of the recombinant Hc-TeTx as neu-
roprotective agent against toxins has been demonstrated in dif-
ferent animal models of PD. These studies show that Hc-TeTx 
is able to decrease dopaminergic lesions induced by MPP+ and 
6-OHDA (Mendieta et al., 2009, 2012). In this study, we provide 
the first evidence that Hc-TeTx fragment can also protect stri-
atal terminal loss and motor impairments induced by acute 
METH administration. Numerous studies have investigated 
the mechanism of METH-induced neuronal toxicity using vari-
ous paradigms and species. Most of these studies, as discussed 
above, have concentrated on the dopaminergic system, since 
the primary target of METH appears to be this neurotransmitter. 
Thus, it has been demonstrated that METH causes degenera-
tion of dopaminergic fibers in the striatum (Ricaurte et al., 1982, 
1984; Ricaurte and McCann, 1992; Ares-Santos et al., 2014) and 
destruction of some of its corresponding cell bodies in the SNpc 
(Ares-Santos et al., 2014), which might lead to PD-like symptoms 
(Callaghan et al., 2012; Curtin et al., 2015). However, it should be 
noted that acute effects of METH on dopaminergic system may 
not be associated or correlated with changes in motor activity 
(Krasnova et al., 2009) or as seen in this study, with impairments 
in Rotarod performance. Nonetheless, our study highlights the 
protective action of the protein fragment Hc-TeTx that, when 
given i.m., mitigates METH-induced dopaminergic degeneration 
as well as the motor impairments, suggesting potential useful-
ness of Hc-TeTx effects against METH-induced damages. In this 
regard, it would be of considerable interest to investigate long 
term effects of METH as well as Hc-TeTx fragment.

 In addition to the dopaminergic system, METH may also 
influence the function of several other neurotransmitters sys-
tems such as the serotonergic (Ali and Itzhak, 1998; Krasnova 
and Cadet, 2009; Silva et al., 2014), glutamatergic (Simões et al., 
2007; Kerdsan et al., 2012; Miyazaki et al., 2013; Zhang et al., 
2014), GABAergic (Zhang et al., 2006; Mizoguchi and Yamada, 
2011; Padgett et al., 2012; Shen et al., 2013), and the choliner-
gic system (Lim et al., 2014). However, these interactions may 
be more related to nonmotor effects of METH. For example, its 
serotonergic interactions may be related to its mood-altering 
effects (Silva et al., 2014); its glutamatergic interactions may 
be more relevant to its dependency, memory impairments, and 
psychotic-like effects (Simões et al., 2007; Miyazaki et al., 2013); 
and its GABAergic interactions may be more relevant to its cog-
nitive dysfunctions and anxiety-like symptoms during with-
drawal (Mizoguchi and Yamada, 2011; Shen et al., 2013). METH 
interaction with the striatal cholinergic system, however, may 
also be related to its motor impairments (Lim et al., 2014). In 
this context, it is important to note that interactions of these 
neurotransmitter systems with the dopaminergic systems 
can also influence the final behavioral and neuronal effects of 
METH (Miyazaki et al., 2013). Moreover, as mentioned above 
(see Results) hyperthermia may contribute to neuronal damage, 
although it is not a requisite for METH-induced dopaminergic 
neurotoxicity. Some common denominators of METH influence 
on all transmitter systems may involve its interaction with 
the neurotrophic, inflammatory, or oxidative stress pathways 
(Krasnova and Cadet, 2009; Moratalla et al., 2015). Our findings 
suggest protective effects of Hc-TeTx on dopaminergic system, 
TH, and DAT, disrupted by acute METH administration. In this 

Figure 6. C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) prevented impairment of motor behavior induced by methamphetamine (METH). METH 

induced a decrease in all measures of locomotor activity [(A) horizontal; (B) time in movement; (C) total distance travelled]. All these effects were almost completely 

blocked by Hc-TeTx (Hc) treatment. Similarly, the reduction in Rotarod induced by METH on days 3 and 7 were also totally blocked by Hc-TeTx (D). Data represent mean 

± SEM, n = 6–8/group. *P < .05, ***P < .001 vs saline; #P < .05, ##P < .01, ###P < .001 vs METH.
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regard, it is of relevance to note that some in vitro studies have 
shown stimulatory effects of Hc-TeTx on TrkB pathways (Gil et 
al., 2003; Chaïb-Oukadour et al., 2004), which can promote not 
only TH expression (Salvatore et al., 2014) but might also act a 
general trophic mechanism, hence maintaining other transmit-
ter systems as well. Collectively, the data indicate that Hc-TeTx 
has protective effects against METH-induced damage on the 
striatal dopaminergic system as well as the motor impairment. 
Furthermore, mitigation of the neuronal damage in SNpc, albeit 
at 7 days posttreatment, can be an additional beneficial effect 
of Hc-TeTx.

 Previous studies with Hc-TeTx fragment suggest its pro-
tection against excitotoxicity and oxidative stress (Herrando-
Grabulosa et al., 2013; Radenovic et al., 2014; Patricio-Martínez et 
al., 2016). In our paradigm, we concentrated on the involvement 
of inflammatory or oxidative stress in METH-induced toxicity 
and possible interaction of Hc-TeTx with these mechanisms. 
The results suggest that the protective effects of Hc-TeTx are 
more likely to be mediated through inhibition of METH-induced 
oxidative stress. The reason for this contention is that METH 
increases nNOS, which may lead to nitric oxide production 
(Deng and Cadet, 1999; Solís et al., 2015), and this increase was 
completely abolished by Hc-TeTx. Moreover, substances that 
act as inhibitors of nNOS might also have protective effects 
against METH-induced neurotoxicity (Eyerman and Yamamoto, 
2007). We did not detect any robust antiinflammatory effect of 
Hc-TeTx. This was evident in the lack of Hc-TeTx on METH-
induced microgliosis at either 3 or 7 days posttreatment. On the 
contrary, Hc-TeTx caused a further increase in astrogliosis on 
day 3 post METH treatment. It is important to note that micro-
gliosis and astrogliosis are hallmarks of inflammatory response 
to toxic substances such as METH (Granado et al., 2011a, 2011b; 
Ares-Santos et al., 2012; Halpin et al., 2014). The increase in 
astrogliosis shortly after Hc-TeTx administration might actually 
signal a compensatory and protective effect of initial inflamma-
tory response by Hc-TeTx (O’Callaghan et al., 2008; Miyazaki et 
al., 2011; Colangelo et al., 2014; Pekny et al., 2014). In this regard, 
it should be noted that the immune response to an insult is to 
provide adequate opportunity for repair mechanism to occur. 
However, overactivation of inflammatory mechanism can be a 
source of damage by itself (Hurley and Tizabi, 2013; Tizabi et al., 
2014; Moratalla et al., 2015). Hence, the significant decrease in 
astrogliosis on day 7 post METH treatments might be indicative 
of a delayed antiinflammatory effect of Hc-TeTx similar to what 
was seen previously against 6-OHDA (Mendieta et al., 2012). 
However, further studies on possible antiinflammatory effects of 
Hc-TeTx and interaction between oxidative stress and immune/
inflammatory system need to be carried out. Moreover, as men-
tioned above, part of Hc-TeTx effect may be through its interac-
tion with neurotrophic pathway, as several studies demonstrate 
that neurotrophic factors such as GDNF or brain-derived neu-
rotrophic factor prevent dopaminergic neurodegeneration 
(Rosenblad et al., 2000; Singh et al., 2006; Boger et al., 2007). Since 
neurotrophic factors may interact and influence both inflam-
matory and oxidative stress pathways (Hurley and Tizabi, 2013; 
Beardsley and Hauser, 2014), it is very likely that multiple mech-
anisms may contribute to a beneficial effect of Hc-TeTx. A major 
advantage of Hc-TeTx is that it can be administered i.m. at very 
low (micromolar) doses and reach the CNS, while neurotrophic 
factors need to be injected directly into the brain or delivered via 
viral vectors (Kordower and Bjorklund, 2013).

In summary, we report for the first time that Hc-TeTx reduces 
the neurotoxic effects of acute METH in striatal terminals and 
also mitigates METH-induced locomotor impairment. These 

findings lead us to suggest therapeutic potential for Hc-TeTx 
fragment against the damage induced by METH or possibly 
other dopaminergic neurotoxins.
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