

---

This is the **accepted version** of the journal article:

Balacheff, Florent Nicolas; Karam, Steve. «Length product of homologically independent loops for tori». *Journal of Topology and Analysis*, Vol. 8, Num. 3 (September 2016), p. 497-500. DOI 10.1142/S1793525316500175

---

This version is available at <https://ddd.uab.cat/record/287628>

under the terms of the  IN COPYRIGHT license

# LENGTH PRODUCT OF HOMOLOGICALLY INDEPENDENT LOOPS FOR TORI

F. BALACHEFF AND S. KARAM

**ABSTRACT.** We prove that any Riemannian torus of dimension  $m$  with unit volume admits  $m$  homologically independent closed geodesics whose length product is bounded from above by  $m^m$ .

The goal of this note is to prove the following analog of Minkowski's second theorem.

**Theorem 1.** *Let  $(\mathbb{T}^m, g)$  be a Riemannian torus of dimension  $m \geq 2$ . There exist  $m$  homologically independent closed geodesics  $(\gamma_1, \dots, \gamma_m)$  whose length product satisfies*

$$\prod_{i=1}^m \ell_g(\gamma_i) \leq m^m \cdot \text{vol}(\mathbb{T}^m, g).$$

Given a closed manifold  $M$  of dimension  $m$  and a class  $\zeta \neq 0 \in H^1(M; \mathbb{Z}_2)$  set

$$L(\zeta) := \inf\{\ell_g(\gamma) \mid \gamma \text{ is a closed curve with } \langle \zeta, [\gamma] \rangle \neq 0\}$$

where  $[\gamma]$  denotes the homology class in  $H_1(M; \mathbb{Z}_2)$  corresponding to the curve  $\gamma$  and  $\langle \cdot, \cdot \rangle$  the pairing between  $\mathbb{Z}_2$ -cohomology and homology. The central result of this note is the following statement from which Theorem 1 can be deduced.

**Theorem 2.** *Let  $(M, g)$  be a closed Riemannian manifold of dimension  $m \geq 1$  and suppose that there exist (not necessarily distinct) cohomology classes  $\zeta_1, \dots, \zeta_m$  in  $H^1(M; \mathbb{Z}_2)$  whose cup product  $\zeta_1 \cup \dots \cup \zeta_m \neq 0$  in  $H^m(M; \mathbb{Z}_2)$ . Then*

$$\prod_{i=1}^m L(\zeta_i) \leq m^m \cdot \text{vol}(M, g).$$

In order to show this result we follow the approach by L. Guth [Gut10] involving nearly minimal hypersurfaces in his alternative proof of Gromov isosystolic inequality [Gro83] in the special case of manifolds whose  $\mathbb{Z}_2$ -cohomology has maximal cup-length.

Theorem 1 can be deduced from this result as follows. Choose a sequence of  $\mathbb{Z}_2$ -homologically independent closed geodesics  $(\gamma_1, \dots, \gamma_m)$  in  $(\mathbb{T}^m, g)$  corresponding to the  $m$  first successive minima, that is

$$\ell_g(\gamma_k) = \min\{\lambda \mid \text{there exist } k \text{ } \mathbb{Z}_2\text{-homologically independent closed curves of length at most } \lambda\}.$$

The dual basis  $(\zeta_1, \dots, \zeta_m)$  to the basis  $([\gamma_1], \dots, [\gamma_m])$  satisfies the condition  $\zeta_1 \cup \dots \cup \zeta_m \neq 0$  and that  $L(\zeta_k) = \ell_g(\gamma_k)$  which prove Theorem 1.

The rest of this note is devoted to the proof of Theorem 2. Instead of considering balls like in Guth's argument we inductively construct a set which is longer in the appropriate direction and whose structure is described as follows. By a strictly increasing sequence of closed submanifolds of  $M$  we mean a sequence  $Z_0 \subset Z_1 \subset \dots \subset Z_{m-1} \subset Z_m = M$  of closed manifolds  $Z_i$  of dimension  $i$  for  $i = 0, \dots, m$ . In particular  $Z_0$  is a finite collection of points of  $M$  and  $Z_{m-1}$  an hypersurface. Given such a sequence and  $m$  positive numbers  $R_1, \dots, R_m$  we define another sequence of subsets  $D_1 \subset \dots \subset D_m$  by induction as follows:

$$D_1 := \{z \in Z_1 \mid d_g(z, Z_0) \leq R_1\} \subset Z_1,$$

1991 *Mathematics Subject Classification.* 53C23.

*Key words and phrases.* Minimal hypersurface, second Minkowski theorem, systolic geometry, torus.

and for  $k = 2, \dots, m$

$$D_k := \{z \in Z_k \mid d_g(z, D_{k-1}) \leq R_k\} \subset Z_k.$$

Fix  $\delta > 0$ . We will prove by induction that there exists a strictly increasing sequence  $Z_0 = \{z_0\} \subset Z_1 \subset \dots \subset Z_{m-1} \subset Z_m = M$  of closed submanifolds of  $M$  such that

- the homology class  $[Z_{i-1}] \in H_{i-1}(Z_i; \mathbb{Z}_2)$  is the Poincaré dual of the restriction  $\zeta'_i := \zeta_i|_{Z_i}$  ;
- for any sequence  $\{R_i\}_{i=1}^m$  of positive numbers if  $2 \sum_{k=1}^i R_k < L(\zeta'_i)$  for  $i = 1, \dots, m$  then

$$\text{vol } D_m \geq 2^m \prod_{i=1}^m R_i - O(\delta).$$

As  $L(\zeta_i) \leq L(\zeta'_i)$  (with equality at least for  $i = m$ ), ordering  $\zeta_1, \dots, \zeta_m$  such that  $L(\zeta_1) \leq \dots \leq L(\zeta_m)$ , taking  $R_i \rightarrow \frac{L(\zeta_i)}{2^m}^-$  and then letting  $\delta \rightarrow 0$  in the above inequality implies Theorem 2.

The case  $m = 1$  is trivial, so suppose that  $m > 1$  and that the statement is proved for dimensions at most  $m - 1$ . Let  $\mathbf{Z}_{m-1} \in H_{m-1}(M; \mathbb{Z}_2)$  be the Poincaré dual to  $\zeta_m$ . We fix a smooth embedded and closed hypersurface  $Z_{m-1}$  which is  $\delta$ -minimizing in the homology class  $\mathbf{Z}_{m-1}$ : any other smooth hypersurface  $Z'$  representing  $\mathbf{Z}_{m-1}$  satisfies  $\text{vol}_{m-1} Z' \geq \text{vol}_{m-1} Z_{m-1} - \delta$ .

The restriction to  $Z_{m-1}$  of the cohomologic classes  $\zeta_1, \dots, \zeta_{m-1}$  gives a family of cohomologic classes  $\zeta''_1, \dots, \zeta''_{m-1}$  in  $H^1(Z_{m-1}; \mathbb{Z}_2)$  such that  $\zeta''_1 \cup \dots \cup \zeta''_{m-1} \neq 0$  in  $H^{m-1}(Z_{m-1}; \mathbb{Z}_2)$ . By the induction hypothesis there exists a strictly increasing sequence  $Z_0 = \{z_0\} \subset Z_1 \subset \dots \subset Z_{m-2}$  of submanifolds of  $Z_{m-1}$  such that

- for  $i \leq m - 1$  the homology class of  $Z_{i-1}$  is the Poincaré dual of the restriction of  $\zeta''_i$  to  $Z_i$ , which coincides with  $\zeta'_i$  defined as the restriction of  $\zeta_i$  to  $Z_i$  ;
- for any sequence  $\{R_i\}_{i=1}^{m-1}$  of positive numbers if  $2 \sum_{k=1}^i R_k < L(\zeta'_i)$  for  $i = 1, \dots, m - 1$  then

$$\text{vol}_{m-1} D_{m-1} \geq 2^{m-1} \prod_{k=1}^{m-1} R_k - O(\delta).$$

Now fix a sequence  $\{R_i\}_{i=1}^m$  of positive numbers such that  $2 \sum_{k=1}^i R_k < L(\zeta'_i)$  for  $i = 1, \dots, m$ . We will need the following Lemma:

**Lemma 0.1.** *Let  $c$  be a 1-cycle in  $D_m$ . Then there exist loops  $\gamma_1, \dots, \gamma_k \subset D_m$  with  $l_g(\gamma_i) < L(\zeta'_m)$  for  $i = 1, \dots, k$  and such that  $c$  is homologous to the 1-cycle  $\gamma_1 + \dots + \gamma_k$ .*

*Proof of the Lemma.* We proceed as in the Curve Factoring Lemma (see [Gut10]). Just observe that any point of  $D_m$  can be connected to  $z_0$  through a path in  $D_m$  of length at most  $\sum_{k=1}^m R_k$ .  $\square$

Using this Lemma, we can prove the following analog of the version of Stability Lemma due to Nakamura [Nak13].

**Lemma 0.2.** *For any  $r \leq R_m$*

$$\text{vol}_{m-1} \{x \in M \mid d_g(x, D_{m-1}) = r\} \geq 2 (\text{vol}_{m-1} \{x \in Z_{m-1} \mid d_g(x, D_{m-1}) \leq r\} - \delta).$$

*Proof of the Lemma.* First note we only have to prove the inequality for  $r = R_m$  which writes as follows:

$$\text{vol}_{m-1} \{x \in M \mid d_g(x, D_{m-1}) = R_m\} \geq 2 (\text{vol}_{m-1} (Z_{m-1} \cap D_m) - \delta).$$

We argue as in the proof of the Stability Lemma in [Nak13]. First note that

$$[Z_{m-1} \cap D_m] = 0 \in H_{m-1}(D_m, \partial D_m; \mathbb{Z}_2).$$

For this recall the following argumentation due to [Gut10]. If this is not the case, by the Poincaré-Lefschetz duality the cycle  $Z_{m-1} \cap D_m$  has a non-zero algebraic intersection number with an absolute cycle  $c$  in  $D_m$ . Using Lemma 0.1 we find a finite number of loops  $\gamma_1, \dots, \gamma_k \subset D_m$  with  $l_g(\gamma_i) < L(\zeta_m)$  for  $i = 1, \dots, k$  and such that  $c$  is homologous to the 1-cycle  $\gamma_1 + \dots + \gamma_k$ . But this implies that for some  $i = 1, \dots, k$  the

intersection with  $Z_{m-1}$  is not zero which gives a contradiction with the definition of  $L(\zeta_m)$ . Now the proof proceeds *mutatis mutandis* as in [Nak13].  $\square$

Then by the coarea formula

$$\begin{aligned}
 \text{vol}_m D_m &= \int_0^{R_m} \text{vol}_{m-1} \{x \in M \mid d_g(x, D_{m-1}) = r\} dr \\
 &\geq \int_0^{R_m} 2(\text{vol}_{m-1} \{x \in Z_{m-1} \mid d_g(x, D_{m-1}) \leq r\} - \delta) dr \\
 &\geq \int_0^{R_m} 2(\text{vol}_{m-1} D_{m-1} - \delta) dr \\
 &\geq 2R_m (\text{vol}_{m-1} D_{m-1} - \delta)
 \end{aligned}$$

which proves the assertion.

**Acknowledgments.** This work acknowledges support by grants ANR CEMPI (ANR-11-LABX-0007-01) and ANR Finsler (ANR-12-BS01-0009-02). The authors are grateful to an anonymous referee for comments that helped to improve the exposition.

## REFERENCES

- [Gro83] Gromov, M.: *Filling Riemannian manifolds*. J. Diff. Geom. **18** (1983), 1-147.
- [Gut10] Guth, L.: *Systolic inequalities and minimal hypersurfaces*. Geom. Funct. Anal. **19** (2010), 1688-1692.
- [Nak13] Nakamura, K.: *On isosystolic inequalities for  $T^n$ ,  $\mathbb{R}P^n$  and  $M^3$* . arXiv1306.1617.

F. BALACHEFF, LABORATOIRE PAUL PAINLEVÉ, BAT. M2, UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES, 59 655 VILLENEUVE D'ASCQ, FRANCE.

*E-mail address:* florent.balacheff@math.univ-lille1.fr

S. KARAM, LABORATOIRE PAUL PAINLEVÉ, BAT. M2, UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES, 59 655 VILLENEUVE D'ASCQ, FRANCE.

*E-mail address:* steve.karam@math.univ-lille1.fr