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LENGTH PRODUCT OF HOMOLOGICALLY INDEPENDENT LOOPS FOR TORI

F. BALACHEFF AND S. KARAM

ABSTRACT. We prove that any Riemannian torus of dimension /m with unit volume admits m homologically
independent closed geodesics whose length product is bounded from above by m™.

The goal of this note is to prove the following analog of Minkowski’s second theorem.

Theorem 1. Let (T™, g) be a Riemannian torus of dimension m > 2. There exist m homologically
independent closed geodesics (71, . . ., Ym ) whose length product satisfies

[T¢(v) < m™ - vol(T™, g).
=1

Given a closed manifold M of dimension m and a class ( # 0 € H'(M; Zs) set
L(¢) :=inf{l4(y) | v is a closed curve with ((, [y]) # 0}

where [y] denotes the homology class in Hy(M;Zs) corresponding to the curve v and (-, -) the pairing
between Zy-cohomology and homology. The central result of this note is the following statement from which
Theorem 1 can be deduced.

Theorem 2. Let (M, g) be a closed Riemannian manifold of dimension m > 1 and suppose that there exist
(not necessarily distinct) cohomology classes (1, . . ., (m in HY(M; Zs) whose cup product (1 U. ..U Gy # 0
in H™(M;Zs3). Then

m

[T L) <m™-vol (M, g).

i=1

In order to show this result we follow the approach by L. Guth [Gut10] involving nearly minimal hyper-

surfaces in his alternative proof of Gromov isosystolic inequality [Gro83] in the special case of manifolds
whose Zy-cohomology has maximal cup-length.

Theorem 1 can be deduced from this result as follows. Choose a sequence of Zs-homologically independent
closed geodesics (71, ... ,7Vm) in (T™, g) corresponding to the m first successive minima, that is

Ly(v;) = min{\ | there exist k Zs-homologically independent closed curves of length at most A}.

The dual basis ({1, ..., () to the basis ([y1],. .., [ym]) satisfies the condition (; U ... U (,, # 0 and that
L({r) = £4(~x) which prove Theorem 1.

The rest of this note is devoted to the proof of Theorem 2. Instead of considering balls like in Guth’s
argument we inductively construct a set which is longer in the appropriate direction and whose structure is
described as follows. By a strictly increasing sequence of closed submanifolds of M we mean a sequence
ZoC Z1C...C Zm—1 C Zy = M of closed manifolds Z; of dimension ¢ for ¢ = 0, ..., m. In particular
Z is a finite collection of points of M and Z,,,_; an hypersurface. Given such a sequence and m positive
numbers R, ..., R, we define another sequence of subsets D; C ... C D,, by induction as follows:

D1 = {Z c Zl | dg(Z,Zo) < Rl} C Zl,
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and fork =2,...,m
Dy = {Z € Zy, ‘ dg(Z,Dk_l) < Rk} C Zy.
Fix 0 > 0. We will prove by induction that there exists a strictly increasing sequence Zy = {20} C Z1 C
... C Zym_1 C Zy, = M of closed submanifolds of M such that

e the homology class [Z;_1] € H;_1(Z;; Zs) is the Poincaré dual of the restriction ¢} := Gijz, 5
e for any sequence {R; }7", of positive numbers if 2 22:1 Ry, < L(¢]) fori=1,...,mthen

vol Dy, > 2™ [[ Ri — O(6).

i=1
As L((;) < L(¢!) (with equality at least for ¢ = m), ordering (y, ..., (my such that L(¢) < ... < L(Gn),
taking R; — LQ(%) ~ and then letting § — 0 in the above inequality implies Theorem 2.

The case m = 1 is trivial, so suppose that m > 1 and that the statement is proved for dimensions at most
m — 1. Let Zy—1 € Hp,—1(M; Zs) be the Poincaré dual to (,,. We fix a smooth embedded and closed
hypersurface Z,,,_1 which is 0-minimizing in the homology class Z, 1: any other smooth hypersurface 7’
representing Z,, 1 satisfies vol,,, 1 Z' > vol,,—1 Zp—1 — 0.

The restriction to Z,,,—1 of the cohomologic classes (1, ..., (n—1 gives a family of cohomologic classes

Vol in HY(Zm-1;72) such that ¢ U ... U’ _; # 0in H™" Y(Z,,_1;Z5). By the induction
hypothesis there exists a strictly increasing sequence Zy = {20} C Z; C ... C Z;,—2 of submanifolds of
Zm—1 such that

e for i < m — 1 the homology class of Z;_; is the Poincaré dual of the restriction of C{' to Z;, which
coincides with ¢/ defined as the restriction of (; to Z; ;

e for any sequence {R;}7,! of positive numbers if 2 22:1 Ry, < L(¢])fori=1,...,m — 1 then
m—1
Vol —1 D1 > 2771 T Bi — O(6).
k=1

Now fix a sequence {R;}!"; of positive numbers such that 2 2221 Ry, < L(¢)) fori=1,...,m. We
will need the following Lemma:

Lemma 0.1. Let ¢ be a 1-cycle in D,,. Then there exist loops v1, ..., C Dy with ly(;) < L({],) for
i =1,...,k and such that c is homologous to the 1-cycle v1 + ... + V.

Proof of the Lemma. We proceed as in the Curve Factoring Lemma (see [Gut10]). Just observe that any point
of D,,, can be connected to zo through a path in D,,, of length at most > ;" | R. (|

Using this Lemma, we can prove the following analog of the version of Stability Lemma due to Nakamura
[Nak13].

Lemma 0.2. Foranyr < R,
voly,—1{x € M | dg(z, Dyp—1) =1} > 2 (volp—1{x € Zpp,—1 | dg(x, Dpp—1) < 1} —0).
Proof of the Lemma. First note we only have to prove the inequality for » = R,;, which writes as follows:
voly—1{z € M | dg(x, Dpm—1) = R} > 2 (volyy—1(Zm—1 N D) — 9).
We argue as in the proof of the Stability Lemma in [Nak13]. First note that
[Zm—-1N Dy =0¢€ Hpy—1(Dpy, 0Dy Zs3).

For this recall the following argumentation due to [Gut10]. If this is not the case, by the Poincaré-Lefschetz
duality the cycle Z,,—1 N D, has a non-zero algebraic intersection number with an absolute cycle c in D,,.
Using Lemma 0.1 we find a finite number of loops 71, ..., vx C Dy, with l4(y;) < L((p) fori=1,...,k
and such that c is homologous to the 1-cycle v; + ... 4 7. But this implies that for some ¢ = 1,..., k the
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intersection with Z,,,_; is not zero which gives a contradiction with the definition of L((,,). Now the proof
proceeds mutatis mutandis as in [Nak13]. ]

Then by the coarea formula

R
voly, Dy, = / VOlm_l{l‘ eM | dg($,Dm_1) = r}dr
0

R’Vrl/
> / 2 (voly—1{x € Zpm—1 | dg(, Dpp—1) <1} — 6)dr
0

v

Rm
/ 2 (Volm_le_l — (5)d7"
0
Z 2Rm (VOlmlemfl — (5)

which proves the assertion.
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