
doi: 10.1016/j.procs.2016.05.305

Embedded real-time stereo estimation

via Semi-Global Matching on the GPU

D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez,
J. C. Moure, and A. M. López

Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain

Abstract
Dense, robust and real-time computation of depth information from stereo-camera systems
is a computationally demanding requirement for robotics, advanced driver assistance systems
(ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm
that propagates consistency constraints along several paths across the image. This work presents
a real-time system producing reliable disparity estimation results on the new embedded energy-
efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an
image size of 640×480, 128 disparity levels, and using 4 path directions for the SGM method.

Keywords: Stereo, Semi-global Matching, CUDA, GPU, Computer Vision, Drive PX, Embedded Sys-

tems, Autonomous Driving

1 Introduction

Dense, robust and real-time computation of depth information from stereo-camera systems
is a requirement in many industrial applications such as advanced driver assistance systems
(ADAS), robotics navigation and autonomous vehicles. An efficient stereo algorithm has been
a research topic for decades [1]. It has multiple applications, for example, [7] uses stereo
information to filter candidate windows for pedestrian detection and provides better accuracy
and performance.

Fig. 1 illustrates how to infer the depth of a given real-world point from its projection points
on the left and right images. Assuming a simple translation between the cameras (otherwise,
images must be rectified using multiple extrinsic and intrinsic camera parameters), the corre-
sponding points must be in the same row of both images, along the epipolar lines. A similarity
measure correlates matching pixels and the disparity (d) is the similarity distance between
both points.

Disparity estimation is a difficult task because of the high level of ambiguity that often
appears in real situations. For those, a large variety of proposals have been extensively presented
[13]. Most of the high-accuracy stereo vision pipelines [17] include the semi-global matching
(SGM) consistency-constraining algorithm [9]. The combination of SGM with different kinds of

Procedia Computer Science

Volume 80, 2016, Pages 143–153

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

143

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.305&domain=pdf

Figure 1: Each pixel of IBase corresponds to one pixel of IMatch, and the epipolar geometry
of the two cameras limits the search to a one dimensional line. The distance z between the
3D point and the baseline of the camera is computed from the disparity d using triangulation,
where f is the focal length and T is the baseline of the camera pair.

local similarity metrics is insensitive to various types of noise and interferences (like lighting),
efficiently deals with large untextured areas and is capable of retaining edges.

The high computational load and memory bandwidth requirements of SGM pose hard chal-
lenges for fast and low energy-consumption implementations. Dedicated hardware solutions
(e.g. FPGA or ASIC) [3][11] achieve these goals, but they are very inflexible regarding changes
in the algorithms. Implementations on desktop GPUs can assure real-time constraints [2], but
their high power consumption and the need to attach a desktop computer makes them less
suitable for embedded systems.

Recently, with the appearance of embedded GPU-accelerated systems like the NVIDIA
Jetson TX1 and the DrivePX platforms (incorporating, respectively, one and two Tegra X1
ARM processors), low-cost and low-consumption real-time stereo computation is becoming
attainable. The objective of this work is to implement and evaluate a complete disparity
estimation pipeline on this embedded GPU-accelerated device.

We present simple, but well-designed, baseline massively parallel schemes and data layouts
of each of the algorithms required for disparity estimation, and then optimize the baseline code
with specific strategies, like vectorization or CTA-to-Warp conversion, to boost performance
around 3 times. The optimized implementation runs on a single Tegra X1 at 42 frames per
second (fps) for an image size of 640×480 pixels, 128 disparity levels, and using 4 path directions
for the SGM method, providing high-quality real-time operation. While a high-end desktop
GPU improves around 10 times the performance of the embedded GPU, the performance per
watt ratio is 2.2 times worse.

The rest of the paper is organized as follows. Section 2 presents the algorithms composing
the disparity estimation pipeline, overviews the GPU architecture and programming model and
discusses related work. In section 3 we describe each algorithm and then propose and discuss
a parallel scheme and data layout. Finally, section 4 provides the obtained results and section
5 summarizes the work.

2 Disparity Estimation Pipeline

Fig. 2 shows the stages of the disparity computation pipeline: (1) the captured images are
copied from the Host memory space to the GPU Device; (2) features are extracted from each
image and used for similarity comparison to generate a local matching cost for each pixel and
potential disparity; (3) a smoothing cost is aggregated to reduce errors (SGM); (4) disparity is

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

144

Figure 2: Stages of the GPU-accelerated Disparity Estimation Pipeline

computed and a 3×3 median filter is applied to remove outliers; and (5) the resulting disparity
image is copied to the Host memory.

2.1 Local Matching Cost and Semi-Global Matching (SGM)

Different similarity metrics or cost functions have been proposed in the literature. The less
computationally-demanding, and modest quality providers, are Sum of Absolute Differences,
ZSAD and Rank Transform. According to [10], Hierarchical Mutual Information and the Census
Transform (CT) features [16] provide similar higher quality, being CT substantially less time-
consuming. Recently, costs based on neural networks have outperformed CT [17], but at the
expense of a higher computational load.

A CT feature encodes the comparisons between the values of the pixels in a window around
a central pixel. After empirically evaluating different variants we selected a Center-Symmetric
Census Transform (CSCT) configuration with a 9×7 window, which provides a more compact
representation with similar accuracy [14]. The similarity of two pixels is defined as the Hamming
distance of their CSCT bit-vector features. Two properties provide robustness for outdoor
environments with uncontrolled lighting and in front of calibration errors: the invariance to
local intensity changes (neighboring pixels are compared to each other) and the tolerance to
outliers (an incorrect value modifies a single bit).

In order to deal with non-unique or wrong correspondences due to low texture and ambi-
guity, consistency constraints can be included in the form of a global two-dimensional energy
minimization problem. Semi-global matching (SGM) approximates the global solution by solv-
ing a one-dimensional minimization problem along several (typically 4 or 8) independent paths
across the image. For each path direction, image point and disparity, SGM aggregates a cost
that considers the cost of neighboring points and disparities. The number of paths affects both
the quality and the performance of the results.

2.2 Overview of GPU architecture and performance

GPUs are massively parallel devices containing tens of throughput-oriented processing units
called streaming multiprocessors (SMs). Memory and compute operations are executed as
vector instructions and are highly pipelined in order to save energy and transistor budged. SMs
can execute several vector instructions per cycle, selected from multiple independent execution
flows: the higher the available parallelism the better the pipeline utilization.

The CUDA programming model allows defining a massive number of potentially concurrent
execution instances (called threads) of the same program code. A unique two-level identifier
<ThrId, CTAid> is used to specialize each thread for a particular data and/or function. A

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

145

CTA (Cooperative Thread Array) comprises all the threads with the same CTAid, which
run simultaneously and until completion in the same SM, and can share a fast but limited
memory space. Warps are groups of threads with consecutive ThrIds in the same CTA that
are mapped by the compiler to vector instructions and, therefore, advance their execution in
a lockstep synchronous way. The warps belonging to the same CTA can synchronize using a
explicit barrier instruction. Each thread has its own private local memory space (commonly
assigned to registers by the compiler), while a large space of global memory is public to all
execution instances (mapped into a large-capacity but long-latency device memory, which is
accelerated using a two-level hierarchy of cache memories).

The parallelization scheme of an algorithm and the data layout determine the available
parallelism at the instruction and thread level (required for achieving full resource usage) and
the memory access pattern. GPUs achieve efficient memory performance when the set of ad-
dresses generated by a warp refer to consecutive positions that can be coalesced into a single,
wider memory transaction. Since the bandwidth of the device memory can be a performance
bottleneck, an efficient CUDA code should promote data reuse on shared memory and registers.

2.3 Related work

A reference implementation of SGM on CPU [15] reached 5.43 frames per second (fps) with
640×480 image resolution and 128 disparity levels. They applied SGM with 8 path directions
ad an additional left-right consistency check and sub-pixel interpolation. A modified version
with reduced disparity computation (rSGM) was able to reach 12 fps.

Early GPU implementations [5] and [12] present OpenGL/Cg SGM implementations with
very similar performance results peaking at 8 fps on 320×240 resolution images.Versions de-
signed for early CUDA systems and proposed specific modifications of the SGM algorithm.
Haller and Nedevschi [8] modified the original cost aggregation formula removing the P1 penalty
and using 4 path directions for cost aggregation. In this way, they reduced computation and
memory usage, but also reduced accuracy. Their implementation reached 53 fps on a Nvidia
GTX 280 with images of 512×383.

The most recent implementation [2] stated very fast results: 27 fps on 1024×768 images using
a NVIDIA Tesla C2050, with 128 disparity levels. By using Rank Transform [16] as matching
cost function, their proposal provides lower accuracy [10]. We will notice some differences in
the parallel scheme on the following discussion.

As far as we know this is the first evaluation of disparity estimation in a Nvidia GPU-
accelerated embedded system, as well as in the last Maxwell architecture. We propose better
parallelization schemes to take advantage of the hardware features available in current systems.

3 Algorithm Description and Massive Parallelization

This section describes the algorithms used for disparity computation and discusses the alter-
native parallelization schemes and data layouts. We present the baseline pseudocode for the
proposed massively parallel algorithms and explain additional optimizations.

3.1 Matching Cost Computation

A 9×7-window, Center-Symmetric Census Transform (CSCT) concatenates the comparisons of
31 pairs of pixels into a bit-vector feature. Equation 1 defines the CSCT, where ⊗ is bit-wise
concatenation, I(x, y) is the value of pixel (x,y) in the input image, and s(u,v) is 1 if u ≥ v,

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

146

or 0 otherwise. The matching cost MC(x, y, d) between a pixel (x, y) in the base image and
each potentially corresponding pixel in the match image at disparity d is defined by equation
2, where ⊕ is bit-wise exclusive-or and bitcount counts the number of bits set to 1.

CSCT9,7(I, x, y) =
⊗

⎧⎪⎪⎨
⎪⎪⎩

4⊗
i=1

3⊗
j=−3

s(I(x+ i, y + j), I(x− i, y − j))

3⊗
j=1

s(I(x, y + j), I(x, y − j))

(1)

MC(x, y, d) = bitcount(CSCT9,7(Ibase, x, y)⊕ CSCT9,7(Imatch, x− d, y)) (2)

The data access patterns inherent in both equations exhibit different data reuse schemes,
which prevent both algorithms to be fused. The 2D-tiled parallel scheme shown in Fig. 3
matches the 2D-stencil computation pattern of CSCT, and maximizes data reuse: the attached
table shows how a tiled scheme using shared memory reduces the total global data accesses by
(62 + 4)/(1.5 + 4) = 12 times with respect to a straightforward, näıve, embarrassingly parallel
design, where each thread reads its input values directly from global memory.

The 1D-tiled parallel scheme for computing matching cost (MC) exploits data reuse on
the x-dimension (see Fig. 4). As proposed in [2], we can represent matching cost using a
single byte without losing accuracy, which reduces 4 times the memory bandwidth requirements
in comparison to using 32-bit integers. The attached table shows that the read-cooperative
scheme, compared to the näıve design, sacrifices parallelism (divides the number of threads
by D, the maximum disparity considered) by higher data reuse (around 8 times less global
memory accesses). The low arithmetic intensity of the algorithm (2 main compute operations
every 9-Byte memory accesses) advises for this kind of optimization.

Algorithms 1 and 2 show the pseudocode of both parallel algorithms, not including special
code for corner cases handling image and CTA boundaries. In both cases, threads in the same
CTA cooperate to read an input data tile into shared memory, then synchronize, and finally

Figure 3: CSCT: 2D-tiled CTA-parallel scheme and computational analysis

Figure 4: Matching cost: 1D-tiled CTA-parallel scheme and computational analysis

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

147

Algorithm 1: CSCT: 2D-tiled, read-cooperative parallel scheme

input : I[H][W], H, W
output: CSCT[H][W]

1 parallel for y=0 to H step WarpSize do
2 parallel for x=0 to W step WarpSize do
3 CTA parallel for yCTA, xCTA=(0,0) to (WarpSize,WarpSize) do
4 copy (WarpSize+ 8)×(WarpSize+ 6) tile of I[][] into SharedI[][];
5 CTA Barrier Synchronization;
6 CSCT[y+yCTA][x+xCTA] = CSCT9,7(SharedI, xCTA, yCTA);

Algorithm 2: Matching Cost computation: 1D-tiled, read-cooperative parallel scheme;
Data layout: MC[y][x][d] (d indexes vary faster)

input : CSCTbase[H][W], CSCTmatch[H][W], H, W , D
output: MC[H][W][D]

1 parallel for y=0 to H do
2 parallel for x=0 to W step D do
3 CTA parallel for ThrId=0 to D do
4 SharedM[ThrId] = CSCTmatch[y][x+ThrId-D];
5 SharedM[D+ThrId] = CSCTmatch[y][x+ThrId];
6 SharedB[ThrId] = CSCTbase[y][x+ThrId];
7 CTA Barrier Synchronization;
8 for i=0 to D do
9 MC[y][x+i][ThrId] = BitCount (SharedB[i] ⊕ SharedM[ThrId+1+i]);

perform the assigned task reading the input data from shared memory. The first algorithm
assumes a CTA size of WarpSize×WarpSize threads and the second algorithm a CTA of D
threads. They are both scalable designs that use a small constant amount of shared memory
per thread (1.5 and 12 Bytes, respectively).

There are two memory-efficient layout alternatives for algorithm 2. Each CTA generates a
D×D slice in the y-plane of the MC matrix, and threads can generate together the cost for
(1) all the disparity levels for the same pixel or (2) all the pixels in the block for the same
disparity level. We chose the first option, and adapt the data layout so that the indexes of
disparity levels vary faster on the MC cube and global write instructions are coalesced. The
second solution, used in [2], provides similar performance on this algorithm but compromises
the available parallelism and the performance of the following SGM algorithm.

3.2 Smoothing Cost Aggregation (SGM) and Disparity Computation

The SGM method solves a one-dimensional minimization problem along different paths
r=(rx, ry) using the recurrence defined by equation 3 and a dynamic programming algorith-
mic pattern. Matrix Lr contains the smoothing aggregated costs for path r. The first term
of equation 3 is the original matching cost, and the second term adds the minimum cost of
the disparities corresponding to the previous pixel (x− rx,y− ry), including penalties for small
disparity changes (P1) and for larger disparity discontinuities and (P2). P1 is intended to detect
slanted and curved surfaces, while P2 smooths the results and makes abrupt changes difficult.
The last term ensures that aggregated costs are bounded. For a detailed discussion refer to [9].

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

148

The different Lr matrices must be added together to generate a final cost and then select the
disparity corresponding to the minimum (winner-takes-all strategy), as shown by equation 4.

Lr(x, y, d) = MC(x, y, d) +min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lr(x− rx, y − ry, d)

Lr(x− rx, y − ry, d− 1) + P1

Lr(x− rx, y − ry, d+ 1) + P1

miniLr(x− rx, y − ry, i) + P2

−minkLr(x− rx, y − ry, k)

(3)

D(x, y) = mind

∑
r

Lr(x, y, d) (4)

Equation 3 determines a recurrent dependence that prevents the parallel processing of pixels
in the same path direction. Parallelism can be exploited, though, in the direction perpendicular
to the path, in the disparity dimension, and for each of the computed path directions. Our
proposal exploits all the available parallelism by creating a CTA for each slice in the aggregated
cost matrix along each particular path direction.

Fig. 5 illustrates the case of the top-to-bottom path direction and algorithm 3 shows the
pseudocode. Each of theW slices is computed by a different CTA ofD threads, with each thread
executing a recurrent loop (line 4) to generateH cost values along the path. Computing the cost
for the current pixel and disparity level requires the cost of the previous pixel on neighboring
disparity levels: one value can be reused in a private thread register but the neighboring costs
must be communicated among threads (lines 7,8 and 12). Finally, all threads in the CTA must
collaborate to compute the minimum cost for all disparity levels (line 11).

The case for horizontal paths is very similar, with H slices computed in parallel. Diagonal
path directions are a little more complex: W independent CTAs process the diagonal slices
moving in a vertical direction (assuming W ≥ H). When a CTA reaches a boundary, it
continues on the other boundary. For example, a top-to-bottom and right-to-left diagonal slice
starting at (x,y) = (100,0) will successively process pixels (99,1), (98,2) ... (0, 100), and then
will reset the costs corresponding to the previous pixel and continue with pixels (W -1,101),
(W -2,102) ...

The cost aggregation and disparity computation defined by equation 4 have been fused in
Algorithm 4 in order to reduce the amount of memory accesses (avoids writing and then reading
the final cost matrix). A CTA-based parallel scheme is proposed so that each CTA produces
the disparity of a single pixel (line 7): first, each CTA thread adds the costs corresponding to

Figure 5: Aggregated cost, Top-to-Bottom: CTA-parallel scheme with recurrence in the y-
dimension and computational analysis

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

149

Algorithm 3: Aggregated Cost computation: top-to-bottom path direction

input : MC[H][W][D], H, W , D
output: L[H][W][D]

1 parallel for x=0 to W do
2 CTA parallel for ThrId=0 to D do
3 Initialize aggr, min and SharedAggr[] with MAX VALUE;
4 for y=0 to H do
5 cost = MC[y][x][ThrId];
6 CTA Barrier Synchronization;
7 left = SharedAggr[ThrId];
8 right= SharedAggr[ThrId+2];
9 aggr = cost + minimum(aggr, left+P1, right+P1, min+P2) - min;

10 L[y][x][ThrId] = aggr;
11 min = CTA Minimum Reduce (aggr); *** includes Barrier Synchronization

SharedAggr[ThrId+1] = aggr;

Algorithm 4: Summation of all path costs and Disparity Computation

input : L0[W][H][D], L1[W][H][D], L2[W][H][D] ... W , H, D
output: Disp[W][H]

1 parallel for x=0 to W do
2 parallel for y=0 to H do
3 CTA parallel for ThrId=0 to D do
4 cost = L0[x][y][ThrId]+L1[x][y][ThrId]+L2[x][y][ThrId]+...;
5 MinIndex = CTA Minimum Reduce(cost, ThrId);
6 if ThrId == 0 then
7 Disp[x][y] = MinIndex;

a given disparity level for all path directions (line 4), and then CTA threads cooperate to find
the disparity level with minimum cost (line 5).

3.3 Additional Optimizations

We have applied three types of optimizations to the baseline algorithms that provided a com-
bined performance improvement of almost 3×. We have vectorized the inner loop of algorithm
3 (lines 4-12) to process a vector of 4 cost values (4 bytes) per instruction (requiring a special
byte-wise SIMD instructions for computing the minimum operation). We have also modified
the parallel scheme so that a single warp performs the task previously assigned to a CTA,
which we call CTA-to-warp conversion. It (1) avoids expensive synchronization operations, (2)
allows using fast register-to-register communication (using special shuffle instructions) instead
of shared-memory communications, and (3) reduces instruction count and increases instruction-
level parallelism. A drawback of both strategies is a reduction of thread-level parallelism, as
shown in [4]. This is not a severe problem in the embedded Tegra X1 device, with a maximum
occupancy of ≈ 4 thousand threads.

Finally, to reduce the amount of data accessed from memory, the computation of the ag-
gregated cost for the last path direction (Alg. 3 Bottom-to-Top) is fused with the final cost
summation and disparity computation (Alg. 4), providing a 1.35x performance speedup on the

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

150

Figure 6: Performance (fps), performance per Watt and accuracy results for 640×480px images,
128 disparity levels, and 2, 4 and 8 SGM path directions

Tegra X1. Also, fusing the computation of the initial matching cost (Alg. 2) with the aggregate
cost computation for the horizontal path directions (Alg. 3) improves performance by 1.13x.

4 Results

We have measured execution time and disparity estimation accuracy for multiple images, 128
disparity levels, and 2, 4 and 8 path directions. Apart from executing on a NVIDIA Tegra X1,
which integrates 8 ARM cores and 2 Maxwell SMs with a TDP of 10W, and for comparison
purposes, we have also executed on a high-end NVIDIA Titan X, with 24 Maxwell SMs and
a TDP of 250W. We ignore the time for CPU-GPU data transfers (less than 0.5% of the
total elapsed time) since it can be overlapped with computation. Since performance scales
proportional to the number of image pixels, we will restrict our explanation to 640×480 images.

The legend in Fig. 6 indicates the disparity estimation accuracy, measured using the KITTI
benchmark-suite [6], when using different SGM configurations, and not considering occluded
pixels and treating more than 3 pixel differences as errors. Using 4 path directions (excluding
diagonals) reduces accuracy very slightly, while using only the left-to-right and top-to-bottom
directions reduces accuracy more noticeably.

The left and right charts in Fig. 6 show, respectively, the performance throughput (frames
per second, or fps) and the performance per watt (fps/W) on both GPU systems and also
for different SGM configurations. The high-end GPU always provides more than 10 times the
performance of the embedded GPU (as expected by the difference in number of SMs), but the
latter offers around 2 times more performance per Watt. It is remarkable that real-time rates
(42 fps) with high accuracy are achieved by the Tegra X1 when using 4 path directions.

Finally, an example of the disparity computed by our proposed algorithm can be seen in
Fig. 7b.

5 Conclusions

The results obtained show that our implementation of depth computation for stereo-camera
systems is able to reach real-time performance on a Tegra X1. This fact indicates that low-
consumption embedded GPU systems, like the Tegra X1, are well capable of attaining real-
time processing demands. Hence, their low-power envelope and remarkable performance make
them good target platforms for real-time video processing, paving the way for more complex
algorithms and applications.

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

151

(a) Image obtained from the left camera of the car (b) Disparity computed with SGM described here

Figure 7: Example of disparity computation

We have proposed baseline parallel schemes and data layouts for the disparity estimation
algorithms that follow general optimization rules based on a simple GPU performance model.
They are designed to gracefully scale on the forthcoming GPU architectures, like NVIDIA
Pascal. Then, we have optimized the baseline code and improved performance around 3 times
with different specific strategies, like vectorization or CTA-to-Warp conversion, that are also
expected to be valid for forthcoming architectures.

We plan to prove the higher performance potential of the new embedded NVIDIA Pascal
GPUs to enable real-time implementations with larger images and a higher number of disparity
levels, and more complex algorithms that provide better estimation results. In this sense, we are
going to include post-filtering steps such as Left-Right Consistency Check, subpixel calculation,
and adaptive P2, which are well-known methods of increasing accuracy.

Acknowledgements
This research has been supported by the MICINN under contract number TIN2014-53234-
C2-1-R. By the MEC under contract number TRA2014-57088-C2-1-R, the spanish DGT
project SPIP2014-01352, and the Generalitat de Catalunya projects 2014-SGR-1506 and 2014-
SGR1562. We thank Nvidia for the donation of the systems used in this work.

References

[1] H. R. Arabnia. A distributed stereocorrelation algorithm. In Computer Communications and
Networks, 1995. Proceedings., Fourth International Conference on, pages 479–482. IEEE, 1995.

[2] C. Banz, H. Blume, and P. Pirsch. Real-Time Semi-Global Matching Disparity Estimation on the
GPU. In Computer Vision Workshops (ICCV Workshops), pages 514–521. IEEE, 2011.

[3] C. Banz et al. Real-time stereo vision system using semi-global matching disparity estimation:
Architecture and FPGA-implementation. Embedded Computer Systems, pages 93–101, 2010.

[4] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure. Thread-cooperative, bit-
parallel computation of levenshtein distance on GPU. In Proceedings of the 28th ACM international
conference on Supercomputing, pages 103–112. ACM, 2014.

[5] I. Ernst and H. Hirschmüller. Mutual Information Based Semi-Global Stereo Matching on the
GPU. In Advances in Visual Computing, pages 228–239. Springer, 2008.

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? the KITTI Vision
Benchmark Suite. In Conference on Computer Vision and Pattern Recognition, 2012.

[7] A. González et al. 3D-Guided Multiscale Sliding Window for Pedestrian Detection. In Iberian
Conf. on Pattern Recognition and Image Analysis, volume 9117, pages 560–568, 2015.

[8] I. Haller and S. Nedevschi. GPU optimization of the SGM stereo algorithm. In Intelligent Computer
Communication and Processing (ICCP), pages 197–202. IEEE, 2010.

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

152

[9] H. Hirschmüller. Stereo Processing by Semiglobal Matching and Mutual Information. Pattern
Analysis and Machine Intelligence, IEEE Trans., 30(2):328–341, 2008.

[10] H. Hirschmüller et al. Evaluation of Stereo Matching Costs on Images with Radiometric Differ-
ences. Pattern Analysis and Machine Intelligence, IEEE Trans., 31(9):1582–1599, 2009.

[11] Payá-Vayá et al. VLIW architecture optimization for an efficient computation of stereoscopic video
applications. In Green Circuits and Systems (ICGCS), pages 457–462. IEEE, 2010.

[12] I. D. Rosenberg et al. Real-time stereo vision using semi-global matching on programmable graph-
ics hardware. In ACM SIGGRAPH 2006 Sketches, page 89. ACM, 2006.

[13] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence
algorithms. International journal of computer vision, 47(1-3):7–42, 2002.

[14] R. Spangenberg et al. Weighted Semi-Global Matching and Center-Symmetric Census Transform
for Robust Driver Assistance. Computer Analysis of Images and Patterns, pages 34–41, 2013.

[15] R. Spangenberg, T. Langner, S. Adfeldt, and R. Rojas. Large scale Semi-Global Matching on the
CPU. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages 195–201. IEEE, 2014.

[16] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspondence.
In Computer VisionECCV’94, pages 151–158. Springer, 1994.

[17] J. Žbontar and Y. LeCun. Computing the Stereo Matching Cost with a Convolutional Neural
Network. arXiv preprint arXiv:1409.4326, 2014.

Embedded real-time stereo estimation via SGM on the GPU D. Hernandez-Juarez et. al.

153

