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Abstract

The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated 

with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, N=240) and in 

myelodysplastic syndrome (MK+MDS, N=221) on hematopoietic cell transplantation (HCT) 

outcomes compared to other cytogenetically defined groups (AML, N=3,360; MDS, N=1,373) as 

reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) from 

1998 to 2011. MK+AML was associated with higher disease relapse (hazard ratio [HR] 1.98, 

p<0.01), similar transplant related mortality (TRM, HR 1.01, p=0.9) and worse survival (HR 1.67, 

p<0.01) compared to other cytogenetically defined AML. Among patients with MDS, MK+MDS 

was associated with higher disease relapse (HR 2.39, p<0.01), higher TRM (HR 1.80, p<0.01) and 

worse survival (HR 2.02, p<0.01). Subset analyses comparing chromosome 7 abnormalities 

Pasquini et al. Page 2

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML 

(HR 1.72, p<0.01) and MDS (HR1.79, p<0.01). The strong negative impact of MK+ in myeloid 

malignancies was observed in all age groups and using either myeloablative or reduced intensity 

conditioning regimens. Alternative approaches to mitigate disease relapse in this population are 

needed.

Introduction

The presence of multiple chromosomal abnormalities, termed complex cytogenetics, in 

leukemia cells, is associated with unfavorable outcome. The reported definitions of complex 

cytogenetics varies from ≥3 to 5 cytogenetic abnormalities in a single clone(1, 2). Breems et 

al further examined this group of patients with poor risk disease and identified autosomal 

monosomies to be associated with poor outcome(3). This classification has a tighter 

association with poor outcome comparing to other non-random cytogenetic changes in the 

poor risk category and predicts a subset of patients with dismal outcome. The monosomal 

karyotype (MK) is defined as the presence of at least two autosomal monosomies or one 

autosomal monosomy associated with any other structure abnormality (MK+). Cytogenetic 

abnormalities have similar prognostic impact in myelodysplastic syndrome (MDS) where 

the number of chromosomal abnormalities is also associated with poor outcomes (4, 5) and 

in MDS, MK+ is strongly associated with shorter survival, similar to acute myeloid 

leukemia (AML) (6). In both AML and MDS, abnormalities in chromosome 7 including 

deletion and monosomy, are common single abnoermality associated with poor prognosis. 

The prognostic effect of MK+ could be due to single most common monosomy.

Hematopoietic cell transplantation (HCT) is the treatment of choice for patients with 

cytogenetic-defined poor risk AML in first complete remission (CR1), which may lead to 30 

to 40% 5 year survival compared to <10% with non-transplant approaches(1, 7, 8). 

However, these data are mostly from patients younger than 60 years receiving allogeneic 

transplantation with myeloablative (MA) conditioning. Reduced intensity conditioning 

(RIC) is commonly used in AML patients older than 60 years (9). This reduction in intensity 

decreases toxicity and early transplant mortality allowing older or compromised patients to 

receive an allogeneic HCT. However, when comparing with MA approaches, this benefit is 

offset by increase in relapse rates(10). Additionally, a retrospective analysis done by the 

European Group for Blood and Marrow Transplantation (EBMT) demonstrated that poor 

risk cytogenetics at diagnosis is associated with higher relapse and shorter leukemia-free 

survival (LFS) in patients with AML in CR1 receiving RIC compared to myeloablative 

conditioning (11).

Older AML patients more often have increased cytogenetic abnormalities including 

unfavorable risk and MK(3, 12, 13). MK+ AML may increase the risk of relapse after 

transplantation(14–18) however it is unclear whether MA conditioning may mitigate this 

increased relapse risk. We analyzed the effect of MK+ AML in patients undergoing HCT in 

CR1 and explored the prognostic impact of the MK+ in transplants for MDS.
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Materials and Methods

Data Sources

The Center for International Blood and Marrow Transplant Research (CIBMTR) includes a 

voluntary working group of more than 450 transplantation centers worldwide that contribute 

detailed data on consecutive allogeneic and autologous hematopoietic cell transplantation to 

a statistical center at the Medical College of Wisconsin in Milwaukee and the National 

Marrow Donor Program (NMDP) Coordinating Center in Minneapolis. Participating centers 

are required to report all transplants consecutively; patients are followed longitudinally and 

compliance is monitored by on-site audits. Computerized checks for discrepancies, 

physicians’ review of submitted data and on-site audits of participating centers ensure data 

quality. Observational studies conducted by the CIBMTR are performed in compliance with 

all applicable federal regulations pertaining to the protection of human research participants. 

Protected Health Information used in the performance of such research is collected and 

maintained in CIBMTR’s capacity as a Public Health Authority under the HIPAA Privacy 

Rule(9).

Patients

All patients with AML in CR1 who received a first allogeneic HCT from 1998 to 2011 from 

HLA-matched or single HLA locus mismatched donors (8/8 or 7/8) were eligible for this 

study.

Patients with acute promyelocytic leukemia or evidence of t(15;17) as a sole cytogenetic 

abnormality, core binding factor AML, who received umbilical cord blood grafts, ex-vivo T-

cell depleted grafts or patients with unknown cytogenetic information were excluded.

MK+AML was defined as the presence of two monosomies or one monosomy plus at least 

one other chromosome structural abnormality according to Breems et al(3). Cytogenetic 

abnormalities present at diagnosis and prior to initiation of conditioning regimen are 

reported to the CIBMTR. When required, additional review of reported cytogenetic data was 

performed by three reviewers (MCP, BCM and MB) to adjudicate any uncertainties in 

classification. Cases with incomplete data were classified as unknown cytogenetics and 

excluded.

Eligible AML patients were categorized into MK+ AML (N=240), AML other unfavorable 

(N=1138) and intermediate risk groups (2). The intermediate risk was further separated into 

normal karyotype (N=643) and intermediate risk with abnormal karyotype (AML-IRabn, 

N=1579). Eligible MDS patients were categorized into MK+MDS (N=221), MDS other 

unfavorable (N=423), normal karyotype (N=241), MDS- IRabn (N=611) and favorable 

karyotype (N=98)(4). MDS cases were also classified as early and advanced according to 

the CIBMTR definition(9). Subset analysis to compare abnormalities of chromosome 7 

(monosomy or deletion) with or without meeting the MK+ definition was performed 

separately in AML and MDS divided as: MK+ with chromosome 7 abnormalities (MK/

7abn, AML N=148, MDS N=171), chromosome 7 without MK+ (7abn, AML n=275, MDS 

n=304) and normal karyotype (AML N=643, MDS=241).
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Study Endpoints and Variables

The cytogenetic groups were compared for the clinical endpoints of overall survival, 

disease-free survival (DFS), relapse and transplant related mortality (TRM). Overall survival 

included time from HCT until death from any cause and patients were censored at last 

follow up. DFS included death, leukemia or MDS relapse as a composite endpoint and 

patients were censored at last follow up. Relapse included any reported events of leukemia 

relapse. TRM was defined as death in the absence of prior leukemia [or MDS] relapse.

Variables analyzed in the multivariate model include: cytogenetic groups, age, performance 

score, conditioning regimen intensity(19), donor type, donor/recipient CMV serologic status, 

graft source, year of transplant, graft versus host disease (GVHD) prophylaxis, use of in 

vivo T-cell depletion (anti-thymocyte globulin [ATG] or alemtuzumab), planned use of any 

myeloid growth factor to promote engraftment (defined as any growth factor initiated within 

12 days after the graft infusion). Conditioning intensity use was confounded by the age of 

the patient with RIC mostly utilized in patients older than 40 years. For the analysis age and 

conditioning intensity were combined into composite covariate groups as: 1) myeloablative 

(MA) < 21years, MA 21–40 years, MA 41–60 years, RIC 41–60 years, RIC 61–64 years, 

RIC ≥65 years.

Statistical Analysis

Probabilities of overall survival and DFS were calculated using the Kaplan-Meier estimator. 

Values for relapse and TRM were generated using cumulative incidence estimates adjusting 

for competing risks.

The cytogenetic groups were compared using proportional hazards regression models for 

overall mortality (1- overall survival), relapse and TRM. The proportional hazards 

assumptions for all the variables were examined by adding a time-dependent covariate as 

necessary. Time dependent covariates with piecewise constant of regression coefficients 

were used to model time-varying effect when the proportionality assumption did not hold 

with the optimal time cut point determined by the maximum likelihood method. The 

proportionality assumption was further examined for the piecewise constant regression 

coefficient Cox model. A forward stepwise method was used to build the regression model 

for the outcomes of relapse, TRM and overall mortality. Since the cytogenetic groups were 

the main interest of this study, this variable was included in all steps of model building 

procedure with other covariates retained as indicated. Risk factors with significance level of 

p < 0.05 were included in the model. The potential interaction between main effect of 

cytogenetic group and all significant covariates was examined. For the subset analysis focus 

on chromosome 7 abnormalities, the same models were built with the main effect modified. 

Adjusted probabilities of LFS and OS were computed based on final Cox regression model, 

stratified by status groups, and weighted by the pooled sample proportion value for all 

significant risk factors. These adjusted probabilities estimate likelihood of outcomes in 

populations with similar prognostic factors. SAS version 9.2 was used in all analyses.
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Results

Demographics

Tables 1a and b outline the demographics of patients with AML and MDS cohorts, 

respectively. Patients with MK+ AML were generally older than IRabn and other 

unfavorable cohorts, but similar to patients with normal karyotype. Leukocyte count at 

diagnosis was lower for MK+AML than the other groups. The proportion of patients with 

extra medullary disease or therapy-related AML was similar across the groups. There were a 

higher proportion of patients with <90% KPS and recipients of RIC regimens in the MK+ 

AML cohort. Additionally, peripheral blood stem cells (PBSC) was the predominant graft 

source for patients with MK+ AML and normal karyotype. The time from diagnosis to 

transplant, year of transplant, GVHD prophylaxis, use of growth factor support and in vivo 

T-cell depletion were similar across the AML cytogenetic groups. Among patients with 

MDS, MK+MDS and patients with normal karyotype were older than the other groups. The 

MK+MDS group had more patients with performance score less than 90%, and both MK

+MDS and MDS- IRabn had a higher proportion of patients with pre-HCT marrow blasts 

between 11–20%. High International Prognostic Staging System (IPSS) was mainly 

observed in patients with MK+MDS and other unfavorable groups due to the cytogenetic 

component of the score. Patients with MK+MDS had a shorter time from diagnosis to 

transplant than others. Greater than 70% of patients in both unfavorable cytogenetic groups 

had evidence of abnormalities of chromosome 7. Similar to AML, most patients with MDS 

received PBSC as the graft source. Other variables including year of transplant, conditioning 

regimen intensity, GVHD prophylaxis, use of growth factor support and in vivo T-cell 

depletion were similar across the MDS groups.

Disease Relapse

Three-year cumulative incidences of leukemia relapse were 52% (95% confidence interval 

[CI], 42–58%), 36 % (95% CI, 34–39%), 25% (95% CI, 23–27%) and 30 (95% CI, 26–34%) 

for MK+ AML, other unfavorable, IRabn and normal karyotype, respectively (p<0.001) 

(Figure 1a). Multivariate analysis of leukemia relapse demonstrated that MK+AML was 

associated with higher relapses compared to normal karyotype (relative risk [RR] 1.98, 95% 

CI 1.58–2.49, p<0.001) (Table 2), to IRabn (RR 2.20, 95% CI 1.78–2.72, p<0.001) and to 

other unfavorable (RR 1.46, 95% CI 1.19–1.79, p<0.001). AML with other unfavorable 

cytogenetics was associated with higher relapse risk compared to normal karyotype (RR 

1.36, 95% CI 1.14–1.63, p<0.001) and to IRabn (RR 1.51, 95% CI 1.32–1.74, p<0.001). 

Other variables associated with higher rates of leukemia relapse include older age and 

reduced conditioning intensity, lower performance score and graft source (Appendix, Table 

A). Older patients receiving RIC experienced higher disease relapses compared to younger 

patients receiving MA conditioning. Among patients age 41–60 years, those who received a 

MA regimen had lower relapse risks than recipients of RIC (RR 0.58 95% CI, 0.49–0.69, 

p<0.001). Additionally recipients of PBSC experienced lower rates of relapse compared to 

bone marrow recipients (RR 0.84 95% CI, 0.73–0.98, p=0.02). For MDS patients, the 3-year 

cumulative incidence of relapse were 44% (95% CI, 37–51%), 32% (95% CI, 27–36%), 

26% (95% CI, 23–30%), 28% (95% CI, 22–34%) and 29% (95% CI, 20–39%) for MK+ 

AML, other unfavorable, IRabn, normal karyotype and favorable groups, respectively 
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(p<0.001) (Figure 1b). Multivariate analysis of MDS relapse demonstrated that MK+MDS 

was associated with higher relapses compared to normal karyotype (RR 2.39, 95% CI 1.74–

3.29, p<0.001)(Table 2), to IRabn (RR 2.13, 95% CI 1.64–2.76, p<0.001), to other 

unfavorable (RR 1.59, 95% CI 1.21–2.09, p<0.001) and to favorable (RR 2.01 95% CI, 

1.32–3.06, p=001). Other variables associated with higher rates of MDS relapse include 

older age/RIC, lower performance score, BM grafts, ATG or Alemtuzumab, no planned use 

of growth factor and advanced disease status at transplant (Appendix Table B). Younger 

patients and recipients of MA experienced lower relapse rates. Among patients age 41–60 

years MA conditioning led to lower relapse risks than RIC/NMA (RR 0.67 95% CI, 0.51–

0.90, p=0.007). The planned use of growth factor was associated with lower relapse rates in 

MDS (RR 0.79 95% CI, 0.66–0.95, p=0.01).

Transplant Related Mortality

For AML, the 3-year cumulative incidences of TRM were 22% (95% CI, 17–27%), 22 % 

(95% CI, 19–24%), 20% (95% CI, 18–22%) and 20 (95% CI, 17–23%) for MK+ AML, 

other unfavorable, IRabn and normal karyotype, respectively (p=0.75). Multivariate analysis 

showed no impact of cytogenetic abnormalities on TRM for AML (p=0.41). Other variables 

associated with TRM were age/conditioning intensity, lower performance score, 

conditioning regimen type, unrelated and HLA mismatched donor, PBSC grafts, GVHD 

prophylaxis, planned use of growth factors and year of transplant (Appendix Table C).

For MDS the 3-year cumulative incidences of TRM were 37% (95% CI, 30–44%), 32% 

(95% CI, 27–37%), 27% (95% CI, 24–31%), 26% (95% CI, 20–32%) and 28 (95% CI, 19–

38%) for MK+ MDS, other unfavorable, IRabn, normal karyotype and favorable, 

respectively (p=0.07). Multivariate analysis of TRM in MDS showed that MK+MDS was 

associated with higher TRM compared to normal karyotype (RR 1.80, 95% CI 1.27–2.54, 

p<0.001)(Table 2), to IRabn (RR 1.79, 95% CI 1.34–2.38, p<0.001), to other unfavorable 

(RR 1.31, 95% CI 0.98–1.76, p=0.07) and to favorable (RR 1.89 95% CI, 1.22–2.94, 

p=0.005). Other variables associated with higher rates of TRM in MDS include older age/

conditioning intensity, lower performance score, unrelated 7/8 HLA matched donor, 

advanced disease status and year of transplant (Appendix Table D).

Graft-versus-Host Disease

Cumulative incidences of grades II–IV acute GVHD at day 100 among patients with AML 

were 43% (95% CI, 37–49%), 35% (95% CI, 32–38%), 30% (95% CI, 28–32%) and 33% 

(95% CI, 30–37%) for MK+ AML, other unfavorable, IRabn and normal karyotype, 

respectively (p<0.01). Cumulative incidences of chronic GVHD at 1 year among patients 

with AML were 44% (95% CI, 37–50%), 43% (95% CI, 40–46%), 44% (95% CI, 42–47%) 

and 48% (95% CI, 44–52%) for MK+ AML, other unfavorable, IRabn and normal karyotype, 

respectively (p=0.26).

Cumulative incidences of grades II–IV acute GVHD at day 100 among patients with MDS 

were 48% (95% CI, 41–54%), 45% (95% CI, 40–50%), 39% (95% CI, 35–42%), 38% (95% 

CI, 31–44%) and 42 (95% CI, 32–51%) for MK+ MDS, other unfavorable, IRabn, normal 

karyotype and favorable, respectively (p=0.03). Cumulative incidences of chronic GVHD at 
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1 year among patients with MDS were 39% (95% CI, 33–46%), 25% (95% CI, 21–29%), 

23% (95% CI, 19–26%), 22% (95% CI, 17–28%) and 25% (95% CI, 17–34%) for MK+ 

MDS, other unfavorable, IRabn, normal karyotype and favorable, respectively (p=0.03).

Disease Free Survival and Overall Survival

Three-year probabilities of DFS in AML were 27% (95% CI, 21–33%), 42% (95% CI, 39–

45%), 55% (95% CI, 52–58%) and 50 (46–54%) for MK+ AML, other unfavorable, IRabn 

and normal karyotype, respectively (p<0.001). Corresponding three-year probabilities for 

overall survival in AML were 29% (95% CI, 24–35%), 46% (95% CI, 43–49%), 58% (95% 

CI, 56–61%) and 55 (51–59%), respectively (p<0.001) (Figure 1c). Multivariate analysis of 

overall mortality demonstrated that MK+AML was associated with higher mortality 

compared to normal karyotype (RR 1.67, 95% CI 1.38–2.01, p<0.001) (Table 2), to IRabn 

(RR 1.84, 95% CI 1.55–2.19, p<0.001) and to other unfavorable (RR 1.37, 95% CI 1.15–

1.62, p<0.001). AML with other unfavorable was associated with higher mortality compared 

to normal karyotype (RR 1.22, 95% CI 1.06–1.40, p<0.001) and to IRabn (RR 1.35, 95% CI 

1.20–1.50, p<0.001). Other variables associated with higher rates of leukemia relapse 

include older age/conditioning intensity, lower performance score, unrelated or HLA 

mismatched donor and year of transplant (Appendix Table E). Older patients receiving RIC 

were associated with higher mortality compared to younger patients receiving myeloablative 

conditioning. Among patients age 41–60 years a MA regimen led to lower mortality than 

RIC (RR 0.77 95% CI, 0.67–0.89, p<0.001).

Three-year probabilities of DFS in MDS were 19% (95% CI, 13–25%), 36% (95% CI, 32–

41%), 46% (95% CI, 42–50%), 46% (95% CI, 40–53%) and 42% (95% CI, 32–53%) for 

MK+ MDS, other unfavorable, IRabn, normal karyotype and favorable, respectively 

(p<0.01). Corresponding three-year probabilities for overall survival in MDS were 22% 

(95% CI, 16–29%), 42% (95% CI, 37–47%), 53% (95% CI, 49–57%), 52% (95% CI, 45–

59%) and 48% (95% CI, 38–59%) for MK+ MDS, other unfavorable, IRabn, normal 

karyotype and favorable, respectively (p<0.01) (Figure 1d). Multivariate analysis of overall 

mortality demonstrated that MK+MDS was associated with higher mortality compared to 

normal karyotype (RR 2.02, 95% CI 1.59–2.59, p<0.001)(Table 2), to IRabn (RR 2.11, 95% 

CI 1.73–2.58, p<0.001), to other unfavorable (RR 1.45, 95% CI 1.19–1.78, p<0.001) and to 

favorable (RR 2.02 95% CI, 1.22–2.78, p=001). MDS with other unfavorable was associated 

with higher mortality compared to normal karyotype (RR 1.39, 95% CI 1.10–1.77, p=0.006), 

to IRabn (RR 1.45, 95% CI 1.22–1.72, p<0.001) and to favorable (RR 1.39, 95% CI 1.03–

1.88, p=0.03). Other variables associated with higher mortality in MDS include older age/

conditioning intensity, lower performance score, unrelated 7/8 HLA matched donor, 

advanced disease status and year of transplant (Appendix Table F). Younger patients and 

recipients of MA experienced better survival. Among patients age 41–60, MA conditioning 

led to similar survival as RIC (RR 0.95 95% CI, 0.79–1.15, p=0.62).

Chromosome 7 Abnormalities Subset Analyses

For this subset, both the AML and MDS cohorts were stratified into three groups: MK+ with 

abnormal −7/−7q (MK+/abn7, AML N=148, MDS N=171), abnormal −7/−7q without MK 

(AML N=275, MDS N=304) and normal karyotype (AML N=643, MDS N=241). The 
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demographic differences across these groups were similar to those in the whole population 

for AML and MDS. Among patients with AML, there was higher relapse and worse survival 

for patients with MK+/7Abn (Figure 2a). Multivariate analysis confirmed a higher mortality 

with MK+/7abn compared to normal karyotype (RR 1.98 95% CI, 1.58–2.46, p<0.001) and 

abn7 without MK+ (RR 1.72 95% CI, 1.34–2.20, p<0.001). Among patients with MDS, 

patients with MK+/7abn experienced higher TRM, more relapse and worse survival (Figure 

2b). Multivariate analysis among patients with MDS confirmed higher mortality with MK+/

7abn compared to normal karyotype (RR 2.06 95% CI, 1.58–2.68, p<0.001) and abn7 

without MK+ (RR 1.79 95% CI, 1.39–2.32, p<0.001).

Discussion

This large analysis of patients with MK+ AML in CR1 and MDS who received an 

allogeneic HCT confirms the finding of higher risks of relapse and significantly worse post-

HCT outcomes compared to other cytogenetically defined groups including other previously 

defined unfavorable groups. The worse survival in MK+AML was mainly driven by excess 

in relapse, whereas in MK+MDS led to excess risks of both TRM and relapse. We also 

explored the conditioning regimen effect within the cytogenetically defined groups. 

Generally, younger patients who received a MA regimen had better outcomes in AML. 

Among patients within 40–61 years, MA resulted in better survival than RIC for AML but 

not in MDS (Appendix Tables). However, the adverse prognostic impact of MK+ disease 

was not overcome by conditioning intensity and we observed no significant interactions 

between these two variables.

The incidence of MK+AML is reported in 11 to 13% of patients with AML and 

approximately 30% in patients with AML with abnormal cytogenetics (3, 12, 13, 20). MK+ 

AML patients are generally older age, with low leukocyte count at diagnosis and more often 

have complex cytogenetics as observed in this study. Medeiros et al analyzed a large series 

from patients with AML enrolled in upfront clinical trials in the US and reported a 20% 

incidence of MK+AML in patients older than 60 years. Kayser et al in a series of 319 

patients with MK+ AML from the German-Austrian AML Study Group also observed MK+ 

patients to be older with lower leukocyte count at diagnosis and associated with 

abnormalities of chromosomes 7, 5, 17p, 18q, 20q, 3 and complex karyotype (20). 

Interestingly, patients with MK+AML present less frequently with commonly observed 

molecular markers such as FLT3 internal tandem duplication, NMP-1 mutation and tyrosine 

kinase domain mutations (20).

MK+ is closely related to complex cytogenetics, and as initially defined by Breems et al, 

MK+ represents a subset of the unfavorable risk with exceptionally poor outcomes(3). 

Complex cytogenetics is a general definition with a number of cytogenetic abnormalities, 3–

5 or greater(2). The prognosis with MK+ is worse than complex cytogenetics, likely related 

the higher proportion of TP53 deletion seen in MK+AML (20–23). However, patients with 

many cytogenetic abnormalities most often also meet the criteria for MK+. Thus for MK+ 

there is general loss of chromosomes and complex cytogenetics without MK+ includes a 

hyperdiploid karyotype. Additionally, most poor risk single karyotypic abnormalities in 

AML include loss of chromosome 5/5q, 7/7q, 12p, 17p, 18/18q and 20 which are correlated 
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with MK+ (12, 24–27). Phenotypic analysis of leukemic blasts demonstrated that co-

expression of monocytic marker CD11b to be independently associated with poor outcomes 

and closely related with MK+ and older age at diagnosis(28). Analysis of multidrug resistant 

(MDR) functional activity among 23 patients with MK+AML demonstrated a high 

frequency of MDR compared to other AML subgroups and helps explain the aggressive 

behavior (29). Another association of MK+AML is mutations in the tumor-suppressor gene 

neurofibromatosis-1 (NF-1) manifested through somatic deletions of 17q11 (30). NF-1 

mutations present in AML are also associated with poor outcomes. MK+ appears to be a 

surrogate marker for genomic instability in AML subclones where the absence of important 

tumor suppressor and cell cycle checkpoint genes helps confer a survival and proliferative 

advantage over other subclones.

MK+ AML yields low rates (only 20 to 30%) of CR and short remission duration yielding 

reported median survival of 8 to 10 months with 2 year survival less than 10% (3, 13, 20, 31, 

32). The current HCT study includes only those achieving CR after induction therapy. 

Despite worse outcomes compared to other cytogenetic groups, the overall survival for MK

+AML is 29% at 3 years, substantially better than reported without transplant. In fact, 

Cornelissen et al compared post remission therapies among 107 patients with MK+AML 

who received either an allogeneic HCT (N=45), autologous HCT or chemotherapy 

consolidation(33). Five-year overall survival after an allogeneic HCT was 19% versus only 

8% with other therapy. Multivariate analysis demonstrated a 70% reduction of relapse with 

an allogeneic transplant.

Following HCT, Armand et al analyzed a large cohort from the CIBMTR to determine 

cytogenetic groups that would influence outcomes after HCT(34). This analysis separates 

patients in three groups identifying inv(16) and complex cytogenetics with >4 abnormalities 

as the extremes of favorable and unfavorable prognosis, respectively. MK+ AML has been 

consistently associated with high disease relapse and poor survival after an allogeneic HCT 

(14, 17, 20, 31, 33, 35–37). However many of MK+ patients are not eligible for MA 

regimens due to their age. RIC/NMA regimens is associated with higher rates of relapse, 

especially in patients with poor risk cytogenetics (10, 11). In the current analysis, for MK+ 

disease, even with MA regimens the outcomes were worse when compared to other 

cytogenetic groups.

Abnormalities with chromosome 7 were the most frequently observed and we observed that 

MK+ was prognostically worse than chromosome 7 abnormalities without MK+ (12, 37). 

The use of growth factors post transplant was tested in the current study because of reports 

that granulocyte colony-stimulating factor preferentially induces proliferation of cells with 

monosomy 7 (38). The early use of growth factor (planned to be given in the first 12 days of 

transplant) in AML was associated with higher TRM (RR 1.32, p<001) while in MDS it was 

associated with lower incidence of disease relapse (RR 0.79, p=0.01). The subset analyses 

focused on chromosome 7 abnormalities showed no further associations with growth factor 

use. G-CSF expression is increased in CD34+ cells with monosomy 7(38), which could 

theoretically may increase the risk of disease relapse. The relationship of growth factor used 

early in transplantation needs to be further evaluated related to timing and type of disease 

being treated.
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MK+ MDS as a high risk subgroup is less well established, though MK+ and chromosome 7 

abnormalities (20, 37) can also influence MDS outcomes. Cytogenetics is an integral 

component of the IPSS (4) and the new revised IPSS (5). The revised IPSS cytogenetics 

include very poor cytogenetics as complex (>3) cytogenetic abnormalities which are 

associated with MK+. Xing et al analyzed outcomes of MDS patients showing complex 

karyotype and MK+ yielding similar poor outcomes(39). The revised IPSS confirmed poor 

prognosis for the very poor cytogenetics category (40). MK+MDS after allogeneic HCT has 

been described with similar poor outcomes (41–44). The current analysis also demonstrated 

that MK+MDS were associated with higher TRM, in contrast to the models in AML in 

which the cytogenetic group had no impact on TRM. These results could possibly be 

explained by the fact that a larger proportion of patients with MK+MDS had intermediate-II 

or high IPSS compared to other groups, which would require more treatment prior to 

transplant than other MDS groups, although this is speculative. MK+ AML and MDS are 

high risk groups with disappointing survival, even after allogeneic transplant. Implementing 

interventions after transplant to further reduce disease relapse through additional targeted 

therapy (45) or by optimizing graft-versus leukemia are needed to improve outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix Tables

Table A

Multivariate analysis of relapse for AML, by monosomal karyotype

Relative Risk P-value

Main effect

 Normal 641 1.00a Poverall < 0.001

 MK positive 238 1.98 (1.58–2.49) < 0.001

 Other unfavorable 1133 1.36 (1.14–1.63) < 0.001

 Intermediate 1568 0.90 (0.75–1.08) 0.27

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 470 1.00a Poverall < 0.001

 21–40 MA 810 0.84 (0.68–1.04) 0.11

 41–60 MA 1221 0.96 (0.78–1.19) 0.73

 41–60 RIC/NMA 457 1.66 (1.31–2.10) < 0.001

 61–64 RIC/NMA 241 1.65 (1.25–2.16) < 0.001

 > 64 RIC/NMA 187 1.82 (1.37–2.44) < 0.001

 Others 194 1.01 (0.73–1.38) 0.97

Karnofsky score

 90–100% 2550 1.00a Poverall = 0.006

 < 90% 898 1.24 (1.09–1.42) 0.001

 Missing 132 1.10 (0.82–1.48) 0.53

Graft type

 Bone marrow 1046 1.00a

 Peripheral blood 2534 0.84 (0.73–0.98) 0.02

Year of transplant

 Continuous 3580 1.04 (1.00–1.08) 0.07

Contrast

 Main effect MK positive vs. other unfavorable 1.46 (1.19–1.79) < 0.001

 Main effect MK positive vs. intermediate 2.20 (1.78–2.72) < 0.001

 Main effect other unfavorable vs. intermediate 1.51 (1.32–1.74) < 0.001

 Age 21–40 MA vs. 41–60 MA 0.87 (0.73–1.03) 0.11

 Age 21–40 MA vs. 41–60 RIC/NMA 0.50 (0.41–0.62) < 0.001

 Age 21–40 MA vs. 61–64 RIC/NMA 0.51 (0.40–0.65) < 0.001

 Age 21–40 MA vs. > 64 RIC/NMA 0.46 (0.35–0.60) < 0.001

 Age 21–40 MA vs. others 0.83 (0.62–1.12) 0.23

 Age 41–60 MA vs. 41–60 RIC/NMA 0.58 (0.49–0.69) < 0.001

 Age 41–60 MA vs. 61–64 RIC/NMA 0.59 (0.47–0.73) < 0.001

 Age 41–60 MA vs. > 64 RIC/NMA 0.53 (0.42–0.67) < 0.001

 Age 41–60 MA vs. others 0.96 (0.72–1.27) 0.77

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 1.01 (0.79–1.29) 0.94

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.91 (0.70–1.18) 0.48
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Relative Risk P-value

 Age 41–60 RIC/NMA vs. others 1.65 (1.22–2.23) 0.001

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 0.90 (0.68–1.20) 0.48

 Age 61–64 RIC/NMA vs. others 1.64 (1.17–2.28) 0.004

 Age > 64 RIC/NMA vs. others 1.81 (1.29–2.55) < 0.001

 Karnofsky score < 90% vs. missing 1.13 (0.83–1.54) 0.43

a
Reference group

Table B

Multivariate analysis of relapse for MDS, by monosomal karyotype

Relative Risk P-value

Main effect:

 Normal 237 1.00a Poverall < 0.001

 MK positive 219 2.39 (1.74–3.29) < 0.001

 Other unfavorable 416 1.50 (1.11–2.04) 0.009

 Intermediate 606 1.12 (0.84–1.51) 0.44

 Favorable 97 1.19 (0.76–1.86) 0.44

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 132 1.00a Poverall < 0.001

 21–40 MA 210 1.04 (0.66–1.63) 0.88

 41–60 MA 512 1.79 (1.20–2.67) 0.004

 41–60 RIC/NMA 277 2.66 (1.69–4.18) < 0.001

 61–64 RIC/NMA 158 2.29 (1.40–3.75) 0.001

 > 64 RIC/NMA 113 3.21 (1.89–5.43) < 0.001

 Others 173 1.88 (1.17–3.01) 0.008

Karnofsky score

 90–100% 1032 1.00a Poverall = 0.04

 < 90% 476 1.27 (1.04–1.54) 0.02

 Missing 67 1.28 (0.85–1.92) 0.24

Conditioning regimen classification

 TBI + Cy +- others 233 1.00a Poverall < 0.001

 TBI +- others 150 0.84 (0.56–1.27) 0.41

 Bu + Cy +- others 506 0.86 (0.64–1.15) 0.30

 Bu + Flud +- others 446 1.02 (0.74–1.40) 0.90

 Flud + Mel +- others 153 0.37 (0.23–0.59) < 0.001

 Other conditioning regimen 87 1.29 (0.83–2.00) 0.27

Graft type

 Bone marrow 439 1.00a

 Peripheral blood 1136 0.70 (0.56–0.87) 0.002

ATG/Alemtuzumab for conditioning or GVHD prophylaxis

 ATG alone 447 1.00a Poverall = 0.005

 Alemtuzumab alone 54 1.76 (1.15–2.69) 0.009
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Relative Risk P-value

 No ATG or Alemtuzumab 1074 0.89 (0.72–1.09) 0.25

Planned GM or GCSF (12 days)b

 No 876 1.00a

 Yes 699 0.79 (0.66–0.95) 0.01

Disease status at transplant

 Early 642 1.00a

 Advanced 933 1.75 (1.44–2.12) < 0.001

Contrast

 Main effect MK positive vs. other unfavorable 1.59 (1.21–2.09) < 0.001

 Main effect MK positive vs. intermediate 2.13 (1.64–2.76) < 0.001

 Main effect MK positive vs. favorable 2.01 (1.32–3.06) 0.001

 Main effect other unfavorable vs. intermediate 1.34 (1.06–1.69) 0.01

 Main effect other unfavorable vs. favorable 1.26 (0.84–1.90) 0.27

 Main effect intermediate vs. favorable 0.94 (0.63–1.41) 0.78

 Age 21–40 MA vs. 41–60 MA 0.58 (0.41–0.81) 0.001

 Age 21–40 MA vs. 41–60 RIC/NMA 0.39 (0.26–0.58) < 0.001

 Age 21–40 MA vs. 61–64 RIC/NMA 0.45 (0.29–0.70) < 0.001

 Age 21–40 MA vs. > 64 RIC/NMA 0.32 (0.20–0.52) < 0.001

 Age 21–40 MA vs. others 0.55 (0.36–0.84) 0.005

 Age 41–60 MA vs. 41–60 RIC/NMA 0.67 (0.51–0.90) 0.007

 Age 41–60 MA vs. 61–64 RIC/NMA 0.78 (0.56–1.10) 0.16

 Age 41–60 MA vs. > 64 RIC/NMA 0.56 (0.38–0.82) 0.003

 Age 41–60 MA vs. others 0.95 (0.69–1.32) 0.77

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 1.16 (0.83–1.62) 0.37

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.83 (0.57–1.20) 0.32

 Age 41–60 RIC/NMA vs. others 1.42 (1.00–2.00) 0.05

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 0.71 (0.47–1.08) 0.11

 Age 61–64 RIC/NMA vs. others 1.22 (0.82–1.81) 0.33

 Age > 64 RIC/NMA vs. others 1.71 (1.12–2.61) 0.01

 Karnofsky score < 90% vs. missing 0.99 (0.65–1.51) 0.97

 Conditioning TBI +- others vs. Bu + Cy +- others 0.98 (0.67–1.42) 0.91

 Conditioning TBI +- others vs. Bu + Flud +- others 0.82 (0.58–1.16) 0.26

 Conditioning TBI +- others vs. Flud + Mel +- others 2.28 (1.43–3.63) < 0.001

 Conditioning TBI +- others vs. other 0.65 (0.42–1.01) 0.06

 Conditioning Bu + Cy +- others vs. Bu + Flud +- others 0.84 (0.65–1.09) 0.19

 Conditioning Bu + Cy +- others vs. Flud + Mel +- others 2.33 (1.49–3.63) < 0.001

 Conditioning Bu + Cy +- others vs. other 0.67 (0.44–1.00) 0.05

 Conditioning Bu + Flud +- others vs. Flud+Mel+- others 2.77 (1.85–4.16) < 0.001

 Conditioning Bu + Flud +- others vs. other 0.79 (0.55–1.15) 0.22

 Conditioning Flud + Mel +- others vs. other 0.29 (0.17–0.47) < 0.001

 Alemtuzumab alone vs. No ATG or Alemtuzumab 1.98 (1.31–3.01) 0.001

a
Reference group
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b
GF within 7d: RR=0.82, p<0.001

Table C

Multivariate analysis of treatment-related mortality for AML, by monosomal karyotype

N Relative Risk P-value

Main effect:

 Normal 641 1.00a Poverall = 0.41

 MK positive 238 1.01 (0.74–1.39) 0.94

 Other unfavorable 1133 0.95 (0.77–1.18) 0.66

 Intermediate 1568 0.86 (0.70–1.06) 0.16

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 470 1.00a Poverall < 0.001

 21–40 MA 810 1.46 (1.06–2.02) 0.02

 41–60 MA 1221 2.09 (1.53–2.83) < 0.001

 41–60 RIC/NMA 457 2.03 (1.39–2.96) < 0.001

 61–64 RIC/NMA 241 2.61 (1.72–3.94) < 0.001

 > 64 RIC/NMA 187 2.61 (1.69–4.03) < 0.001

 Others 194 1.88 (1.24–2.86) 0.003

Karnofsky score 0.001

 90–100% 2550 1.00a

 < 90% 898 1.32 (1.13–1.54) Poverall < 0.001

 Missing 132 1.31 (0.94–1.82) 0.11

Conditioning regimen classification 0.04

 TBI + Cy +- others 911 1.00a

 TBI +- others 315 0.85 (0.63–1.16) 0.31

 Bu + Cy +- others 1198 0.83 (0.69–1.01) 0.06

 Bu + Flud +- others 802 0.72 (0.57–0.90) 0.004

 Flud + Mel +- others 203 0.95 (0.68–1.32) 0.77

 Other conditioning regimen 151 0.68 (0.45–1.02) 0.06

HLA matching

 HLA-identical sibling 1864 1.00a Poverall < 0.001

 Unrelated 8/8 1269 1.45 (1.23–1.71) < 0.001

 Unrelated 7/8 447 2.13 (1.75–2.60) < 0.001

Graft type

 Bone marrow 1046 1.00a Poverall = 0.002

 Peripheral blood 2534 1.33 (1.11–1.61) 0.002

GVHD prophylaxis

 CNI based with Methotrexate 2545 1.00a Poverall = 0.03

 CNI based with MMF 586 1.34 (1.10–1.64) 0.004

 CNI +- others 371 1.20 (0.95–1.51) 0.12

 Other GVHD prophylaxis 78 1.13 (0.68–1.87) 0.63

Planned GM or GCSF (within 12 days from transplant)b

 No 2088 1.00a Poverall < 0.001

 Yes 1492 1.32 (1.15–1.52) < 0.001
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N Relative Risk P-value

Year of transplant < 0.001

 Continuous 3580 0.88 (0.84–0.92) < 0.001

Contrast

 Main effect MK positive vs. other unfavorable 1.06 (0.79–1.43) 0.69

 Main effect MK positive vs. intermediate 1.18 (0.88–1.59) 0.28

 Main effect other unfavorable vs. intermediate 1.11 (0.94–1.31) 0.22

 Age 21–40 MA vs. 41–60 MA 0.70 (0.58–0.85) < 0.001

 Age 21–40 MA vs. 41–60 RIC/NMA 0.72 (0.54–0.96) 0.03

 Age 21–40 MA vs. 61–64 RIC/NMA 0.56 (0.40–0.79) < 0.001

 Age 21–40 MA vs. > 64 RIC/NMA 0.56 (0.39–0.80) 0.002

 Age 21–40 MA vs. others 0.78 (0.55–1.10) 0.15

 Age 41–60 MA vs. 41–60 RIC/NMA 1.03 (0.79–1.34) 0.83

 Age 41–60 MA vs. 61–64 RIC/NMA 0.80 (0.59–1.09) 0.16

 Age 41–60 MA vs. > 64 RIC/NMA 0.80 (0.57–1.11) 0.19

 Age 41–60 MA vs. others 1.11 (0.80–1.53) 0.54

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 0.78 (0.57–1.06) 0.11

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.78 (0.56–1.08) 0.13

 Age 41–60 RIC/NMA vs. others 1.08 (0.76–1.52) 0.68

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 1.00 (0.70–1.43) 0.99

 Age 61–64 RIC/NMA vs. others 1.38 (0.94–2.03) 0.10

 Age > 64 RIC/NMA vs. others 1.38 (0.93–2.07) 0.11

 Karnofsky score < 90% vs. missing 1.01 (0.71–1.42) 0.97

 Conditioning TBI +- others vs. Bu + Cy +- others 1.02 (0.75–1.39) 0.89

 Conditioning TBI +- others vs. Bu + Flud +- others 1.19 (0.89–1.59) 0.23

 Conditioning TBI +- others vs. Flud + Mel +- others 0.90 (0.65–1.24) 0.51

 Conditioning TBI +- others vs. other conditioning 1.26 (0.84–1.88) 0.27

 Conditioning Bu + Cy +- others vs. Bu + Flud +- others 1.17 (0.93–1.47) 0.19

 Conditioning Bu + Cy +- others vs. Flud + Mel +- others 0.88 (0.63–1.22) 0.43

 Conditioning Bu + Cy +- others vs. other conditioning 1.23 (0.82–1.84) 0.32

 Conditioning Bu + Flud +- others vs. Flud/Mel +- others 0.75 (0.56–1.01) 0.06

 Conditioning Bu + Flud +- others vs. other conditioning 1.05 (0.72–1.55) 0.79

 Conditioning Flud + Mel +- others vs. other conditioning 1.40 (0.93–2.12) 0.11

 HLA matching 8/8 vs. 7/8 0.68 (0.56–0.82) < 0.001

 GVHD prophylaxis CNI based+MMF vs. CNI +- others 1.12 (0.86–1.46) 0.41

 GVHD prophylaxis CNI based with MMF vs. other 1.19 (0.70–2.01) 0.53

 GVHD prophylaxis CNI +- others vs. other 1.06 (0.62–1.82) 0.83

a
Reference group

b
GF within 7d: RR=1.39, p<0.001
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Table D

Multivariate analysis of treatment-related mortality for MDS, by monosomal karyotype

Relative Risk P-value

Main effect:

 Normal 237 1.00a Poverall < 0.001

 MK positive 219 1.80 (1.27–2.54) < 0.001

 Other unfavorable 416 1.37 (0.99–1.90) 0.06

 Intermediate 606 1.01 (0.73–1.39) 0.97

 Favorable 97 0.95 (0.59–1.52) 0.83

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 132 1.00a Poverall < 0.001

 21–40 MA 210 1.62 (1.01–2.58) 0.04

 41–60 MA 512 2.30 (1.50–3.54) < 0.001

 41–60 RIC/NMA 277 2.41 (1.53–3.79) < 0.001

 61–64 RIC/NMA 158 2.18 (1.33–3.57) 0.002

 > 64 RIC/NMA 113 2.69 (1.56–4.66) < 0.001

 Others 173 2.67 (1.65–4.34) < 0.001

Karnofsky score

 90–100% 1032 1.00a Poverall = 0.003

 < 90% 476 1.40 (1.16–1.70) < 0.001

 Missing 67 1.20 (0.78–1.87) 0.41

HLA matching

 HLA-identical sibling 662 1.00a Poverall < 0.001

 Unrelated 8/8 704 1.11 (0.90–1.36) 0.32

 Unrelated 7/8 209 1.74 (1.34–2.26) < 0.001

Disease status at transplant

 Early 642 1.00a

 Advanced 933 1.30 (1.08–1.58) 0.006

Year of transplant

 Continuous 1575 0.91 (0.86–0.96) < 0.001

Contrast

 Main effect MK positive vs. other unfavorable 1.31 (0.98–1.76) 0.07

 Main effect MK positive vs. intermediate 1.79 (1.34–2.38) < 0.001

 Main effect MK positive vs. favorable 1.89 (1.22–2.94) 0.005

 Main effect other unfavorable vs. intermediate 1.36 (1.08–1.71) 0.009

 Main effect other unfavorable vs. favorable 1.44 (0.96–2.17) 0.08

 Main effect intermediate vs. favorable 1.06 (0.71–1.58) 0.78

 Age 21–40 MA vs. 41–60 MA 0.70 (0.52–0.95) 0.02

 Age 21–40 MA vs. 41–60 RIC/NMA 0.67 (0.48–0.94) 0.02

 Age 21–40 MA vs. 61–64 RIC/NMA 0.74 (0.50–1.09) 0.13

 Age 21–40 MA vs. > 64 RIC/NMA 0.60 (0.38–0.95) 0.03
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Relative Risk P-value

 Age 21–40 MA vs. others 0.61 (0.42–0.88) 0.009

 Age 41–60 MA vs. 41–60 RIC/NMA 0.96 (0.73–1.25) 0.74

 Age 41–60 MA vs. 61–64 RIC/NMA 1.06 (0.77–1.46) 0.74

 Age 41–60 MA vs. > 64 RIC/NMA 0.85 (0.58–1.27) 0.43

 Age 41–60 MA vs. others 0.86 (0.63–1.17) 0.34

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 1.10 (0.77–1.57) 0.58

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.89 (0.59–1.36) 0.60

 Age 41–60 RIC/NMA vs. others 0.90 (0.64–1.27) 0.55

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 0.81 (0.51–1.28) 0.36

 Age 61–64 RIC/NMA vs. others 0.82 (0.56–1.20) 0.30

 Age > 64 RIC/NMA vs. others 1.01 (0.65–1.57) 0.97

 Karnofsky score < 90% vs. missing 1.17 (0.74–1.83) 0.50

 HLA matching 8/8 vs. 7/8 0.64 (0.49–0.83) < 0.001

a
Reference group

Table E

Multivariate analysis of overall survival for AML, by monosomal karyotype

Relative Risk of Death P-value

Main effect:

 Normal 643 1.00a Poverall < 0.001

 MK positive 240 1.67 (1.38–2.01) < 0.001

 Other unfavorable 1138 1.22 (1.06–1.40) 0.006

 Intermediate 1579 0.90 (0.78–1.05) 0.17

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 474 1.00a Poverall < 0.001

 21–40 MA 811 1.06 (0.89–1.27) 0.50

 41–60 MA 1228 1.43 (1.21–1.69) < 0.001

 41–60 RIC/NMA 461 1.85 (1.53–2.23) < 0.001

 61–64 RIC/NMA 241 2.10 (1.69–2.61) < 0.001

 > 64 RIC/NMA 189 2.16 (1.72–2.72) < 0.001

 Others 196 1.29 (1.01–1.66) 0.04

Karnofsky score

 90–100% 2562 1.00a Poverall < 0.001

 < 90% 906 1.30 (1.17–1.44) < 0.001

 Missing 132 1.22 (0.98–1.53) 0.07

HLA matching

 HLA-identical sibling 1873 1.00a Poverall < 0.001

 Unrelated 8/8 1276 1.18 (1.06–1.31) 0.002

 Unrelated 7/8 451 1.48 (1.29–1.70) < 0.001

Year of transplant

 Continuous 3600 0.95 (0.93–0.98) 0.002
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Relative Risk of Death P-value

Contrast

 Main effect MK positive vs. other unfavorable 1.37 (1.15–1.62) < 0.001

 Main effect MK positive vs. intermediate 1.84 (1.55–2.19) < 0.001

 Main effect other unfavorable vs. intermediate 1.35 (1.20–1.50) < 0.001

 Age 21–40 MA vs. 41–60 MA 0.74 (0.65–0.85) < 0.001

 Age 21–40 MA vs. 41–60 RIC/NMA 0.58 (0.49–0.68) < 0.001

 Age 21–40 MA vs. 61–64 RIC/NMA 0.51 (0.42–0.61) < 0.001

 Age 21–40 MA vs. > 64 RIC/NMA 0.49 (0.40–0.60) < 0.001

 Age 21–40 MA vs. others 0.82 (0.65–1.04) 0.10

 Age 41–60 MA vs. 41–60 RIC/NMA 0.77 (0.67–0.89) < 0.001

 Age 41–60 MA vs. 61–64 RIC/NMA 0.68 (0.57–0.81) < 0.001

 Age 41–60 MA vs. > 64 RIC/NMA 0.66 (0.55–0.80) < 0.001

 Age 41–60 MA vs. others 1.11 (0.89–1.38) 0.36

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 0.88 (0.72–1.07) 0.19

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.85 (0.69–1.05) 0.13

 Age 41–60 RIC/NMA vs. others 1.43 (1.13–1.81) 0.003

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 0.97 (0.77–1.22) 0.80

 Age 61–64 RIC/NMA vs. others 1.63 (1.26–2.10) < 0.001

 Age > 64 RIC/NMA vs. others 1.67 (1.28–2.19) < 0.001

 Karnofsky score < 90% vs. missing 1.06 (0.84–1.34) 0.62

 HLA matching 8/8 vs. 7/8 0.80 (0.69–0.91) 0.001

a
Reference group

Table F

Multivariate analysis of overall survival for MDS, by monosomal karyotype

Relative Risk of death P-value

Main effect:

 Normal 241 1.00a Poverall < 0.001

 MK positive 221 2.02 (1.59–2.59) < 0.001

 Other unfavorable 423 1.39 (1.10–1.77) 0.006

 Intermediate 611 0.96 (0.76–1.22) 0.73

 Favorable 98 1.00 (0.71–1.41) 1.00

Other significant covariates:

Age at transplant by conditioning intensity, years

 0–20 MA 132 1.00a Poverall < 0.001

 21–40 MA 212 1.32 (0.93–1.86) 0.12

 41–60 MA 519 2.08 (1.52–2.83) < 0.001

 41–60 RIC/NMA 281 2.18 (1.57–3.02) < 0.001

 61–64 RIC/NMA 160 2.05 (1.44–2.91) < 0.001

 > 64 RIC/NMA 116 2.70 (1.83–3.97) < 0.001

 Others 174 2.13 (1.50–3.04) < 0.001
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Relative Risk of death P-value

Karnofsky score

 90–100% 1041 1.00a Poverall < 0.001

 < 90% 484 1.40 (1.22–1.62) < 0.001

 Missing 69 1.34 (0.99–1.82) 0.06

HLA matching

 HLA-identical sibling 668 1.00a Poverall < 0.001

 Unrelated 8/8 712 1.09 (0.94–1.27) 0.26

 Unrelated 7/8 214 1.62 (1.34–1.97) < 0.001

Disease status at transplant

 Early 652 1.00a

 Advanced 942 1.45 (1.26–1.67) < 0.001

Year of transplant

 Continuous 1594 0.94 (0.90–0.98) 0.004

Contrast

 Main effect MK positive vs. other unfavorable 1.45 (1.19–1.78) < 0.001

 Main effect MK positive vs. intermediate 2.11 (1.73–2.58) < 0.001

 Main effect MK positive vs. favorable 2.02 (1.48–2.78) < 0.001

 Main effect other unfavorable vs. intermediate 1.45 (1.22–1.72) < 0.001

 Main effect other unfavorable vs. favorable 1.39 (1.03–1.88) 0.03

 Main effect intermediate vs. favorable 0.96 (0.71–1.29) 0.78

 Age 21–40 MA vs. 41–60 MA 0.63 (0.50–0.80) < 0.001

 Age 21–40 MA vs. 41–60 RIC/NMA 0.60 (0.47–0.78) < 0.001

 Age 21–40 MA vs. 61–64 RIC/NMA 0.64 (0.48–0.86) 0.003

 Age 21–40 MA vs. > 64 RIC/NMA 0.49 (0.35–0.68) < 0.001

 Age 21–40 MA vs. others 0.62 (0.46–0.82) 0.001

 Age 41–60 MA vs. 41–60 RIC/NMA 0.95 (0.79–1.15) 0.62

 Age 41–60 MA vs. 61–64 RIC/NMA 1.01 (0.81–1.28) 0.90

 Age 41–60 MA vs. > 64 RIC/NMA 0.77 (0.59–1.01) 0.06

 Age 41–60 MA vs. others 0.97 (0.77–1.23) 0.82

 Age 41–60 RIC/NMA vs. 61–64 RIC/NMA 1.06 (0.83–1.37) 0.63

 Age 41–60 RIC/NMA vs. > 64 RIC/NMA 0.81 (0.60–1.08) 0.15

 Age 41–60 RIC/NMA vs. others 1.02 (0.79–1.32) 0.86

 Age 61–64 RIC/NMA vs. > 64 RIC/NMA 0.76 (0.55–1.04) 0.09

 Age 61–64 RIC/NMA vs. others 0.96 (0.72–1.27) 0.78

 Age > 64 RIC/NMA vs. others 1.27 (0.92–1.74) 0.14

 Karnofsky score < 90% vs. missing 1.05 (0.77–1.43) 0.77

 HLA matching 8/8 vs. 7/8 0.67 (0.55–0.81) < 0.001

a
Reference group
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The Highlights for this study include

1. Patients with MK+ AML have worse survival after transplant compared to other 

AML in CR1.

2. MK+ in patients with MDS has a negative prognostic impact after allogeneic 

transplant.

3. The negative impact of MK+ is observed after myeloablative and reduced 

intensity conditioning
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Figure 1. 
Cumulative incidence of disease relapse for AML in first complete remission(1A) and MDS 

(1B) and overall survival for AML in first complete remission (1C) and MDS (1D) after 

HCT,
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Figure 2. 
Overall survival for AML in first complete remission (2A) and MDS (2B) after HCT 

defined as chromosome 7 abnormalities with or without monosomal karyotype (MK+) and 

normal karyotype
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Table 1a

Demographic data on hematopoietic cell transplant recipients with AML from 1998–2011 according to 

cytogenetic groups.

Variable MK positive Other unfavorable Intermediate Normal

Number of patients 240 1138 1579 643

Number of centers 80 192 224 138

Age at transplant, median (years) 53 (1–75) 43 (1–76) 43 (<1–74) 52 (2–74)

Age at transplant, years

 0–20 13 (5) 192 (17) 255 (16) 49 (8)

 21–40 45 (19) 302 (27) 432 (27) 107 (17)

 41–60 123 (51) 496 (44) 738 (47) 332 (52)

 61–64 30 (13) 94 (8) 97 (6) 87 (14)

 >= 65 29 (12) 54 (5) 57 (4) 68 (11)

Gender

 Male 146 (61) 572 (50) 816 (52) 324 (50)

 Female 94 (39) 566 (50) 763 (48) 319 (50)

Performance Score

 90–100% 134 (56) 798 (70) 1186 (75) 444 (69)

 < 90% 90 (38) 293 (26) 338 (21) 185 (29)

 Missing 16 (7) 47 (4) 55 (3) 14 (2)

Type of AML

 De novo 168 (70) 848 (75) 1256 (80) 454 (71)

 Secondary 71 (30) 288 (25) 316 (20) 188 (29)

 Unknown 1 (<1) 2 (<1) 7 (<1) 1 (<1)

Number of cycles to achieve CR

 1 67 (28) 385 (34) 785 (50) 240 (37)

 > 1 65 (27) 260 (23) 386 (24) 176 (27)

 Unknown 108 (45) 493 (43) 408 (26) 227 (35)

Extra medullary disease

 No 227 (95) 1058 (93) 1446 (92) 584 (91)

 Yes 13 (5) 80 (7) 133 (8) 59 (9)

White blood cell at diagnosis (median, ×10ˆ9/L) 3 (<1–53) 6 (<1–224) 9 (<1–118) 10 (<1–260)

Cytogenetic score

 Normal 0 0 0 643

 Intermediate 0 0 1579 0

 Poor 240 1138 0 0

MK status

 MK+: more than 1 monosomy 136 (57) 0 0 0

 MK+: 1 monosomy + other 104 (43) 0 0 0

 Other 0 1138 1578 643

Abnormality −7/7q

 No 92 (38) 863 (76) 1579 643
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Variable MK positive Other unfavorable Intermediate Normal

 Yes 148 (62) 275 (24) 0 0

Conditioning regimen

 TBI + Cy +- others 48 (20) 320 (28) 392 (25) 156 (24)

 TBI +- others 28 (12) 72 (6) 156 (10) 62 (10)

 Bu + Cy +- others 57 (24) 389 (34) 611 (39) 147 (23)

 Bu + Flud +- others 73 (30) 236 (21) 278 (18) 217 (34)

 Flud + Mel +- others 21 (9) 77 (7) 74 (5) 34 (5)

 Other conditioning regimen 13 (5) 44 (4) 68 (4) 27 (4)

Conditioning regimen intensity

 Myeloablative 139 (58) 857 (75) 1163 (74) 440 (68)

 RIC 101 (42) 281 (25) 416 (26) 203 (32)

Time from diagnosis to transplant, median (months) 5 (1–40) 5 (1–118) 5 (1–165) 5 (1–91)

Time from diagnosis to transplant

 0–3 months 17 (7) 106 (9) 188 (12) 63 (10)

 3–6 months 159 (66) 723 (64) 899 (57) 385 (60)

 >= 6 months 64 (27) 309 (27) 492 (31) 195 (30)

Type of donor

 HLA-identical sibling 75 (31) 481 (42) 1028 (65) 289 (45)

 Unrelated 8/8 122 (51) 499 (44) 387 (25) 268 (42)

 Unrelated 7/8 43 (18) 158 (14) 164 (10) 86 (13)

 Missing 11 (5) 42 (4) 61 (4) 21 (3)

Graft type

 Bone marrow 46 (19) 359 (32) 523 (33) 126 (20)

 Peripheral blood 194 (81) 779 (68) 1056 (67) 517 (80)

GVHD prophylaxis

 CNI plus Methotrexate 162 (68) 797 (70) 1162 (74) 439 (68)

 CNI plus MMF 54 (23) 190 (17) 209 (13) 135 (21)

 CNI +- others 20 (8) 125 (11) 167 (11) 60 (9)

 Other 4 (2) 26 (2) 41 (3) 9 (1)

ATG/Alemtuzumab 68 (28) 308 (28) 331 (21) 178 (28)

Planned GM or GCSF (<12 days post HCT) 96 (40) 472 (41) 694 (44) 239 (37)

Median follow-up of survivors (range), months 49 (4–144) 60 (3–171) 70 (3–172) 37 (3–122)

Abbreviations: AML, acute myeloid leukemia; ATG, anti-thymocyte globulin; Bu, busulfan; CNI, calcineurin inhibitor; Cy, cyclophosphamide; 
Flud, fludarabine; GM/GCSF, granulocyte and macrophage or granulocyte growth factor; MK, monosomal karyotype; MMF, micophenolate 
mofetil; Mel; melphalan; RIC, reduced intensity conditioning; TBI, total body irradiation.
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