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Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral
therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing
individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public
health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001.

Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)–infected
individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the
WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD
data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0.

Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%–9.5%) in
2008–2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by
nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations
were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to
have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones.

Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for
NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different
drug classes is affected.
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Transmission of human immunodeficiency virus (HIV) har-
boring resistance mutations is associated with impaired out-
comes from antiretroviral therapy (ART) [1–4]. In developed
countries, guidelines therefore recommend baseline genotypic
testing in patients newly diagnosed with HIV to guide the
choice of the first line of ART [5, 6]. The International AIDS

Society–USA (IAS-USA) continuously updates a chart of muta-
tions that are associated with clinical resistance to HIV, based
on biological data, that is, from in vitro experiments or suscept-
ibility testing of clinical isolates [7]. Several algorithms have
been developed to predict the susceptibility of HIV to antiretro-
virals based on the detected resistance mutations.

Surveillance of the transmission of HIV drug resistance
(TDR) is essential to inform treatment policy making and guid-
ance. Previous studies assessing TDR have used different crite-
ria to define the relevant resistance mutations, resulting in
widely varying estimates. The World Health Organization
(WHO) developed a consensus list of drug resistance mutations
for surveillance purposes, which was updated in 2009 [8]. This
list differs from the IAS-USA chart developed for clinical use
[7]. Resistance mutations that can occur naturally as polymor-
phisms in the absence of drug pressure are not indicators of

Received 8 June 2015; accepted 6 November 2015; published online 29 November 2015.
Correspondence: A. M. J. Wensing, University Medical Center Utrecht, Department of Virol-

ogy G04.614, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands (a.m.j.wensing@
umcutrecht.nl).

Clinical Infectious Diseases® 2016;62(5):655–63
© The Author 2015. Published by Oxford University Press for the Infectious Diseases Society
of America. This is an Open Access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial reproduction and distribution of the work, in any
medium, provided the original work is not altered or transformed in any way, and that the
work is properly cited. For commercial re-use, contact journals.permissions@oup.com.
DOI: 10.1093/cid/civ963

HIV/AIDS • CID 2016:62 (1 March) • 655

mailto:a.m.j.wensing@umcutrecht.nl
mailto:a.m.j.wensing@umcutrecht.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com


transmitted drug resistance. Although polymorphisms may be
clinically relevant and are included on the IAS-USA chart,
these mutations are excluded from the WHO list, to avoid false-
ly elevated estimates of TDR.

The European surveillance program SPREAD has been moni-
toring the transmission of HIV drug resistance in Europe since
2002.We have previously shown that the prevalence of TDR in Eu-
rope was stabilizing at just below 10% [9–11], although in 2006–
2007 an increase in nonnucleoside reverse transcriptase inhibitor
(NNRTI) resistance mutations to 4% was detected [12], particular-
ly inmenwho have sex withmen (MSM) [13].Over the yearsmore
countries have joined SPREAD, and by 2010, >9500 patients had
been included. In this article we describe the prevalence of TDR
from 2008 to 2010, the predicted baseline susceptibility to current-
ly available nucleoside reverse transcriptase inhibitors (NRTIs),
NNRTIs, and protease inhibitors (PIs), and the first-line regimens
commonly used in Europe [5], based on all observed mutations at
baseline (including polymorphisms). In addition, we assessed
whether the prevalence of TDR changed over time from 2002 to
2010 by comparing the 2008–2010 data to earlier SPREAD data.

METHODS

Sampling Strategy
The SPREAD program has continuously collected data from
newly diagnosed HIV type 1 (HIV-1)–infected patients since

its start in 2002. For the 2008–2010 analysis, 26 countries con-
tributed data: Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czech Republic, Denmark, Finland, France, Germany, Greece,
Ireland, Israel, Italy, Latvia, Lithuania, Luxembourg, the Neth-
erlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia,
Spain, and Sweden. For every participating country, data were
collected according to one of the following sampling strategies:
(1) a random sample was drawn from a national program or na-
tional reference center, or (2) inclusion was stratified according to
risk groups and geographical distribution within the country [10,
11]. Until 2008, the sample size for each country was determined
based on its total number of newly infected individuals per year
[10]. Since 2008, countries could increase their initially determined
sample size. To correct for overrepresentation of data from certain
countries, data were weighted at the time of the analysis.

Ethical Issues
Ethical approval was obtained for each participating country,
according to national legislation. All data were anonymized
and coded at a national level before submission.

Patient Inclusion and Data Collection
To be included, patients had to be at least 18 years old, naive
to ART, and have a viral load >1000 copies/mL at the time of
HIV-1 diagnosis. Clinical and virological data were collected
using a standardized questionnaire. A blood sample was taken

Table 1. Baseline Characteristics of Newly Diagnosed Therapy-Naive Human Immunodeficiency Virus-Infected Patients in the SPREAD Program

Characteristic All (N = 9588) 2002–2005 (n = 2990) 2006–2007 (n = 2458) 2008–2010 (n = 4140) P Value

Male sex 7695 (80.3) 2337 (78.2) 1952 (79.4) 3406 (82.3) .0001

Age at diagnosis, y, median (IQR) 37 (29–43) 38 (29–42) 36 (29–42) 37 (29–43) NS

Transmission risk group <.0001

MSM 4969 (51.8) 1486 (49.7) 1169 (47.6) 2314 (55.9)

Heterosexual 3195 (33.3) 1060 (35.5) 812 (33.0) 1323 (32.0)

Injecting drug user 607 (6.3) 245 (8.2) 174 (7.1) 188 (4.5)

Continent of origin <.0001

Western Europe 5072 (52.9) 1823 (61.0) 1270 (51.7) 1979 (47.8)

Central and Eastern Europe 1719 (17.9) 561 (18.8) 534 (21.7) 624 (15.1)

Sub-Saharan Africa 735 (7.7) 377 (12.6) 161 (6.6) 197 (4.8)

HIV RNA load, log copies/mL, median (IQR) 4.8 (4.2–5.3) 4.9 (4.3–5.3) 4.8 (4.2–5.3) 4.8 (4.2–5.3) .002

CD4 count, cells/µL, median (IQR) 391 (193–544) 355 (180–547) 360 (192–535) 393 (202–544) NS

CDC stage at diagnosis .0005

A or B 6860 (71.5) 2460 (82.3) 1567 (63.8) 2833 (68.4)

C 871 (9.1) 360 (12.0) 209 (8.5) 302 (7.3)

Subtype <.0001

A 632 (6.6) 234 (7.8) 174 (7.1) 224 (5.4)

B 6310 (65.8) 2010 (67.2) 1519 (61.8) 2781 (67.2)

C 552 (5.8) 190 (6.4) 141 (5.7) 221 (5.3)

01_AE 309 (3.2) 100 (3.3) 87 (3.5) 122 (2.9)

02_AG 484 (5.0) 135 (4.5) 104 (4.2) 245 (5.9)

G 107 (1.1) 49 (1.6) 23 (0.9) 35 (0.8)

F 212 (2.2) 29 (1.0) 72 (2.9) 111 (2.7)

Data are presented as No. (%) unless otherwise specified.

Abbreviations: CDC, Centers for Disease Control and Prevention; HIV, human immunodeficiency virus; IQR, interquartile range; MSM, men who have sex with men; NS, not significant (P value
>.05).
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for resistance testing within 6 months of diagnosis. Population-
based sequencing of reverse transcriptase and protease was
performed locally. All countries were part of a quality control
program for HIV sequencing. Additionally, the quality of all se-
quences was verified, checking for length, variability, conserva-
tive sites, frameshifts, and stop codons. Before data analysis, all
collected data had passed a thorough data verification process.

Interpretation of Sequences
The WHO list for surveillance of drug resistance mutations was
used to estimate the prevalence of TDR [8]. The overall preva-
lence was defined as the percentage of patients infected with a
virus carrying any mutation indicative of TDR. The prevalence
of TDR for the different drug classes (NRTIs, NNRTIs, and PIs)
was defined as the percentage of patients infected with a virus
carrying any mutation indicative of TDR associated with each
particular drug class. Patients with multiclass resistance (eg, a
virus with mutations associated with both NRTIs and NNRTIs)
were counted once in the overall prevalence, but were counted
both in the analysis for NRTIs as well as for NNRTIs. We have
performed a separate analysis in those patients known to have
been recently infected. We identified patients as being recently
infected, based on the availability of a last negative HIV-1 test
not more than 1 year before the first positive HIV-1 test, or
initial documented indeterminate HIV-1 serological results fol-
lowed by seroconversion and confirmation of HIV-1 diagnosis
by immunoblotting. Separate analyses were also performed for
different risk groups and subtypes. We determined the preva-
lence of mutations for the most common HIV subtypes (A, B,
C, CRF 01_AE, CRF 02_AG), based on the percentage of pa-
tients infected with a virus of this subtype carrying each par-
ticular mutation. HIV-1 subtypes were determined by use of
the subtyping tool COMET version 0.5 [14]. To predict the

susceptibility to available NRTIs, NNRTIs, and PIs, sequences
were analyzed using the Stanford HIVdb algorithm version 7.0
[15]. This analysis determined the effect of all resistance-related
mutations at baseline on the susceptibility of the virus to antire-
troviral drugs, including polymorphisms that were not included
in analyses for the prevalence of TDR. A genotypic susceptibility
score (GSS) was calculated for the first-line regimens commonly
used in Europe [5]. Integrase strand transfer inhibitor (INSTI)
regimens were excluded from this analysis due to the unavailabil-
ity of integrase sequence data. Each drug in the regimen was
scored based on the results of the Stanford algorithm: High-
level resistance was scored as 0, intermediate and low-level resis-
tance as 0.5, and potential low-level resistance and susceptibility
were scored as 1. The GSS for each 3-drug combination was the
sum of the individual scores for the drugs in the combination.

Figure 1. Overall weighted prevalence of transmitted drug resistance in patients
with newly diagnosed human immunodeficiency virus (HIV) in Europe. The error bars
indicate the standard error. Abbreviations: NNRTI, nonnucleoside reverse transcrip-
tase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor;
TDR, transmitted drug resistance.

Table 2. Prevalence of Transmitted Drug Resistance Mutations in
Recently Infected Patients and in Patients With an Unknown Duration of
Infection, Diagnosed During 2008–2010

Mutation

Recently
Infected Patients

(n = 534), %

Patients With an Unknown
Duration of Infection

(n = 3606), % P Value

TDR prevalence

TDR any class 10.1 8.2 NS

TDR NRTI 4.7 4.4 NS

TDR NNRTI 3.8 2.9 NS

TDR PI 2.4 2.0 NS

NRTI mutations

T215reva 3 2.47 NS

M41L 1.57 1.47 NS

D67N 0.20 0.68 NS

K219Q 0.20 0.52 NS

L210W 0.79 0.35 NS

M184V 0 0.27 NS

NNRTI mutations

E138Ab 3.15 3.62 NS

K103N 3.35 1.49 .0055

G190A 0 0.52 NS

Y181C 0.20 0.46 NS

Y181V 0 0.03 NS

K101E 0 0.27 NS

K101P 0.20 0.08 NS

K103S 0.39 0.19 NS

P225H 0 0.16 NS

Y188L 0 0.16 NS

PI mutations

L90M 0.38 0.58 NS

M46I 0.38 0.26 NS

M46L 0.38 0.24 NS

V82A 0.19 0.18 NS

Abbreviations: NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside
reverse transcriptase inhibitor; NS, not significant (P value >.05); PI, protease inhibitor;
TDR, transmitted drug resistance.
a T215rev represent revertant mutations (S/D/C/E/I/V) that can occur at position 215.
b E138A is a polymorphic mutation. This mutation is for this reason not included in the World
Health Organization list for surveillance of TDR mutations. As this list is used to determine
the prevalence of TDR, this mutation is not included in the prevalence of TDR for NNRTIs.
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Statistical Analysis
The prevalence of TDR was estimated in a weighted analysis.
Each risk group (MSM, heterosexuals, injecting drug users
[IDUs], and others) in each country formed a stratum. The
weight of each individual was computed as the ratio between
the proportion of his or her stratum in the sample and the pro-
portion of this stratum in the population estimated using data
from European Centre for Disease Prevention and Control re-
ports [16]. A sensitivity analysis was performed to investigate
the influence of each country on the prevalence of TDR by
repeating the analysis after omitting that country from the

computation. Trends over time were assessed using logistic re-
gression, by comparing our 2008–2010 dataset to previous
SPREAD datasets from 2002–2005 and 2006–2007. The dataset
from 2006–2007 included data from the same 26 countries,
whereas the dataset from 2002–2005 did not include data
from Bulgaria, Croatia, France, Lithuania, or Romania, but in-
cluded data from Portugal. The frequency of mutations at base-
line and the predicted susceptibility analyses were computed
using the same weighting scheme as in the analysis of the prev-
alence of TDR. All analyses were performed with SAS statistical
software, version 9.3 (SAS Institute, Inc, Cary, North Carolina).

Figure 2. Prevalence of transmitted drug resistance (TDR) among different transmission risk groups (men who have sex with men [MSM], heterosexuals [HSX], and injecting
drug users [IDUs]) and subtypes, for nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs).
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RESULTS

From 2008 to 2010, 4140 patients were included for analysis,
compared to 2990 and 2458 patients in previous SPREAD data-
sets from 2002–2005 and 2006–2007, respectively, resulting in a
total of 9588 patients (Table 1). In 2008–2010, there was a sig-
nificantly higher percentage of MSM compared with 2002–2005
and 2006–2007. Just under half of the patients originated from
Western Europe, 15.1% from Central and Eastern Europe, and
4.8% from sub-Saharan Africa. Most patients were infected with
subtype B, followed by subtypes 02_AG, A and C.

Prevalence of TDR
The overall prevalence of TDR in 2008–2010 was 8.3% (95%
confidence interval [CI], 7.2%–9.5%), with mutations associat-
ed with NRTIs observed most frequently (4.5% [95% CI, 3.6%–

5.4%]), followed by mutations associated with NNRTIs (2.9%
[95% CI, 2.2%–3.5%]) and PIs (2.0% [95% CI, 1.4%–2.6%]).
We did not observe a significant change in prevalence over
time overall or for the different drug classes (Figure 1). Sensitiv-
ity analyses showed no significant difference when individual
countries were excluded. A subset of patients from 2008–2010
(n = 534) was identified as recently infected. The overall per-
centage of TDR was somewhat higher among these patients
(10.1%, P = .15) vs those with an indeterminate date of infec-
tion, with a slightly higher prevalence of TDR for all drug clas-
ses (Table 2). The K103N mutation was detected significantly
more often in recently infected patients compared with patients
with an unknown duration of infection (3.35% vs 1.49%,

P = .0055). Recently infected patients were more often MSM, but
the significant difference in prevalence of K103Nwas still observed
when the analysis was limited to MSM only in both groups.
The prevalence of K103N was slightly lower in patients recently
infected in previous years and was not significantly different
from those with an unknown duration of infection (2002–2005:
2.20% vs 1.45%, P = .22; 2006–2007: 2.07% vs 2.09%, P = .98).

Prevalence of TDR Among Risk Groups and Subtypes
Resistance mutations associated with NRTIs were somewhat more
prevalent amongMSM than among heterosexuals and IDUs (5.0%
vs 3.7% and 3.2%, respectively,P = .24) and significantlymore prev-
alent in subtype B than in other subtypes (5.6% vs 2.1%, P < .0001;
Figure 2). These differences were also observed previously. The ob-
served mutations were mainly thymidine analogue mutations
(TAMs) such as revertant mutations at position 215 (S/D/C/E/I/
V) and M41L (Table 3). For resistance mutations associated with
NNRTIs, no differences were observed between risk groups (MSM=
3.1%, heterosexual = 2.7%, IDU = 2.7%,P = .69) or subtypes (B =
3.1%, non-B = 2.8%, P= .81; Figure 2). For all investigated subtypes,
E138A (a polymorphic mutation) and K103N were most frequent-
ly seen at baseline (Table 3). Resistance mutations associated with
PIs were of similarly low prevalence among the different risk groups
and subtypes. An overview of the prevalence of all mutations for
the different subtypes is provided in Supplementary Table 1.

Baseline Susceptibility
The observed NRTI-associated mutations had the largest effect
on susceptibility to zidovudine and stavudine, for which 3.7%

Table 3. Prevalence of Most Frequently Detected Mutations at Time of Diagnosis for Subtypes A, B, C, CRF 01_AE, and CRF 02_AG in Newly Diagnosed
Antiretroviral-Naive Human Immunodeficiency Virus-Infected Patients in Europe, 2008–2010

Subtype A (n = 224), % B (n = 2781), % C (n = 221), % CRF 01_AE (n = 122), % CRF 02_AG, % (n = 245)

NRTI mutations

T215rev 0.88 3.44 0.88 0.80 0

M41L 0.88 1.99 0.44 0.80 0

D67N 0 0.80 0.88 0 0

K219Q 0 0.62 0.44 0 0.72

L210W 0 0.58 0 0 0

M184V 0 0.29 0 0 0.36

NNRTI mutations

E138A 7.89 3.48 4.82 2.40 1.81

K103N 1.32 1.81 0.88 1.60 2.17

Y181C 1.32 0.40 0 0 0.36

G190A 0 0.54 0.44 0 0

K101E 0 0.18 0.88 0 0

K103S 0 0.25 0.44 0 0

PI mutations

L90M 0 0.76 0.44 0 0.35

M46I 0.43 0.24 0 0.80 0.70

M46L 0.87 0.21 0 1.60 0

V82A 0 0.17 0.44 0 0

I54V 0 0 0.44 0 0.70

The prevalence of all mutations at baseline can be found in Supplementary Table 1.

Abbreviations: CRF, circulating recombinant form; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.
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and 3.8% of viruses were predicted to have some resistance, fol-
lowed by abacavir (2.0%), tenofovir (1.6%), lamivudine, and
emtricitabine (both 0.5%) (Figure 3). For NNRTIs, 3.0%
and 4.1% of viruses were predicted to be resistant to efavirenz
and nevirapine, which is mostly attributable to the presence of
K103N. This single mutation causes high-level resistance to both
efavirenz and nevirapine, but not to etravirine and rilpivirine.

Nevertheless, 5.0% of viruses were predicted to have some resis-
tance to rilpivirine, largely due to polymorphic mutation
E138A, which was observed in 3.9% of patients. Less than 1%
of the viruses were predicted to be resistant to any of the PIs, ex-
cept nelfinavir (5.1%, caused by minor mutations that are not in-
cluded in the WHO list). HIV-infected patients are treated with a
combination of at least 3 different compounds. In our study, reg-
imens based on boosted atazanavir or boosted darunavir had a
GSS of 3, indicative of susceptibility to all 3 compounds, in
97% and 98% of patients, respectively (Figure 4). This did not de-
pend on whether the combination of NRTIs chosen for the back-
bone was abacavir/lamivudine or tenofovir/emtricitabine.
Regarding NNRTI-based regimens, 4.5% and 6.5% of patients
scored a GSS <3 for regimens based on efavirenz or rilpivirine,
respectively. Again, this was independent of the NRTI backbone.

DISCUSSION

These results indicate that the prevalence of TDR in Europe has
remained fairly stable from 2002 to 2010. Our 2008–2010 data-
set included significantly more MSM than in previous years, re-
flecting the increasing number of HIV cases among this risk
group in many of the countries included in our analysis [16].
NRTI mutations were significantly more prevalent in subtype
B viruses compared with other subtypes. Subtype B has been
the most prevalent subtype in Europe from the start of the ep-
idemic, whereas non-B subtypes dominate in sub-Saharan Afri-
ca and Asia. It is likely that this difference in NRTI-related TDR
is a result of the longer exposure of subtype B to NRTIs, includ-
ing suboptimal monotherapy before the introduction of combi-
nation ART, and not due to specific viral characteristics. African
countries with a longer period of ART rollout reported higher

Figure 3. Predicted efficacy to antiretroviral compounds of patients in Europe newly diagnosed with human immunodeficiency virus in 2008–2010. Abbreviations: 3TC,
lamivudine; ABC, abacavir; ATV, atazanavir; AZT, zidovudine; D4T, stavudine; DRV, darunavir; EFV, efavirenz; ETR, etravirine; FPV, fosamprenavir; FTC, emtricitabine; IDV,
indinavir; LPV, lopinavir; NFV, nelfinavir; NVP, nevirapine; RPV, rilpivirine; SQV, saquinavir; TDF, tenofovir; TPV, tipranavir.

Figure 4. Genotypic sensitivity scores (GSSs) of 8 recommended first-line regi-
mens in patients in Europe newly diagnosed with human immunodeficiency virus
in 2008–2010. Abbreviations: ATV, atazanavir; DRV, darunavir; EFV, efavirenz; KVX,
Kivexa (abacavir + lamivudine); NNRTI, nonnucleoside reverse transcriptase
inhibitor; PI, protease inhibitor; RPV, rilpivirine; TVD, Truvada (tenofovir +
emtricitabine).

660 • CID 2016:62 (1 March) • HIV/AIDS



rates of TDR, showing the potential for TDR in viruses of non-B
subtypes [17].

TAMs were the most frequently observed but were not pre-
dicted to affect susceptibility to those NRTIs in most frequent
use to any great extent. When we compared 8 first-line regi-
mens, the percentage of patients infected with a virus that was
predicted to be fully susceptible to the regimen did not depend
on the NRTI backbone chosen (tenofovir/emtricitabine or aba-
cavir/lamivudine). Instead, it depended on the third component
added to the backbone—that is, an NNRTI or PI.

The previously reported increase in transmitted NNRTI re-
sistance among MSM did not persist in more recent years.
We only observed a higher prevalence of NNRTI-mutation
K103N in recently infected patients vs patients with an un-
known duration of infection. One could argue that this results
from reversion of the mutation to wild type in the absence of
drug pressure in chronically infected individuals. However,
this difference between the patient groups was not observed
in previous years. Moreover, it has been well described that
K103N can persist for a prolonged period after transmission
due to its limited effect on the replicative capacity of the virus
[18]. As such, we think it is most likely that the difference re-
flects a recent increase in transmitted K103N.

The prevalence of TDR associated with NNRTIs is reported
to be 2-fold higher in cohorts in the United States and Canada
compared with European data. The prevalence of NNRTI-
mutation K103N quadrupled between 1995 and 2010 in a
cohort of recently infected MSM in New York [19], and a nearly
8-fold rise in prevalence of TDR associated with NNRTIs
between 2002 and 2009 was observed in a Canadian cohort
[20]. The higher rates of NNRTI resistance may be partly due
to differences in sampling strategies, as sampling in recently
infected patients, high-risk groups, and larger cities may result
in higher estimates of TDR.

The predicted reduced susceptibility to NNRTIs is concern-
ing. Although we did not see a further increase in TDR for
NNRTIs over time, the NNRTI resistance mutations observed
at baseline were predicted to cause high-level or intermediate
resistance to first-line NNRTIs. A GSS <3 was predicted for 1
in 22 patients for efavirenz-based regimens and for 1 in 15 pa-
tients for rilpivirine-based regimens. The high rate of predicted
resistance to rilpivirine is partly due to mutation E138A. This
mutation is not included in the WHO surveillance list due to
its polymorphic nature, but it has recently been included in
algorithms as generating low-level resistance to rilpivirine and
is present in 1 in 25 patients in our study. In vitro data from
site-directed mutagenesis indicate that E138A causes a 2-fold
reduction in sensitivity to rilpivirine [21, 22]. Although this is
generally considered a small change in vitro, there are limited clin-
ical data on its effect in vivo. In phase 3 clinical trials of rilpivirine,
patients infected with a virus that harbored E138A were excluded
[23]. Patients who failed rilpivirine-based regimens commonly

developed E138K and/or M184I mutations [24]. Considering
the relatively low dose and drug levels of rilpivirine, it cannot
be excluded that the E138A mutation may be relevant in vivo.

In general, the prevalence of TDR to PIs was low, which was
reflected in almost all patients being predicted to be fully sus-
ceptible to regimens including boosted atazanavir or boosted
darunavir. The low and stable prevalence of TDR to PIs may
be a result of the change in treatment guidelines to NNRTIs
and INSTIs as preferred first-line regimens and the high genetic
barrier of boosted PIs. The GSS does not take into account the
potency and genetic barrier of a drug, as the same score is given
to all drugs to which the virus is predicted to be susceptible. A
score of 1 for a fully susceptible PI is likely to be an underesti-
mation of its potency compared with drugs from other classes.

The strength of this study is the longitudinal collection of
data from a large number of countries. By using the same sam-
pling strategy over the years, analyses over time can be per-
formed. The large sample size also allows for analyses within
risk groups or subtypes, which may not be possible at a country
level. Unlike some other cohorts, we did not limit our analyses
to recently infected patients. This could be considered a limita-
tion as mutations may revert over time and could therefore be
missed in a cohort that also includes chronically infected pa-
tients. On the other hand, newly diagnosed patients represent
those coming into care. Recently infected patients, from our
data, are more often MSM (possibly due to higher frequency
of HIV testing in this group), so only including recently infected
patients would not be representative of the entire HIV-infected
population. Another limitation is the unavailability of integrase
sequence data. As INSTIs are more frequently used in first-line
regimens, surveillance of TDR associated with INSTIs becomes
more relevant. However, available studies indicate that the prev-
alence is still low [25, 26].

In conclusion, TDR is stable at around 8% in Europe. Al-
though TDR was highest for NRTIs, the impact on drug sus-
ceptibility of the mutations detected was greatest for NNRTIs.
The WHO list for surveillance of drug resistance mutations is
specifically designed to identify mutations that provide clear ev-
idence of drug exposure in a previous host and are therefore in-
dicators of TDR. However, caution is warranted as relevant
polymorphic resistance–related mutations are not included
and some mutations that are listed may have only limited clin-
ical impact. Prevalence figures from epidemiological surveys
therefore may not directly translate to susceptibility of HIV to
antiretroviral drugs in clinical practice. Our data underline that
the impact of baseline mutation patterns on drug susceptibility
should be assessed using clinical algorithms or guidelines.
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