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ABSTRACT
There is strong evidence supporting the role of the plasminogen activator 

system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA 
(urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) 
and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances 
tumor cell migration and invasion and plays a key role in metastasis development, 
conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor 
SERPINE1 producing similar effects is solved by the identification of SERPINE1 
activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and 
SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, 
the acquisition of stem cell properties and resistance to antitumor agents. The aim 
of this review is to provide insight on the deregulation of these proteins in all these 
processes.

We also summarize their potential value as prognostic biomarkers or potential 
drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and 
SERPINE1 is associated with a higher risk of metastasis and could be used to identify 
patients that would benefit from an adjuvant treatment. In the future, the specific 
inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be 
used to design new therapeutic strategies in HNSCCs.

INTRODUCTION

Head and neck cancer is the sixth most common 
cancer in incidence worldwide [1]. More than 500,000 
new cases of head and neck squamous cell carcinoma 
(HNSCC) are diagnosed each year (http://globocan.iarc.
fr). Two thirds of patients are diagnosed at advanced 
stages, as lymph node metastases are often the first 
sign of the disease [2]. In advanced stages, surgery can 
significantly impact organ function, produce damage to 
the structures involved in swallowing and speech, and 
greatly reduce patient quality of life [3]. In order to avoid 

these effects, initial radical surgery has been progressively 
replaced by multimodal treatments that combine surgery, 
radiation and chemotherapy. Multimodal treatments 
have improved loco-regional disease control and organ 
preservation in head and neck patients, but five-year 
survival remains around 50% [2]. A high percentage of 
patients develop recurrences, metastasis or secondary 
tumors after treatment, which results in a poor clinical 
outcome [4-8].

The molecular mechanisms associated with head 
and neck tumor invasion, metastasis, dissemination and 
drug resistance remain largely unknown. The identification 
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of new biomarkers associated with tumor spread could be 
very useful in classifying patients according to their risk 
of recurrence [9]. An appropriate classification would 
make it possible to optimize and rationalize treatment, 
management and HNSCC patient care after diagnosis [10, 
11].

The plasminogen activator (PA) system plays a key 
role in extracellular matrix (ECM) remodeling, which 
in turn is crucial in the first steps of tumor progression 
and spreading [12]. Its main components include the 
plasminogen activators (uPA, urokinase plasminogen 
activator; tPA, tissue plasminogen activator), the cell 
membrane receptor for uPA (uPAR), the plasminogen 
activator inhibitors (PAI-1, plasminogen activator inhibitor 
1; PAI-2, plasminogen activator inhibitor 2) and plasmin 

(Figure 1) [13]. The PA system regulates the generation 
of plasmin that results from the activation of plasminogen 
by uPA or tPA. The uPAR receptor in turn accumulates 
plasminogen conversion at cell surfaces [12]. In addition, 
the plasminogen activator inhibitors (PAI-1; PA1-2), 
also known as, SERPINE1 and SERPINB2 are the main 
inhibitors of uPA and tPA [13, 14]. 

Plasmin activation is a key factor for fibrinolysis 
control and prevents health problems due to the formation 
of blood clots. Deregulation of uPA/uPAR and SERPINE1 
has been associated with thrombosis, cardiovascular 
diseases and alterations of wound healing [14, 15]. 
Moreover, the PA system effect on cell adhesion and 
migration is particularly important in cancer progression. 
Active plasmin degrades the ECM directly or indirectly 

Figure 1: Schematic representation of the main components of the plasminogen activator system and their role in 
extracellular matrix remodeling, growth factor activation, tumor growth and dissemination. uPA, urokinase plasminogen 
activator; uPAR, urokinase plasminogen activator receptor; SERPINE1, serpin family E member 1 also known as plasminogen activator 
inhibitor-1(PAI-1); Plg, plasminogen; MMPs, metalloproteinases; ECM, extracellular matrix.
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though the activation of several metalloproteinases [14]. 
ECM degradation facilitates the migration of tumor cells 
to other tissues and structures. SERPINE1 regulates this 
process and the adhesion/deadhesion balance of cells 
to the ECM, which is essential to control and promote 
tumor cell migration [16, 17]. A high expression of uPA/
uPAR and SERPINE1 has been observed in numerous 
cancer types, being associated with poor patient prognosis 
[12, 18]. In this regard, several studies supporting the 
association between the activation of the PA system and 
head and neck cancer prognosis have been reported over 
the last years. 

In this review, we first describe the effect of uPA, 
uPAR and SERPINE1 in head and neck cancer cell 
migration, metastatic dissemination and drug resistance. 
Secondly, we summarize their value as prognostic markers 
in patients with HNSCC. Finally, we discuss about the 
potential use of SERPINE1, uPAR, uPA and associated 
pathways as therapeutic targets.

ROLE OF UPA/UPAR IN TUMOR CELL 
PROLIFERATION, MIGRATION, INVASION 
AND METASTASIS

The uPA gene (Gene ID: 5328; http://www.ncbi.
nlm.nih.gov/) encodes a 411 amino acid serine protease 
that consists of two α and two anti-parallel β strands [19]. 
This protein is secreted as a zymogen (pro-uPA) that is 
activated by cleavage of the peptide bond Lys158-Ile159 
[20]. uPA has an amino-terminal EGF-like domain, a 
kringle domain, an interdomain linker and a catalytic 
domain [21]. The pro-uPA to uPA conversion is catalyzed 
by plasmin. Kallikrein, T cell-associated serine proteinase, 
cathepsin B, cathepsin L, nerve growth factor-γ, human 
mast cell tryptase and prostate specific antigen are other 
proteinases that can also catalyze “in vitro” the conversion 
of pro-uPA [12]. uPA converts plasminogen to plasmin by 
specific cleavage of an Arg-Val bond in plasminogen. The 
interaction of uPA with its receptor uPAR is also important 
for cell migration. 

The uPAR gene (Gene ID: 5329; http://www.ncbi.
nlm.nih.gov/gene) encodes a single polypeptide chain of 
313 aminoacid residues that after the maturation generates 
a 55-60kDa protein [21, 22].The uPA/uPAR interaction 
on the cell surface induces conformational changes that 
facilitate the formation of a new complex with integrins 
and with several ECM proteins such as vitronectin [23, 
24]. uPAR overexpression can also enhance growth factor 
activation and cell migration through the regulation of 
several pathways independent from its capacity of binding 
uPA and promoting plasmin activation [25].

The uPA/uPAR complex expression plays a 
significant role on the invasive and metastatic potential of 
HNSCC [22, 26-28] (Figure 2). An active uPA increases 
the production of plasmin from plasminogen and this lead 
to ECM degradation, which in turn facilitates the invasion 

of cancer cells into the surrounding tissue, as well as their 
access to blood and lymph node vessels. α5β6 integrin can 
also activate uPA, which facilitates HNSCC cell motility 
[27, 29]. uPA and uPAR have been associated with an 
increase in the growth of head and neck cancer cells and 
with the activation of FAK and ERK1/2 signaling [30, 
31]. Thombospondin has also been associated with the 
activation of uPA and cell invasion in HNSCC cells [32]. 
Plasmin cleaves a range of ECM proteins, such laminin 
and fibrin, and also activates metalloproteinases, such 
as the MMP2, previously associated with an increase of 
head and neck cancer cell invasion and metastasis [33-35]. 
Moreover, uPA and plasmin are involved in the activation 
of several growth factors, including HGF/SF and MSP, 
TGF-β, and FGF [12]. 

The expression of uPAR is associated with an 
invasive and metastatic phenotype in studies done using 
in vivo murine models of head and neck cancer. In oral 
squamous cell carcinoma xenografts, the inhibition of 
uPAR reduces tumor growth and downregulates the 
expression of genes previously associated with metastasis, 
such us MMP-2, MMP-9, VEGF-C, VEGF-D and 
VEGFR-3 [36]. A study conducted using an orthotopic 
murine model showed that the overexpression of uPAR 
in oral cancer cells generated infiltrative tumors with 
undefined margins and cytologic atypia [37]. These 
authors showed that the effect of uPAR on tumor cell 
invasion was associated with the activation of ERK1/2 
MAP kinases and its co-localization with uPA and α3β1 
integrin complex. uPAR can also promote the activation 
of the Ras-MAPK, Fak, Src and Rac and the PI3K-Akt 
pathways that have a significant effect on tumor cell 
migration [38]. Using an oral cancer metastatic mouse 
model, Zhang et al. showed that the expression of uPAR 
in cancer cells isolated from lymph node metastasis was 
higher than in cells isolated from primary tumor [39]. 
In nasopharyngeal carcinoma, a highly metastatic head 
and neck cancer [7], uPAR overexpression increases 
cell migration and invasion and promotes epithelial-to-
mesenchymal transition and metastasis [25]. This process 
has been associated with the activation of the Jak-Stat 
pathway [40]. 

The inhibition of uPAR using antisense 
oligonucleotides reduces the invasiveness and the 
metastatic potential of head and neck cancer cells [41, 42]. 

In summary, most of the studies reported in head 
and neck cancer have shown that the overexpression of 
uPA/uPAR enhances tumor cell proliferation, migration 
and invasion. This effect is due to the activation of plasmin 
and ECM degradation, but it could also be the result of the 
indirect activation of several signaling pathways with a 
key role in tumor progression and metastasis, such as the 
PI3K-Akt pathway.
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SERPINE1 IN CELL PROLIFERATION, 
MIGRATION, INVASION AND METASTASIS

The SERPINE1 gene (Gene ID: 5054, http://www.
ncbi.nlm.nih.gov/gene) encodes a clade E member of the 
serine protease inhibitor (SERPIN) superfamily that is 
the main regulator of the plasminogen activator system 
(PAs). SERPINE1 inhibits the urokinase-type plasminogen 
(uPA) and tissue-type plasminogen activator (tPA), which 

in turn, reduce the conversion of plasminogen to the active 
protease plasmin [21]. The SERPINE1 gene is located at 
7q21.2-q22 and codifies for a single-chain glycoprotein 
of about 50kDa. SERPINE1 has several polymorphisms 
in the promoter region that are associated with gene 
transcription [43]. Its expression could also be modulated 
by several transcription factors such as SP1, AP1, SMAD 
proteins, TGF-β1, and p53 [44-46]. SERPINE1 expression 
could be epigenetically modulated [47, 48] and it has been 

Figure 2: The pleiotropic effect of uPA/uPAR and SERPINE1 in head and neck squamous cell carcinoma. 
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described as a target for the miR-145 [49-51]. SERPINE1 
expression is also related to the activation of hypoxia-
related factors such as HIF-1[52]. The different protein 
conformations displayed by SERPINE1 are one of the 
particular features of this protein. Its active conformation 
inhibits tPA and uPA forming a complex with each 
enzyme, whereas its latent form does not react with 
their target proteinases [53]. A non-inhibitory substrate 
form of SERPINE1 that could be cleaved by PAs has 
also been described [54]. After the interaction between 
SERPINE1 and PAs, SERPINE1 is cleaved and acquires 
an inactive form. This is relevant because, depending on 
its conformation, SERPINE1 could interact with different 
proteins and activate distinct molecular pathways.

SERPINE1 is the main inhibitor of the uPA/uPAR 
complex, which induces its internalization through a 
process mediated by the lipoprotein receptor protein-1 
(LRP1 receptor) [55]. Based on the pro-metastatic role 
of plasmin that promotes cell matrix degradation and cell 
migration, SERPINE1 expression would be expected to 
develop a protective effect against tumor dissemination 
throughout the inhibition of uPA/uPAR complex activity. 
However, most of the studies conducted to date, in 
several cancer types, indicate that SERPINE1 expression 
is associated with poor outcome and increased risk of 
metastasis [56]. This supports a multifunctional role 
for SERPINE1 that promotes tumor cell migration and 
metastasis through several pathways independent from 
PAs effectors. In this regard, SERPINE1 has more ligands 
than PAs, including ECM components, heparin and 
LRP1[57]. 

In normal and transformed human keratinocytes, 
SERPINE1 is up-regulated in response to EGFR and 
TGF-β and is associated with an increase in cell migration 
and invasion [58-60]. During the process of wound 
healing, TGF-β induces the expression of SERPINE1 
in leading edge keratinocytes, which stimulates cell 
migration and re-epithelization [16]. 

SERPINE1 expression has also been associated 
with tumor cell migration and invasion in head and 
neck cancer cells [9, 61, 62]. We showed that the 
ectopic overexpression of SERPINE1 enhances head 
and neck cancer cell migration, and this is mediated by 
the phosphorylation and activation of Akt [62]. These 
findings are in agreement with several studies conducted 
in endothelial cells, fibrosarcoma and breast cancer cells 
indicating that SERPINE1 overexpression increases tumor 
cell migration and invasion through the activation of the 
PI3K-Akt pathway [63, 64]. SERPINE1 pro-migratory 
effect has been associated with LRP1 interaction, which 
in turn stimulates the Jak/Stat pathway [65, 66]. In thyroid 
cancer cells, LRP1 activates ERK and inhibits JNK-
dependent pathways, which maintain the invasive capacity 
of tumor cells [65]. It would be interesting to evaluate 
the interaction of SERPINE1 and LRP1 and whether it 
has a similar effect on cell migration in head and neck 

cancer cells. Similar results have been observed using “in 
vivo” mice models. Bajou K et al. observed a decrease in 
local invasion and tumor vascularization of transplanted 
malignant keratinocytes in mice deficient in SERPINE1 
expression. [67]. Invasion was restored by transfection 
with a vector expressing SERPINE1. SERPINE1 may also 
contribute to tumor aggressiveness by promoting tumor 
angiogenesis [67, 68]. A reduction in tumor vascularity 
was also observed in tumors derived from fibrosarcoma 
cell implantation in mice lacking SERPINE1 expression 
[69]. 

The studies addressing the connection between 
SERPINE1 expression and cell proliferation have 
generated inconsistent results. Some groups showed 
that SERPINE1 expression increases cell proliferation, 
whereas others reported a reduction in cell proliferation 
[57, 70]. In head and neck cancer cells, we observed that 
the ectopic overexpression of SERPINE1 reduces cell 
proliferation, whereas its inhibition with shRNA increases 
cell proliferation [62]. 

In conclusion, in addition to being the main 
inhibitor of the PA system, SERPINE1 plays a key role in 
promoting migration, spread and angiogenesis of tumor 
cells. This pro-metastatic activity of SERPINE1 is most 
likely achieved by the activation of multiple signaling 
pathways independent of PA system inhibition, which may 
explain the apparent paradox between its function as a PA 
inhibitor and its association with poor clinical outcome.

UPA/UPAR AND SERPINE1 IN APOPTOSIS 
REGULATION AND TUMOR RESISTANCE

Recent findings have suggested that in addition to its 
role in cell dissemination and metastasis, the expression 
of several components of the PA system could reduce the 
cytotoxic effect of anticancer drugs [71]. For instance, 
the uPAR expression has been associated with multi-
drug resistance in small cell lung cancer cells [72]. uPA, 
uPAR, and SERPINE1 have also been associated with the 
efficacy of tamoxifen treatment in breast cancer [73, 74]. A 
high expression of these proteins increases drug resistance.

In head and neck and oesophageal cancer cells, 
uPA and SERPINE1 expression are upregulated after 
irradiation or reactive oxygen species exposure [75-79]. 
The activation of SERPINE1 is also associated with 
radiation resistance [80]. Moreover, the inhibition of 
uPAR has been associated with the downregulation of the 
multidrug resistance gene MDR1 [36]. Hypoxia is another 
factor that could contribute to tumor resistance. In this 
regard, the expression of SERPINE1 has been associated 
with the activation of hypoxia-related factors in head and 
neck cancer cells [52]. 

The plasminogen activator system proteins have 
been also associated with resistance to targeted therapies 
[71]. uPAR expression is associated with the development 
of resistance to EGFR inhibitor therapy in glioblastoma 
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[81]. In head and neck cancer cells, the combination of 
uPAR down-regulation and EGFR inhibition showed 
a synergistic anti-tumor effect [82, 83]. Moreover, an 
association between the activation of EGFR signaling and 
SERPINE1 expression has also been described [60].

SERPINE1 (PAI-1) increases cisplatin resistance 
of head and neck tumor cells [62], while SERPINB2 
(PAI-2) increases sensitivity [84]. Interestingly, both PA 
inhibitors showed an opposite effect on drug resistance. 
These findings and the fact that uPA/uPAR associates with 
resistance to therapy, suggest that the effect of SERPINE1 
on tumor progression and drug resistance may be due 
to the activation of several signaling pathways that are 
independent from the inhibition of PA.

In the context of antitumor drug resistance, 
SERPINE1 is particularly interesting as it can enhance 
tumor progression through the inhibition of the apoptotic 
signaling. Thus, SERPINE1 over-expression has an anti-
apoptotic effect [15, 59, 85, 86] that is mainly associated 
with the inhibition of Fas/Fas-L mediated apoptosis [68, 
87]. SERPINE1 expression can also promote cell survival 
and block apoptosis by inhibiting caspase-3 activation [86]. 
Accordingly, we showed that the ectopic overexpression 
of SERPINE1 protects head and neck cancer cells from 
the apoptotic induction after cisplatin treatment [62]. This 
effect was mediated by PI3K-Akt pathway activation [62]. 
Similar findings have been reported in fibrosarcoma in 
which the expression of SERPINE1 protects cells from 
apoptosis through activation of the PI3K-Akt cell survival 
pathway [69, 88, 89].

On the basis of the foregoing, it may be concluded 
that SERPINE1 has an important role in protecting cells 
from apoptosis induction after the exposure to antitumor 
agents, and this should be considered when developing 
new treatment strategies, since it may be involved in 
cancer recurrence after therapy.

UPA/UPAR AND SERPINE1, GO OR 
GROWTH EFFECT, EPITHELIAL-TO-
MESENCHYMAL TRANSITION AND 
STEMNESS

The results reported to date suggest that 
SERPINE1 expression could increase cell migration and 
simultaneously reduce cell proliferation [62, 90]. In this 
regard, SERPINE1 could act as a switch between tumor 
cell proliferation and tumor cell migration [16, 90, 91]. 
This phenomenon commonly known as “go or growth” 
supports the notion that changes in tumor cell morphology 
associated with an increase in cell motility and migration, 
such us the cytoskeletal reorganization, are incompatible 
with enhanced cell proliferation [92]. Thus, tumor cells 
could activate the migration process to spread to other 
locations and once these cells reach a specific tissue, 
they could activate cell proliferation in order to colonize 
the tissue and generate metastasis. Cell migration is 
also accompanied by a reduction in apoptotic signaling 
that protects cells from death during their travel towards 
the target tissue. We observed that SERPINE1 inhibits 
apoptosis while reducing tumor cell proliferation, findings 
that are consistent with SERPINE1 enhancement of the 
invasive and migratory phenotype [62]. 

SERPINE1 is directly connected with the epithelial-
mesenchymal transition (EMT) and the acquisition of 
stemness, two biological processes that are essential 
to control the transition from the proliferative to the 
invasive tumor phenotype [60, 93-97]. The EMT process 
is associated with the activation of the TGF-β pathway 
which also induces SERPINE1 activation [98]. In fact, 
SERPINE1 has been commonly used as a surrogate 
marker of EMT. EMT increases the plasticity of tumor 
cells and their capacity to spread to other tissues and it is 
closely linked to the acquisition of stem cell properties. 
In this sense, SERPINE1 overexpression has been 
observed in circulating tumor cells from breast cancer 
patients showing EMT-like features [97]. In head and 
neck tumors, Lee and colleagues showed that, SERPINE1 
inhibition suppresses the self-renewal capacity of cancer 

Table 1: Expression of SERPINE1, uPA and uPAR as prognostic factors in head and neck cancer studies.

Study uPA/uPAR/SERPINE1 Protein/RNA Tumor  vs 
Normal Prognostic significance Type N

Pavon et al 2015 [62]
Pasini et al 2001 [117]
Speleman et al 2007 [118]
Yasuda et al 1997 [127]
Lindberg et al 2006 [116]
Nozaki et al 1998 [27]
Strojan et al 1998 [124]
Chin et al 2005 [128]
Huang et al 2014 [84]
Magnussen et al 2014[130]
Dhanda et al 2014 [61]
Hundsdorfer et al 2005 [131]
Strojan et al 2000 [141]
Yoshizawa et al 2011 [140]

SERPINE1
uPA/ SERPINE1
uPA/SERPINE1
uPA/SERPINE1
uPAR/SERPINE1
uPA/uPAR/SERPINE1
uPA/SERPINE1
uPA/SERPINE1
SERPINE1
uPAR/SERPINE1
SERPINE1
uPA/SERPINE1
uPA/SERPINE1
uPA/uPAR

Protein/RNA
RNA
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein

Over-expressed
Over-expressed
Over-expressed
------
Over-expressed
-----
Over-expressed
Over-expressed
Over-expressed
Over-expressed
Over-expressed
Over-expressed
---
----

Poor prognosis
------
Poor prog. (SERPINE1)
-----
-----
------
-----
Poor prognosis
NS
Poor prognosis
Poor prognosis
Poor prognosis
Poor prognosis (uPA)
Poor prognosis

Re-/prospective
Prospective
Prospective
NA
Retrospective
NA
Prospective
NA
Retrospective
Retrospective
Prospective
Prospective
NA
Retrospective

80 & 190
91
46
28
20
34
58
62
43
115
112
79
47
54

N:number of patients included in each study ; NS:non-significant; NA.: not available
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stem cells through the inhibition of SOX2 [80]. The 
overexpression of SOX2, one of the main regulators of 
self-renewal in adult tissues, has also been associated 
with the development of different types of squamous cell 
carcinomas such as lung, esophagus and nasopharyngeal 
carcinomas [8, 99]. 

Recently, Yu et al. have shown a link between 
SERPINE1 expression and Notch signaling in 
differentiated thyroid cancer [100]. These authors showed 
that NOTCH1 induction downregulates SERPINE1 
expression and it is associated with a reduction in lung 
metastasis development in mice. It would be interesting to 
explore if this effect is also present in HNSCC, as a high 
percentage of inactivating mutations in Notch has been 
observed in this tumor type [101, 102]. Notch signaling 
is a crucial regulator of stem cell renewal and promotes 
terminal differentiation of keratinocytes through the 
expression of p21 and caspase-3 [103-105]. 

In HNSCCs, the induction of EMT and the 
acquisition of cancer stem cell properties may partly 
account for the acquisition of resistance to antitumor 
agents after the PA system activation [80]. Changes in 
cell adhesion and cytoskeletal remodeling, experienced 
during the EMT-process, increase tumor cell plasticity 

and drug resistance, effects that correlate with an increase 
in the expression of uPAR and SERPINE1 [106, 107]. A 
mesenchymal-like phenotype showing stemness features 
has been observed in the most aggressive subtype of head 
and neck tumors that often overexpress SERPINE1 [108-
111]. uPAR and uPA signaling could also contribute to 
cancer stemness, as it has been demonstrated in breast 
and pancreatic cancer cells [112, 113]. The high level of 
recurrence that occurs in nasopharyngeal carcinoma after 
chemoradiotherapy treatment [6] appears to be associated 
with the expression of EMT and cancer stem cell markers 
[8].

In summary, there is evidence in the literature 
supporting a role for SERPINE1 expression in the 
induction of EMT and the acquisition of stem cell 
properties, two key mechanisms for the generation 
of cancer stem cells, which are the transition from a 
proliferative to an invasive tumor phenotype and the 
development of antitumor resistance associated with late 
tumor recurrences.

Figure 3: Expression profile of the uPA, uPAR and SERPINE1 genes in head and neck samples from HNSCC patients 
included in TCGA database. A. Differences in gene expression between normal tissue (n = 44) and tumor tissue (n = 520) (Mann 
Whitney U test). B. Differences in survival between patients with tumors expressing high levels of uPA or SERPINE1 and patients with low 
tumor expression (log-rank test and Kapplan Meier curves. In order to perform the survival analysis, we selected patients with a minimal 
follow-up of 18 months (n = 297). All (unpublished) results shown are based upon RNA seq level 3 data generated by TCGA Research 
Network; http://cancergenome.nih.gov/.
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SERPINE1, UPA AND UPAR EXPRESSION 
AS PROGNOSTIC MARKERS IN HEAD 
AND NECK CANCER

SERPINE1 expression is higher in head and neck 
cancer tissue than in normal mucosa [27, 48, 62, 114-119]. 
Although a recent publication shows that SERPINE1 is 
up-regulated in cancer-associated fibroblasts and promotes 
the invasion of oral squamous cell carcinomas [120], 
immunohistochemical studies showed that the expression 
pattern of SERPINE1 in HNSCCs often differs from that 
observed in other cancer types. In head and neck tumors, 
SERPINE1 is expressed mainly in cancer cells, whereas 
in breast and colon cancers SERPINE1 is predominantly 
expressed in stromal cells rather than in cancer cells [116]. 
We observed, in this regard, that head and neck cancer 
cells showed membrane and cytoplasmatic positivity 
for SERPINE1 while tumor-adjacent normal tissue and 
stromal tissue areas were negative or showed negligible 
staining [62]. This could be particularly important as 
SERPINE1 could activate different biological pathways 
to promote tumor spread based on whether it is expressed 
in tumor cells or stromal cells.

In microarray gene expression studies, SERPINE1 
expression has been identified as a HNSCC marker 
[109, 111, 121-123]. We used RNA seq level 3 data of 
520 head and neck tumor samples and 44 normal tissue 
samples included in The Cancer Genome Atlas Database 
(TCGA) (http://cancergenome.nih.gov/) to study changes 
in uPA, uPAR and SERPINE1 expression after malignant 
transformation and its capacity to predict patient survival. 
We found overexpression of SERPINE1 in tumor tissue 
as compared to normal tissue (Figure 3A). Strojan et 
al showed that SERPINE1 expression was also higher 
in serum from patients with head and neck cancer than 
in healthy controls [124]. Lindberg et al showed that 
SERPINE1 expression was absent in normal, hyperplastic 
and dysplastic epithelia whereas a high SERPINE1 
expression was present in incipient carcinoma and invasive 
carcinoma [116]. Additional large independent studies are 
needed to establish if the overexpression of SERPINE1 
is also present in human papillomavirus (HPV) positive 
HNSCCs, a tumor subtype that differs in origin, biological 
features and clinical behavior from HPV negative tumors 
[125, 126].

A high expression of SERPINE1 in head and neck 
tumor biopsies has been associated with a poor clinical 
outcome [27, 61, 62, 116-118, 124, 127-131] (Table 
1). Most of the studies conducted to date in HNSCC 
have concluded that patients with tumors showing a 
high SERPINE1 expression had a poorer disease-free 
or overall survival than patients with tumors expressing 
low levels. Besides its prognostic value, we also showed, 
by analyzing three independent cohorts of patients with 
HNSCC, that a high SERPINE1 expression increases the 
risk of metastasis after treatment [62]. 

However, the association between SERPINE1 
expression and the clinicopathological characteristics has 
generated conflicting results. Some studies have shown 
that the SERPINE1 expression is higher in advanced 
stages [124, 127]. SERPINE1 expression has been also 
associated with the presence of lymph node metastasis 
and the perineural invasion [62, 118, 132]. Dhanda et 
al showed that SERPINE1 expression was higher in the 
invasive front and could predict the extracapsular spread in 
patients with oral cancer [61]. Once again, these findings 
support the association of SERPINE1 overexpression with 
an invasive and migratory tumor phenotype. Other authors 
did not find any association between the clinicopatological 
characteristics and SERPINE1 expression, probably due to 
the small sample size included in these studies [27, 129].

HNSCC studies showed that the expression of uPA 
and uPAR is also commonly higher in tumor tissue than 
in normal tissue [114, 115, 117, 119, 127, 133-137]. We 
also found similar results by analyzing the expression data 
(RNA seq level 3 data) of HNSCC samples included in 
TCGA project (Figure 3 A) Tobacco smoke could induce 
the expression of uPA which is commonly overexpressed 
in premalignant and malignant lesions in the oral 
cavity [138]. Several studies showed that uPA or uPAR 
expression is associated with higher T stage, low grade of 
differentiation and the presence of lymph node metastasis 
[27, 117, 134, 139]. Most analyses conducted in head and 
neck cancer have concluded that the expression of uPA 
and uPAR is also associated with a poor clinical outcome 
[128, 140, 141] (Table 1).

SERPINB2, another component of the plasminogen 
activator system, has been also analyzed in patients with 
head and neck cancer, being associated with clinical 
outcome [84, 142]. In contrast to SERPINE1, SERPINB2 
was identified as a favorable prognostic marker. Moreover, 
SERPINB2 down-regulation was associated with a 
reduced overall survival in patients with HNSCC. The 
opposite effect on patient prognosis of both plasminogen 
inhibitors (SERPINE1 and SERPINB2) supports again the 
notion that SERPINE1 activates signaling pathways that 
are independent from its role as PA system inhibitors.

Taken together, the reported findings suggest that a 
high expression of the PA system components, especially 
of uPA and SERPINE1, is associated with a poor clinical 
outcome in patients with head and neck cancer. In this 
regard, our analysis of the gene expression profile of 
297 tumors included in TCGA database with a minimum 
follow-up of 18 months, identified a subgroup of patients 
with a poor survival characterized by a high expression 
of uPA and SERPINE1 (Figure 3B). We observed that 
the expression of these proteins in pre-treatment tumor 
biopsies could be used to identify patients with a high 
probability of death and to distinguish them from patients 
with low risk. Many studies in breast cancer patients, 
have establish SERPINE1 and uPA as suitable markers 
for therapy decision-making in patients with early lymph-
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node negative breast cancer [143-146]. We expect that 
these markers will be increasingly studied in the near 
future to establish if they could also be used in HNSCC 
patients for helping treatment decision making, especially 
to identify those patients with a high risk of metastasis 
who could be treated with adjuvant chemotherapy or 
chemo-radiation.

INHIBITION OF THE PLASMINOGEN 
ACTIVATOR COMPONENTS AS A 
THERAPEUTIC STRATEGY IN HNSCC

The reported results point out that the components 
of the PA system uPA, uPAR and SERPINE1 could be 
good targets for HNSCC therapy, so that their inhibition 
could represent a relevant strategy to increase the 
efficacy of current antitumor agents. In this sense, the 
antitumor activity of several small molecules inhibitors 
of SERPINE1, initially developed as antithrombotic 
agents, is currently being evaluated [87, 147-150]. These 
specific inhibitors usually block the interaction between 
SERPINE1 and uPA and generate conformational changes 
that result in the irreversible conversion of SERPINE1 into 
its latent or cleaved forms [15, 147, 151-153].

In vitro and in vivo xenografts models have shown 
an effect for these inhibitors on angiogenesis, apoptosis 
induction and tumor growth [87, 154-158]. In pre-clinical 
models, Tiplaxtinin, one of the most studied SERPINE1 
inhibitors, is able to block the growth and induce apoptosis 
in bladder carcinoma, fibrosarcoma and head and neck 
cancer cells [80, 87, 156]. However, additional preclinical 
studies and subsequent clinical trials are necessary to show 
if these specific inhibitors could be used as a targeted 
therapy in HNSCCs patients whose tumors overexpress 
SERPINE1. Inhibitors of uPAR or uPA are also being 
developed and tested as antitumor agents in patients with 
breast, pancreatic and head and neck cancer in phase I-II 
trials [46, 159-162]. 

Moreover, as the activation of the PI3K-Akt 
pathway was commonly associated with SERPINE1 
overexpression, the use of new inhibitors of PI3K-Akt 
pathway, currently under clinical investigation, could also 
be considered as an option to treat tumors overexpressing 
SERPINE1.

CONCLUSIONS AND PERSPECTIVES

In summary, the overexpression of uPA/uPAR 
enhances tumor cell proliferation, migration and invasion 
and plays a key role in metastasis development, conferring 
poor prognosis. This system appears to act mainly by 
activation of plasmin, involved in ECM degradation, and 
through the activation of several signaling pathways such 
as the PI3K-Akt pathway. SERPINE1 overexpression 
also enhances tumor cell migration and metastasis 

dissemination, promotes angiogenesis, protects cells 
from Fas/Fas-L mediated apoptosis and is associated with 
poor prognosis. The fact that the overexpression of uPA/
uPAR and its main inhibitor SERPINE1, produce similar 
effects on cell migration, tumor spread and prognosis 
may seem contradictory, but several reports suggest that 
SERPINE1 activates signaling pathways independent of 
the inhibition of the uPA/uPAR complex. Both, uPA/uPAR 
and SERPINE1 are closely associated with the induction 
of EMT and the acquisition of cancer stem cell properties, 
which could contribute to resistance to therapy.

uPA/uPAR and SERPINE1 may be useful as 
prognostic biomarkers, since they are commonly 
overexpressed in HNSCCs and are associated with 
a poor clinical outcome. The determination of these 
markers in pre-treatment tumor biopsies could be used 
to stratify patients according to their risk of metastasis 
development. In the future, these markers, especially 
uPA and SERPINE1, could be used for treatment 
decision making to identify patients with a high risk of 
metastasis development, who could benefit from adjuvant 
chemotherapy or chemo-radiotherapy. However, they 
should be validated in independent clinical trials in order 
to clarify their clinical value and to identify suitable 
parameters for their detection and patient stratification. 
We also expect in the future that the specific inhibitors 
of uPA/uPAR and SERPINE1, already in clinical trials, 
could be tested in HNSCCs in combination with other 
drugs or radiation in an attempt to improve current 
antitumor therapy. The inhibition of the PA system could 
be particularly relevant to reduce lymph node recurrences 
and metastatic dissemination, one of the major challenges 
to prevent deaths for head and neck cancer.
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