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Group Strategy-Proofness in Private Good Economies†

By Salvador Barberà, Dolors Berga, and Bernardo Moreno*

Many salient rules to allocate private goods are not only strategy-
proof, but also group strategy-proof, in appropriate domains of 
definition, hence diminishing the traditional conflict between 
incentives and efficiency. That is so for solutions to matching, 
division, cost sharing, house allocation, and auctions, in spite of the 
substantive disparity between these cases. In a general framework 
encompassing all of them, we prove that the equivalence between 
the two forms of strategy-proofness is due to an underlying common 
structure that transcends the many differences between the contexts 
and the mechanisms for which it holds. (JEL C78, D44, D63, D71, 
D82)

In many contexts where satisfactory strategy-proof mechanisms do not exist, ask-
ing for more becomes redundant. But in domains where that basic incentive property 
can be met, it becomes natural to investigate whether there exist mechanisms that 
are not only immune to manipulation by individuals, but can also resist manipula-
tion by groups of coordinated agents.1 This is particularly desirable for two reasons. 
One has to do with small coalitions. Individual strategy-proofness is a rather frag-
ile property, unless one can also preclude manipulations of the social outcome by 
potential coalitions, especially if these may be sufficiently small and easy to coor-
dinate. That danger is avoided under group strategy-proof mechanisms. The second 
reason is that, under group strategy-proofness, the grand coalition cannot get joint 
improvements either. Therefore, this property guarantees efficiency,2 in addition to 
good incentives: these two desiderata, which are difficult to satisfy simultaneously 
in other contexts, become compatible.

1 We study that question for economies with public goods in Barberà, Berga, and Moreno (2010). 
2 As we shall see, several notions of group strategy-proofness will imply different levels of efficiency, but in all 

cases weak efficiency will at least be guaranteed. 
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In this paper we study the incentive properties of mechanisms to allocate pri-
vate goods among selfish agents. We start from the striking observation that many 
well-known individually strategy-proof mechanisms are also group strategy-proof, 
even if the latter is in principle a much stronger condition than the former. And 
this happens in situations that are formally modeled in rather different manners, 
including matching, division, cost sharing, house allocation, and auctions. We want 
to determine whether this coincidence between the two a priori different incentive 
properties arises in each case for specific reasons, or whether there is a common 
ground for all of them.

In fact, strategy-proofness is a property of social choice functions, rather than 
a property of mechanisms. Agents who operate under a given mechanism may be 
using very general strategies, and the idea of truth-telling is not directly applicable to 
them. However, mechanisms where agents are endowed with dominant strategies are 
naturally associated with the direct mechanism where agent’s messages are prefer-
ences: indeed, these are social choice functions, and they satisfy  strategy-proofness. 
We make this remark for precision, though in what follows we shall abide with 
tradition and keep talking about strategy-proof mechanisms when this does not lead 
to confusion. Actually, the remark is relevant for another, more important reason. 
Thinking of dominant strategy mechanisms in terms of their direct representation 
as social choice functions provides us with a common language to describe models 
that take very different forms, but share the same feature of being both individual 
and group strategy-proof in their respective setups. Some of these mechanisms oper-
ate in worlds where monetary transfers are excluded, like  many-to-one matching 
(Gale and Shapley 1962; Roth and Sotomayor 1990), division problems (Sprumont 
1991), and house allocation in its simplest form (Shapley and Scarf 1974). Others 
address problems where money transfers are possible: sharing the costs of public 
goods (Serizawa 1999), matching with contracts (Hatfield and Kojima 2009), house 
allocation with prices (Miyagawa 2001), or auctions (Vickrey 1961). Under some of 
these mechanisms only subsets of agents have the right incentives, while for others 
all of them do. For example, in matching models or in auctions, strategy-proofness 
in its different forms may be only satisfied for members of one side of the market, 
while in housing problems these properties apply to all participants. And there are 
many other differences among the models we are interested in. Yet, we identify prop-
erties that are sufficient to precipitate the group strategy-proofness of those social 
choice functions that are individually strategy-proof. All of our examples satisfy 
these properties, once specialized to fit the characteristics of each model. Hence, our 
equivalence result does not only clarify the intriguing connection between the two 
properties, but also proves that their link is independent of whether individual and 
group strategy-proofness hold for all agents or only for some.

The paper proceeds as follows. In Section I we present a general model, provide 
two allocation problems where attractive group strategy-proof mechanisms can be 
defined, and briefly discuss how each one of them fits the general framework. In 
Section II we identify three conditions that are satisfied by these two mechanisms 
and by many others: one is on the domain and the others are defined on the func-
tion itself. We then prove that for all mechanisms satisfying them, individual and 
group strategy-proofness become equivalent. In Section III we provide a larger set 
of applications where the allocation problem takes different forms and alternative 
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mechanisms are proposed for each one, all of which are group strategy-proof. We 
briefly show how the applications fit our general framework and satisfy the condi-
tions of our equivalence theorem. Finally, in Section IV we place our contribution 
in further perspective, offer comments on related work by other authors, and discuss 
alternative questions of interest. The Appendix offers a collection of examples that 
illustrate several interesting relationships between conditions that we propose in the 
main text, and help to understand the role they play in our model and result.

I. The Model and Some Leading Applications

Let   = {1, 2,  … , n}  be a finite set of agents with  n ⩾ 2 . Let     i    be the set of 
possible consequences for  i  ,  i ∈  . Let   ⊆    1   ×…×    n    be the set of feasible 
combinations of consequences for agents and  a =  ( a  1  ,  … ,  a  n  ) ∈  .    is our set of 
alternatives.

Each agent  i  has preferences denoted by   R  i    on     i   . As usual, we denote by   P  i    
and   I  i    the strict and the indifference part of   R  i    , respectively. For any  a ∈   and   R  i    , 
the strict lower contour set of   R  i    at   a  i    is    

_
 L  ( R  i  ,  a  i  ) =  { b  i   ∈    i   :  a  i    P  i     b  i  }   and the strict 

upper contour set of   R  i    at   a  i    is    
_

 U  ( R  i  ,  a  i  )  =  { b  i   ∈    i   :  b  i    P  i     a  i  } . 
Let     ̃    i    be the set of complete, reflexive, and transitive orderings on     i  .  From 

preferences on     i    we can induce preferences on  A  as follows: for any  a, b ∈ ,   a  R   i   b  
if and only if   a  i     R  i     b  i   . That is, we assume that, when evaluating different alternatives, 
agents are selfish. Note that, abusing notation, we use the same symbol   R  i    to denote 
preferences on    and on     i   .

Let     i   ⊆    ̃    i    be the set of admissible preferences for agent  i ∈  . A prefer-
ence profile, denoted by   R     = ( R  1  ,  … ,  R    n  ),  is an element of   ×  i∈       i   . We will 
write   R     = ( R    ,  R    \  ) ∈  ×  i∈      i    when we want to stress the role of coalition    
in   .

A social choice function (or a rule) is a function  f :  ×  i∈       i   →  .
Let us first concentrate on incentive properties. The best known nonmanipulabil-

ity axiom is that of strategy-proofness. In its usual form it requires the truth to be a 
dominant strategy for all agents. Our definition will be qualified, allowing for this 
requirement to only hold for agents in some group   .

DEFINITION 1: A social choice function  f  on   ×  i∈      i    is manipulable at   R        
∈  ×  i∈      i    by agent  i ∈   if there exists   R  i  ′   ∈    i    such that   R  i  ′   ≠  R  i    and  
 f   ( R  i  ′  ,  R    \{i}  )  P  i     f  ( R    ) . For   ⊆   , a social choice function is -strategy-proof if it 
is not manipulable by any agent  i ∈  .

A more demanding form of strategy-proofness is obtained by requiring that no 
group of individuals, of any size, could benefit from joint departures from truthful 
preference revelation. This is the general idea underlying the notion of group strat-
egy-proofness. But while the formulation of the individual property is uncontrover-
sial, here we face the possibility of defining several versions of the new property. In 
particular, we may specify in different manners what is meant by a group to benefit 
from strategic preference misrepresentation. This leads us to propose two alternative 
notions of group strategy-proofness. Under the first definition, we require that, in 
order to agree to manipulate, all participants must strictly gain from it. Since this 
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is a strong requirement, the resulting notion of group strategy-proofness will be 
termed weak. In the second definition, we allow some members of a coalition to 
participate in a manipulation even if they do not make any gain from it (not a loss 
either), provided someone else in the group does. Since here it is easier to agree on a 
manipulation, we term the resulting notion of group strategy-proofness to be strong.

This is the spirit of the two definitions below.3

DEFINITION 2: A social choice function  f  on   ×  i∈      i    is strongly manipula-
ble at   R      ∈   ×  i∈      i    by coalition   ⊆   if there exists   R    ′    ∈   ×  i∈     i    such that  
f ( R    ′  ,  R     \  ) P  i     f  ( R    )  for all  i ∈  . For   ⊆   , a social choice function is -weakly 
group strategy-proof if it is not strongly manipulable by any coalition   ⊆  .

DEFINITION 3: A social choice function  f  on   ×  i∈      i    is weakly manipula-
ble at   R      ∈   ×  i∈       i    by coalition    ⊆    if there exists   R    ′    ∈   ×  i∈     i    such that  
f ( R    ′  ,  R     \  ) R   i    f  ( R    )  for all  i ∈   , and  f  ( R    ′  ,  R     \  ) P  j    f  ( R    )  for some  j ∈  . For  
  ⊆    , a social choice function is   -strongly group strategy-proof if it is not 
weakly manipulable by any coalition    ⊆  .

Notice that, in order to make sense, the definition of individual strategy-proofness 
requires that the domain should be a Cartesian product. Otherwise, the basic under-
lying idea that agents can decide what preferences to declare irrespectively of those 
declared by others could not be properly expressed. In the case of group manipula-
tions, a bit more room is left, and the concept can be applied, in principle, to some 
non-Cartesian domains without doing violence to the idea of coordinated actions 
(see Penn, Patty, and Gailmard 2011). Since our main purpose is to examine further 
properties that may be satisfied by rules which we assume to be strategy-proof from 
the onset, we restrict attention to the Cartesian domains where that basic condition 
is well defined.

It is worth insisting that all of our conditions are defined for any subset  of 
agents, while their standard versions apply to the whole set of individuals involved 
in the allocation problem   ( =    )  . This is because, as we shall see, for some 
important problems, standard versions of those properties are essentially impossible 
to obtain, and yet some attractive and meaningful allocation methods satisfy them 
for at least some part of the agents.4 In these and in all other definitions where this 
qualification applies and    is a strict subset of agents, we shall use the expressions 
above in full. When the properties apply to all agents, we may omit the reference to 
the set   .

Remark that, formally, strategy-proofness is a much weaker condition than group 
strategy-proofness in any of its versions. Our challenge is to explain why in some 
cases this gap closes and both requirements become equivalent. This will, of course, 

3 Other definitions of group strategy-proofness and related notions are conceivable. See Section IV for further 
discussion. 

4 This is the case in models where there are two differentiated types of agents, or sides of the market. For exam-
ple, as we shall see, in classical matching models the Gale-Shapley mechanism only provides one side of the market 
with dominant strategies to reveal the truth. By relaxing the standard definitions and allowing for partial notions of 
manipulation and of strategy-proofness, we can unify the treatments of matching problems and mechanisms with 
that of other cases that do not present the same asymmetries among agents. 
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depend on the notion of group strategy-proofness that we discuss. Here we’ll con-
centrate on weak group strategy-proofness because of the very nature of our exercise. 
We were surprised and interested by the fact that two apparently different incentive 
requirements can collapse into one. And this happens for many mechanisms. An 
important task is to understand the root of this coincidence, and we feel that the 
larger the class of mechanisms that we can put under the same umbrella, the more 
basic will the unifying conditions that we may discover to lie under all of them.

To prove the generality of our framework and the nature of our inquiry, we pres-
ent two problems and two paradigmatic mechanisms to solve them, out of the many 
cases covered by our main result. Each one of them is described in the literature in 
the usual language of its respective field. But to each mechanism we can associate a 
social choice function that directly links the preferences of participating agents with 
the outcome that would obtain from letting these agents operate within the mecha-
nism if guided by such preferences. This associated social choice function is called 
the direct mechanism in the mechanism design literature. It provides us with a natural 
language to examine the common traits of otherwise apparently diverse mechanisms 
in a unified manner. And it also allows us to emphasize how their many differences, in 
the form of a variety of domains, outcomes, and strategies, are inconsequential for our 
main equivalence result. The applications we have selected to motivate our presenta-
tion are, as we shall see, two polar cases within the wide range of mechanisms that fall 
into our universe. Later on, in Section III, we shall provide a similar analysis of other 
significant allocation problems and of some paradigmatic mechanisms to solve them.

One-to-One Matching (Gale and Shapley 1962; Roth and Sotomayor 1990).— 
Agents are divided in two sides: workers and firms. Each firm can only hire one 
worker, and each worker can only work for one firm. Alternatives are matchings, 
assigning workers to firms, in a reciprocal manner, and eventually leaving some 
agents matched with themselves (meaning that they remain unmatched to oth-
ers). Possible consequences for an agent are the agents that she may be matched 
to. Preferences are initially defined over possible partners and one's self. They are 
typically assumed to be strict over these consequences. They naturally extend to 
alternatives (matchings) when agents are selfish. Notice then that many alternatives 
become indifferent to each other for an agent, as long as they assign her the same 
partner. The resulting admissible profiles are the domain of social choice functions 
selecting one matching for each combination of preferences. The celebrated Gale-
Shapley algorithm selects a unique matching for each specification of preferences, 
as soon as one of the sides of the market (say, the workers for the purpose of this 
illustration) is assigned the specific role of proposer. The algorithm works as fol-
lows. It starts with all workers applying to their preferred firms, and firms tentatively 
accepting the one worker they prefer among those who applied for it. If that leaves 
some workers unmatched, these are then asked to apply to their second best firms. 
Once their applications get in, firms may accept these new applicants if they are bet-
ter for them than the ones they retained in the first round, and reject the previously 
accepted ones. That leads to a new matching and to a new list of unmatched workers. 
Again, if some workers remain unmatched, they may apply to the firm that is best 
among those they did not approach in preceding rounds. The process continues until 
no further changes occur. This always leads to a single alternative (matching).
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The use of the Gale-Shapley mechanism at each preference profile generates a 
social choice function. We will abuse terminology and call it the Gale-Shapley social 
choice function from now on. Extensions of the basic model in different directions are 
possible, and they will also fall into the range of mechanisms our result applies to.5

Cost Sharing of a Public Good (Serizawa 1999; Moulin 1994).—As a second 
illustration, we consider a specific mechanism within a class that was characterized 
by Theorem 3 in Serizawa (1999), following lines initiated by Moulin (1994). A 
set of  n  agents must decide on the amount of a public good to be produced, and 
how to share the costs of production of the agreed-upon quantity. Consequences for 
each agent will be the amount of public good they will enjoy and the share of the 
cost that they will be charged. Given a cost function for production of the (unique) 
public good in terms of the (unique) private good, alternatives will be  n + 1  tuples 
indicating how much public good to be produced and how much private good must 
be contributed by each agent. Preferences of agents over alternatives are assumed to 
be increasing in both the private and the public good, continuous and convex. These 
preferences are naturally extended to alternatives when agents are selfish. Feasible 
alternatives consist of those where the contributions of agents cover exactly the 
cost of production of the public good. A mechanism assigns an alternative to every 
profile of preferences. Under the assumption that the cost function is concave, and 
that the agent knows the share of total cost it must pay, notice that the agent’s pref-
erences over consequences will be single-peaked (informally, each one will have a 
unique best amount of public good, and their utility will decrease with distance to 
this amount). Serizawa’s simple scheme consists of announcing to all agents that 
they will have to equally share the cost of the public good, ask them to indicate their 
most desired amount, and then producing the minimum of the demanded quantities.

The mechanisms we just presented in these applications satisfy individual and 
group strategy-proofness with appropriate qualifications. Under the Gale-Shapley 
mechanism, declaring the true preferences is a dominant strategy for the proposers, 
hence, the associated direct mechanism (social choice function) is  P -strategy-proof, 
where  P  stands for the set of agents on the side of the proposers.6 It is also true that 
no coalition formed by any subset of proposers can find a set of coordinated devi-
ations from the truth that will guarantee that they all obtain a better outcome. The 
function is not only individual (see Dubins and Freedman 1981 and Roth 1982) but 
also weakly group strategy-proof (Dubins and Freedman 1981).7 Notice, however, 
that the rule does not satisfy strong group strategy-proofness.8

Serizawa’s cost sharing rule is individual and weak group strategy-proofness for 
the set of all agents (Serizawa 1999).

We have chosen these two simple applications to start with, because they are 
quite different even if our equivalence holds for both. In the matching case, only 

5 These extensions are discussed in Section III. 
6 However, the agents in the other side of the market can manipulate by misrepresenting their preferences. 
7 The original proofs of these facts were nontrivial. The equivalence between individual and group 

 strategy-proofness for specific mechanisms continues to be the object of recent papers. See, for example, Martínez 
et al. (2004) and Hatfield and Kojima (2009). 

8 For an example proving this fact and further discussion, see Example 7 in the Appendix and Section IV, 
respectively. 
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some agents have dominant strategies, while in the cost sharing application all 
agents do. In one case group strategy-proofness is weak, while strong in the other. 
The domain of preferences is restricted in both cases by the selfishness assumption, 
but otherwise different. In the case of matching, preferences over consequences are 
unrestricted. In the cost sharing application, the combination of preference convex-
ity and concave costs implies single-peakedness over the amount of public good. 
Finally, remark that in the case of matching, the best consequence for an agent 
is well defined, whereas in the cost sharing case for any given allocation there is 
always a better one.

In the next section we shall dig into the foundations that make these and many 
other different allocation problems to share the same equivalence. To do so we adopt 
a general enough view that takes into account the differences between mechanisms 
that we have hinted at but concentrate on the essential similarities of their associated 
direct mechanisms.

II. The Equivalence between Individual and Weak Group Strategy-Proofness

We now present the three conditions that will be used to establish the equivalence 
between individual and weak group strategy-proofness. We have identified these 
conditions after close examination of a wide variety of mechanisms that share the 
equivalence, since they appear as a natural common denominator for all of them. 
And we shall argue that they are, in addition, conditions of independent normative 
interest. Let us now express them formally.

First, we ask for the domain to satisfy a richness condition.

DEFINITION 4: A set of individual preferences     i    is rich if for any   R   i  ,   R ̃    i      
∈      i    ,   a  i  ,  b  i   ∈    i    such that   b  i    P  i    a  i    , there exists   R  i  ′   ∈    i    such that    

_
 U  ( R  i  ′  ,  b  i  )   

⊆   
_

 U  ( R   i  ,  b  i  ) ∩   
_

 U  (  R ̃    i  ,  b  i  )  ,    
_

 L  (  R ̃    i  ,  b  i  )  ⊆   
_

 L  ( R  i  ′  ,  b  i  ) ,    
_

 U  ( R  i  ,  a  i  ) =   
_

 U  ( R  i  ′  ,  a  i  )  and    
_

 L  ( R  i  ,  a  i  )   
=   

_
 L  ( R  i  ′  ,  a  i  ) .

DEFINITION 5: Let   ⊆  . A domain of preferences   ×  i∈      i    is   -rich if for any  
i ∈  ,     i    is rich.

Remark that, in our case, the idea of a rich domain is based on a certain notion of 
betweenness: if two preferences are admissible for an agent, then a third preference 
that combines their characteristics in a specific manner must also be admissible. As 
we shall see, many natural domains meet the condition. However there are other 
domains that do not, like those of separable preferences. But then it is known that 
mechanisms operating in such domains are typically inefficient and not weak group 
strategy-proof.9

The condition has an easy implication when the preferences are such that each 
agent has always a best consequence, and all possible consequences can be best. 
This is the case, for example, when there is a finite set of objects and preferences 
are linear orders of objects, like in matching, or even in some cases where the set 

9 For example, the Vickrey-Clarke-Groves (VCG) mechanism, or the voting by committees procedures defined 
in Barberà, Sonnenschein, and Zhou (1991). 
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of  consequences is infinite, like in the division problem under single-peaked pref-
erences over shares. Then, given any   R  i    ,    R ̃    i    ,   a  i    ,   b  i    we can check whether there exists 
an   R  i  ′    where   a  i    stays at the same position than in   R  i    but   b  i    ranks at the top (see this 
simpler condition in Barberà, Berga, and Moreno 2014). The reason why we do 
not postulate our domain restrictions in these simpler terms is that, in our present 
formulation, we can also include problems where the notion of a best element is 
not well defined, but our condition holds and is even easy to check for. This is the 
case, for example, in allocation problems where we admit unbounded monetary 
compensations.

Next, we ask our functions to respond positively to preference changes, in a nat-
ural and rather weak form. This is reflected by the notion of   -joint monotonicity. 
It requires the following. Given a set  of agents, and a preference profile   R      , con-
sider the profile   R    ′    where   f  i  ( R    )  has improved its position for some agents  i  in . 
Then,  f  ( R    ′  )  should have a consequence that is as good as the one obtained by these 
agents at  f  ( R    ) .

Formally,

DEFINITION 6: Let   ⊆   be a subset of agents. A social choice function  f  
satisfies   -joint monotonicity on   ×  i∈       i    if for any   R     ∈  ×  i∈      i    ,   ⊆   , 
and   R     ′   ∈   ×  i∈     i    (  R  i   ′  ≠  R  i    for any  i ∈   )  such that    

_
 L  ( R  i  ,  f  i  ( R    )) ⊆   

_
 L  ( R  i  ′  ,  f  i  ( R    ))  

and    
_

 U  ( R  i  ,  f  i  ( R     )) ⊇   
_

 U  ( R  i  ′  ,  f  i  ( R     ))  for each  i ∈  , then   f  i  ( R    ′  ,  R     \  ) R  i  ′     f  i  ( R     )  for 
each  i ∈  .

This condition belongs to a class of requirements that admit several formulations 
but share the same motivation: if one agent gets a consequence and then that con-
sequence becomes more appreciated by her than it was, this change cannot work 
against the agent’s interest.

A relatively strong requirement within this class is known as Maskin’s monoto-
nicity, and ours is strictly weaker than this well-known condition.10 At the other end, 
some notions of monotonicity are only required to apply when the improvement of 
the initially chosen alternative is in fact the only change between the two profiles 
that are compared: ours is stronger than those, since it applies even when the ranking 
of consequences within the strict upper and lower contour sets can vary.

Our last condition establishes some limits on the impact that changes in the pref-
erences of one agent can have on the consequences that the mechanism assigns 
to others. We call it   -respectfulness. It requires that, whenever an agent changes 
preferences in a limited manner, and this has no consequences on her utility, then the 
utilities of other agents remain unchanged.

Specifically,

DEFINITION 7: Let    ⊆    be a subset of agents. A social choice function  f  
on   ×  i∈      i    is   -respectful if

10 For a complete argument and more comments about this fact, see Section IV. 
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  f  i  ( R    ) I  i     f  i   ( R  i  ′  ,  R    \{i}  )  implies  f  j   ( R    ) I  j     f  j    ( R  i  ′  ,  R    \{i}  ) ,   ∀  j   ∈  \{i}, 

for each  i ∈  ,   R     ∈  ×  i∈     i   , and   R  i  ′   ∈    i    such that    
_

 U  ( R  i  ,  f  i  ( R    ))   
=   

_
 U  ( R  i  ′  ,  f  i  ( R     ))  and    

_
 L  ( R  i  ,  f  i  ( R     )) =   

_
 L  ( R  i  ′  ,  f  i  ( R     )) .11

Like the preceding one, this condition has normative appeal. Under appropriate 
conditions, no agent should be able to change the utility of others without changing 
her own. For short, we say that the type of changes in individual preferences con-
templated in Definition 7 are reshufflings of the initial preferences around a given 
consequence.

The condition of   -respectfulness is in a similar spirit, but much weaker than 
others also requiring that agents’ preference changes that have no impact on them 
should not have consequences on others. A seminal definition in this vein was that 
of nonbossiness (Satterthwaite and Sonnenschein 1981).

DEFINITION 8: A social choice function  f  on   ×  i∈       i    is nonbossy if

  f  i   ( R  i  ,  R    \{i}  )  =  f  i   (  R ̃    i  ,  R    \{i}  )  implies f   ( R   i  ,  R    \{i}  )  = f  (  R ̃    i  ,  R    \{i}  )  

for any  i ∈   , any   R  i  ,   R ̃    i   ∈    i    , and any   R     \{i}   ∈  ×  i∈  \{i}     i   .

Notice that when preferences over consequences are strict, nonbossiness implies 
respectfulness. Even in some frameworks where indifferences are allowed, the same 
implication may also hold in conjunction with additional properties (see the case of 
the division problem in Section III).

Another proposal that implies respectfulness is inspired by Ritz (1985), and con-
sequences for others not to change, if one’s utilities are not changed.

DEFINITION 9: A social choice function  f  on   ×  i∈      i    is  noncorruptible 
if   f  i   ( R  i  ,  R    \{i}  )  I  i      f  i   (  R ̃    i  ,  R    \{i}  )  and  f  i   ( R  i  ,  R    \{i}  )   I ̃    i      f  i   (  R ̃    i  ,  R    \{i}  )  implies f    ( R  i  ,  R    \{i}  )   
= f  (  R ̃    i  ,  R     \{i}  )   for any  i ∈  , any   R   i  ,   R ̃    i   ∈    i    , and any   R    \{i}   ∈  ×  i∈    \{i}     i   .

And there are other similar conditions, which have been recently surveyed by 
Thomson (2016).

Now, before stating and proving our main result, let us check that the three con-
ditions we propose as a common denominator among many mechanisms will be 
satisfied by those two we have already presented in the previous section.

Let’s start by the Gale-Shapley mechanism. It is trivial to see that our domain 
condition is satisfied in the standard version of the matching problem, since all pos-
sible orderings among consequences are admissible for each agent. To argue that  
 -joint monotonicity and -respectfulness are satisfied, with  being the set of 
proposers, we first refer to two important properties of the mechanism. One is that 

11 Notice that our requirement is restricted to changes in the mechanisms' outcomes that are induced by a limited 
class of preference changes. Under strategy-proof mechanisms, these changes will have no utility impact on the 
individual whose preferences are modified. This is because the reshufflings above and below the indifference sets of 
the initial outcome cannot improve or worsen the utility of an agent under strategy-proofness. 
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it always selects a stable outcome.12 The other is that this outcome assigns to all 
agents in the proposers’ side the best possible match among those that she can get 
at any stable matching. Indeed, the set of stable matchings is a lattice, and the stable 
alternative selected by the mechanism is the proposer’s best.13 Now, to show that 
the mechanism satisfies -joint monotonicity, start from its image at any preference 
profile, and compare it with the resulting choice when a group of agents on the pro-
posers’ side,  (which is either  or  ) have increased the valuation they attribute 
to the matches they were getting. Notice that the old matching will still be stable 
under the new preferences. This new matching is the best for the new proposers 
among all stable ones. But then, it will also be the best for the proposers under the 
initial preferences: hence, the two consequences will be the same for agents in  , 
and -joint monotonicity holds.

A similar argument works to prove   -respectfulness.14 Now, if agents’ prefer-
ences have undergone a reshuffling of the alternatives that were strictly above or 
below the indifference class to which the matching belongs, it will remain stable. 
But then, it will be the proposers’ best stable matching for both the initial and the 
new preferences, and it will be chosen at both profiles. The individual whose prefer-
ences have changed will see no change in consequences, nor will anyone else.

We now turn to the second application: Serizawa’s cost sharing method, in the 
context of concave cost functions and continuous, strictly convex preferences that 
are increasing in the amounts of public and private good. Now the notion of an 
absolute best alternative is not well defined. To prove richness, consider any pair of 
preferences   R  i  ,   R ̃    i   ∈    i    , and any pair of consequences   a  i  ,  b  i   ∈    i    such that   b  i    P  i    a  i   . 
Let   R  i  ′   ∈    i    be such that its indifference curve through   a  i    is the same as that of   R  i    , 
and such that the upper contour set at   b  i    is the intersection of the upper contour sets 
of   R  i    and    R ̃    i    at   b  i   . This preference is clearly admissible and satisfies the requirement 
imposed by richness.

To argue that joint monotonicity and respectfulness are satisfied, we use the fol-
lowing observation. For any given cost function and knowing that cost sharing will 
be egalitarian, each agent has an optimal combination of public good provision and 
share, which in fact can be expressed as a single-peaked preference over the amount 
of public good. Conversely, given any amount of public good, we can find prefer-
ences over the amount of it and the cost payments that would generate a preference 
that peaks at that given amount.

Joint monotonicity is clearly satisfied. An agent demanding the smallest amount 
of the public good determines the allocation at each profile. Any group of agents 
not containing this minimum demander, and whose members’ strict upper contour 
set at the initial outcome decreases, will still demand a higher amount of public 
good and thus not change the initial outcome. Yet, the low demand agent will not 
change her choice of public good level when her upper contour shrinks. Therefore, 

12 A matching is stable if it is not blocked by any individual or any pair of agents. A matching is blocked by an 
individual if she prefers to be single rather than with her match. And a matching is blocked by a pair of agents if 
they both prefer to be together than with their respective matches. 

13 See Roth and Sotomayor (1990, Theorems 2.12 and Theorem 2.16). 
14 However, the Gale-Shapley social choice function is bossy because that condition does not require changes 

of preferences to be reshufflings. See Example 7 in the Appendix. 
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the  allocation of production and cost shares will be invariant to the predicated pref-
erence changes.

For very similar reasons, respectfulness will also hold. Any agent different from 
the minimum demander and whose strict upper and lower contour set at the initial 
outcome remain unchanged, will still demand a higher amount of public good with 
respect to that of the low demand agent, and thus not change the initial outcome. 
Yet, the low demand agent will not change her choice of public good level when her 
strict lower and upper contour set changes. Therefore, the allocation of production 
and cost shares will be invariant to the predicated preference changes of any agent.

We hope that these remarks on our first two applications (more will follow in 
Section III) not only help the reader to test the proposed conditions against these 
particular cases, but also as an implicit argument that, in many instances, checking 
for these properties is a simple matter, probably more than directly checking for its 
performance regarding weak group strategy-proofness.

Let us now turn to our main theorem. It proves that the equivalence between that 
property and individual strategy-proofness is not a lucky coincidence, but a result of 
the fact that any strategy-proof social choice function satisfying the three common 
requisites that we just exhibited for individuals in a set    must also be immune to 
strong manipulation by subsets of .

THEOREM 1: If  f  is   -joint monotonic, -respectful, and defined on an -rich 
domain, then it is -strategy-proof if and only if it is -weak group strategy-proof.

PROOF: 
Obviously, -weak group strategy-proofness implies  -strategy-proofness. 

To prove the converse, suppose by contradiction that there exists   R     ∈  ×  i∈       i    ,  
 ⊆  ,    R  ̃       ∈  ×  i∈      i    such that for any agent  i ∈   ,   f  i  (  R ̃        ,  R     \  ) P  i     f  i  ( R    ) . Let  
b = f  (  R ̃        ,  R     \  )  and  a = f  ( R    ) . Without loss of generality, let   = {1,  … , c} . 
First, we recursively define the preferences   R  i  ′    for  i  in . For  i = 1 , let   R  1  ′    be such that  
   
_

 U  ( R  1  ′  ,  b  1  ) ⊆   
_

 U  ( R  1  ,  b  1  ) ∩   
_

 U  (  R ̃    1  ,  b  1  ) ,    
_

 L  ( R  1  ,  a  1  ) =   
_

 L  ( R  1  ′  ,  a  1  ) , and    
_

 U  ( R  1  ,  a  1  )  
=   

_
 U  ( R  1  ′  ,  a  1  ) . By   -richness, such a preference   R  1  ′    is in     1   . For  k ∈  \{1}  , define   a  k  ′    

=  f  k   ( R  {1,  …, k−1}  ′  ,  R    \{1,  … , k−1}  )   and   R  k  ′    to be such that    
_

 U  ( R  k  ′  ,  b  k  ) ⊆   
_

 U  ( R  k  ,  b  k  ) ∩  
  
_

 U  (  R ̃    k  ,  b  k  ) ,    
_

 L  ( R  k  ,  a  k  ′  ) =   
_

 L  ( R  k  ′  ,  a  k  ′  ) , and    
_

 U  ( R  k  ,  a  k  ′  ) =   
_

 U  ( R  k  ′  ,  a  k  ′  ) . By   -richness, such 
a preference   R  k  ′    is in     k   . Let us now change one by one the preferences of each agent 
 in    from   R  i    to   R  i  ′   . By  strategy-proofness applied to agent  1 :   f  1  ( R  1  ′  ,  R    \{1}  ) I  1     f  1  ( R    )  
=  a  1   , otherwise agent 1 would manipulate  f  at  ( R    )  via   R  1  ′    or at  ( R  1  ′  ,  R     \{1}  )  via   R  1   . 
By -respectfulness,   f  j    ( R  1  ′  ,  R     \{1}  )  I  j      f  j   ( R     ) =  a  j    for each agent  j ∈ \{1} . Hence, 
for  j ∈ \{1},  by transitivity of   R  j    ,   b  j    P  j     f  j    ( R  1  ′  ,  R     \{1}  )  . And by transitivity of   R  1  ′  ,  
since    

_
 L  ( R  1  ,  a  1  )  =   

_
 L  ( R  1  ′  ,  a  1  )  and    

_
 U  ( R  1  ,  a  1  ) =   

_
 U  ( R  1  ′  ,  a  1  )  then   b  1   P  1  ′    f  1   ( R  1  ′  ,  R    \{1}  )  . 

A similar argument applies when the profile changes from   ( R  {1,  … , k−1}  ′  ,  R    \{1,  … , k−1}  )   
to   ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )  , for  k = 2,  … , c . Again, by strategy-proofness applied 
to agent  k  ,   f  k   ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )  I  k      f  k   ( R  {1,  … , k−1}  ′  ,  R    \{1,  … , k−1}  )   =  a  k  ′   . By   
-respectfulness,   f  j   ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )  I  j     f  j   ( R  {1,  … , k−1}  ′  ,  R    \{1,  … , k−1}  )   for each agent  
 j ∈ \{1,  … , k}  and   f  l   ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )  I  l     ′   f  l   ( R  {1,  … , k−1}  ′  ,  R    \{1,  … , k−1}  )   for each 
agent  l  ∈  {1,  … , k − 1} . Therefore, by transitivity of   R  j    ,   b  j     P  j    f  j    ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )   
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for each agent  j  ∈ \{1,  … , k} . By transitivity of   R  l  ′    ,   b  l    P  l  ′      f  l   ( R  {1,  … , k}  ′  ,  R    \{1,  … , k}  )   for 
each agent  l ∈ {1,  … , k − 1} . And by transitivity of   R  k  ′  ,  since    

_
 L  ( R  k  ,  a  k  ′  )   =    

_
 L  ( R  k  ′  ,  a  k  ′  ) ,  

   
_

 U  ( R  k  ,  a  k  ′  )  =   
_

 U  ( R  k  ′  ,  a  k  ′  )  then   b  k    P  k  ′      f  k   ( R  {1,  … , k}  ′  ,  R      \{1,  … , k}  )  .
Repeating the same argument for each agent in    we obtain that

(1)   b  j    P  j  ′     f  j  ( R    ′  ,  R     \  )  for each agent  j ∈  .

We could have also arrived at the profile  ( R    ′  ,  R     \  )  from  (  R  ̃      ,  R     \  ) . Notice that 
by construction of the   R  i  ′    we have that for each  i ∈   ,    

_
 L   (  R ̃    i  ,  f  i  (  R ̃      ))  ⊆   

_
 L   ( R  i  ′  ,  f  i  (  R ̃      ))   

and    
_

 U   (  R ̃    i  ,  f  i  (  R ̃      ))  ⊇   
_

 U   ( R  i  ′  ,  f  i  (  R ̃      ))  . Thus, we can apply -joint monotonicity and 
obtain that

(2)    f  i  ( R    ′  ,  R     \  ) R  i   ′     f  i  (  R ̃      ,  R     \  ) =  b  i    for each  i ∈  .

By (1) and (2) we get the desired contradiction. ∎  

Our main purpose in this paper is achieved: we have identified sufficient condi-
tions to guarantee the equivalence between our two incentive properties.15 We have 
already seen that these conditions hold in our two applications and later on we will 
exhibit other environments and mechanisms where the theorem also applies.

III. Some Applications

In this section we discuss how the different allocation problems that we men-
tioned in the introduction actually fit the general framework we just defined. Since 
we are just trying to illustrate the fact that the model encompasses many special 
cases, we do not seek full generality. Rather, we try to describe the specific formu-
lation of these problems as they appear in representative papers within each of the 
fields we mean to cover, and refer to these papers at each point.

Matching (Gale and Shapley 1962; Roth and Sotomayor 1990; Kelso and 
Crawford 1982; Hatfield and Milgrom 2005).—We have already presented the basic 
Gale-Shapley mechanism to solve one-to-one matching problems in Sections I and 
II. Here we discuss how it can be extended to cover more general cases, and prove 
that our theorem also applies to the enlarged set of environments and to the adapted 
new mechanisms. A traditional extension is to the case of many-to-one matchings. 
Now each worker can still only be matched to one firm, but firms may hire more 
than one worker, up to a personalized quota. A further and more recent extension 
has considered the introduction of contracts between workers and firms. There, the 
set of agents is enlarged. For a firm, the same worker under a different contract is a 
different agent. Similarly, the same firm offering a different contract is also treated 

15 See Examples 1–3 in the Appendix, where we show how violations of our assumptions may lead to fail-
ure of the equivalence. In addition, Example 4 shows that   -respectfulness and   -joint monotonicity do not 
imply strategy-proofness, while Examples 5 and 6 prove that   -weak group strategy-proofness does not imply 
 -respectfulness, nor -joint monotonicity. 
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as a different agent by the workers. Again, an alternative is a matching, which now 
specifies which physical agent goes with whom, as well as the contract that holds 
between the firms and workers who are matched. Consequences for workers are the 
firm she is matched to and the contract she works under. Consequences for firms 
are the workers they get and their respective contracts. Workers have preferences 
over firm-contract pairs, and firms have preferences over worker-contract pairs. It 
is assumed that the rankings of these pairs are strict for agents on both sides of the 
market. The preferences of firms over sets of worker-contracts within their quota are 
assumed to satisfy specific conditions, connecting the preferences over individual 
pairs with those of sets of such pairs, in order to guarantee that the outcome of the 
extended Gale-Shapley method we’ll describe in a moment will be stable. Here we 
assume that the firm’s preferences over sets of workers satisfy the following con-
dition of responsiveness: assume that worker  s  is preferred to worker  t  , when com-
paring them as singletons. Then, for any two sets sharing the same workers, except 
that one contains  s  and the other contains  t  , the former is preferred to the latter. We 
concentrate on that domain of preferences because, as we shall see, it guarantees 
that the Gale-Shapley algorithm, originally designed for one-to-one matchings, can 
be used in that more general case and provide us with a rule satisfying the good 
properties we are after.16 These preferences are naturally extended to alternatives 
under the selfishness assumption, and their set constitutes the domain of the relevant 
social choice problems. Now, the way to extend the Gale-Shapley mechanism when 
workers propose is to consider that whenever they are free, they propose to the firm 
that, combined with a given contract, is best among those that had not yet rejected 
them. As for firms, they can be subdivided into identical units, each of which can 
only accept one worker with a given contract. That essentially reduces the problem 
to that of finding a one-to-one matching, by using the original Gale-Shapley mech-
anism. It is clear that the added complexity of the set of consequences, and of the 
admissible preferences over them, still allows for the domain to be -rich,    being 
the set of workers. As for the properties of   -joint monotonicity and -respectful-
ness, the same arguments that we used in our discussion of the one-to-one matching 
mechanism still hold, because the essential fact that the outcome is the worker’s best 
among all stable matchings continues to be true.

Cost Sharing of a Public Good (Serizawa 1999).—The application we already 
discussed in the preceding sections is part of a larger class, all of whose mem-
bers also satisfy the conditions of our theorem. Again, a set of individuals must 
select an amount of public good and share its production cost. Equal cost share 
is still retained, and can be derived from basic assumptions on the allocation rule. 
Thus, allocations, consequences, alternatives, and preferences remain the same as 
in the case we already discussed in Sections I and II. However, given the agents’ 
expressed demands, we can define many mechanisms that differ in the way in which 
the amount of public good is selected. Since the preferences of agents over  possible 
levels of public good provision are single-peaked, the class of strategy-proof rules 

16 Other conditions like substitutability and  q -separability or the law of demand have also been used, alone or 
in combination, to extend the preferences from single consequences to sets of them. See Martínez et al. (2004) or 
Hatfield and Milgrom (2005). 
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to  determine the chosen amount is the one characterized by Moulin (1980). They 
include the minimal demand rule we already used in the simple application of 
Sections I and II, but also the maximal and the median rule, among many others. 
All these rules are also weakly group strategy-proof, and so are the mechanisms that 
result from using any one of these methods and then distributing the costs equally.

To show that these mechanisms also meet our conditions, notice that the argument 
for richness is identical than in the simple case. To argue that they all must satisfy 
joint monotonicity, notice that any shrinking of the upper contour sets above an initial 
consequence will leave the optimal demand of the public good of that agent on the 
same side of the line where it was, relative to the initially chosen level of that good. 
But then, these changes never affect the outcome of any of the strategy-proof mech-
anisms described by Moulin.17 Finally the mechanisms are nonbossy, hence respect-
ful, since clearly no agent can stay indifferent and change the outcome for others.

Division under Single-Peaked Preferences (Sprumont 1991).—A set of individ-
uals must share a task. An alternative is an allocation, which is a vector of shares, 
indicating what proportion of the total task is assigned to each individual. Given an 
allocation, the consequence for an agent is just the share of the task she is assigned. 
Each agent is assumed to have single-peaked preferences on consequences, which 
can be extended to allocations. These extended preferences are the domain of social 
choice rules for the division problem.

The best-known method to solve the division problem is the uniform rule. Here 
is how it works. Ask agents for their preferred share of the job. If the sum of the 
desired shares exceeds 1, find a number  λ  with the following property. If all agents 
who demand less than  λ  are allowed to have their preferred share, and all others 
are required to accept  λ  , then the total assignment adds up to 1. If the sum of the 
desired shares is short of 1, find a number  λ′  having the following property. If all 
agents who demand more than  λ′  are allowed to have their preferred share, and all 
others are required to accept  λ′ , then the total assignment adds up to 1. These values 
for  λ  or  λ ′ always exist, and thus the rule based on them determines an assignment 
of shares that is always feasible. It therefore defines a social choice function on the 
set of admissible profiles. Given a profile of single-peaked preferences over shares 
of the job, the rule determines a unique alternative: that is, a vector of shares. Our 
social choice function is induced by assigning this unique proposal to each prefer-
ence profile.

The uniform rule satisfies individual and group strategy-proofness (see Sprumont 
1991 and Barberà, Jackson, and Neme 1997).

The family of all single-peaked preferences is rich because given any   a  i  ,  b  i   ∈    i    
such that   b  i    P  i    a  i    , one can trivially find another single-peaked preference   R  i  ′   ∈    i     
with   b  i    being the best consequence of   R  i  ′    and such that    

_
 U  ( R  i  ,  a  i  ) =   

_
 U  ( R  i  ′  ,  a  i  ) ,  

   
_

 L  ( R  i  ,  a  i  ) =   
_

 L  ( R  i  ′  ,  a  i  ) .
To show respectfulness and joint monotonicity, observe that the uniform rule is 

nonbossy and efficient. By efficiency, the changes in agents’ preferences required in 
the hypothesis of respectfulness are such that an agent could be indifferent if she gets 

17 Functions satisfying this condition are called uncompromising, a term coined by Border and Jordan (1983). 
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the same consequence. This fact together with nonbossiness implies  respectfulness. 
To check for joint monotonicity, assume that only one agent changes her prefer-
ences and that her initial consequence becomes better. By efficiency, the new and the 
old consequences are on the same side of her best consequence. Strategy-proofness 
imposes that the old and new consequences must be the same for that agent. By 
nonbossiness the consequence for other agents doesn’t change either. Thus, non-
bossiness allows us to treat joint changes by several agents as a chain of individual 
changes, none of which modifies the chosen alternative. Hence, joint monotonicity 
is satisfied.

House Allocation (Shapley and Scarf 1974; Miyagawa 2001).—A set of individ-
uals must be assigned a maximum of one house each, out of a set of houses, and an 
eventual payment in the form of a divisible private good (money).18 An allocation 
fully specifies who gets what house, if any, and a payment for each individual. The 
consequences of an allocation for each agent are given by the house she gets and 
how much she pays.

Individuals have preferences over houses and money. For the same amount of 
payment, they are typically assumed to prefer any house to none, and their prefer-
ences over houses are otherwise unrestricted. Their preferences are assumed to be 
increasing in money. Houses are not agents, as they are not endowed with prefer-
ences. So now individuals are the agents, alternatives are allocations of at most one 
house to each agent, plus their individual payments, and social choice functions are 
defined over the domain of all quasilinear preferences with respect to money, and 
unrestricted rankings of houses.

The case where no monetary transfers are allowed was the one to be studied first. 
Then allocations just specify who gets what house, consequences for agents are 
simply the house they get, and preferences over houses are typically unrestricted. 
All linear orders of the houses by agents are allowed, and their natural extension to 
allocations under the selfishness assumption constitute the domain of definition of 
the social choice function.

For the housing problem without money transfers (Shapley and Scarf 1974), the 
top trading cycle mechanism also determines a unique alternative, this time an allo-
cation of houses based on the strict preferences of agents over them. Here is how 
the method works. Ask agents to point at their preferred house. There will always be 
some set of agents (maybe several) whose demands form a cycle. Agents who point 
at their own house form a cycle by themselves. Give those agents in the cycle their 
preferred houses and remove them. Now ask the remaining set of agents for their 
preferred houses over the remaining ones, and proceed likewise until all houses are 
assigned. The final allocation generates what we call, abusing terminology, the top 
trading cycle social choice function, which is well known to be strategy-proof and 
weak group strategy-proof (see Roth 1982; Bird 1984).

In that version of the housing problem, no restrictions are imposed on the agents’ 
preferences over houses, thus the richness condition is satisfied.

18 Since we are using these models for motivational purposes, we stick to the simplest version of the house 
allocation model. More complex cases allow for more than one house to be allocated to the same agents, the exis-
tence of property rights, and other possible variations (see, for example, Pápai 2000; Ergin 2002; and Velez 2014). 
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To show respectfulness and joint monotonicity, observe that the top trading cycle 
is nonbossy (see Pápai 2000). Since indifferences are not allowed, nonbossiness 
implies respectfulness. In the case of joint monotonicity, it is clearly satisfied by 
the top trading cycle, since any agent endowed with some house at a certain profile 
will retain that house if it eventually becomes higher in her ranking. Notice that 
our argument here applies to each agent individually, but that clearly implies our 
condition which is only predicated for groups, by repeated application of individual 
changes and the fact that the mechanism is nonbossy and individual preferences on 
consequences are strict.

If money transfers are allowed (Miyagawa 2001), a variant of the above is again 
a group strategy-proof mechanism, generating the corresponding social choice func-
tion. But now individuals express their preferences over the pairs of houses and the 
(eventually personalized) prices they must pay for them. These preferences must be 
monotonic in money, and may now present indifferences. The relevant social choice 
function is derived from a natural adaptation of the top trading cycle, that includes 
a fixed order of objects to be used as tiebreaking rule among indifferent alternatives 
and provides well-defined assignments for each preference profile. Again, an exten-
sion of the preferences on pairs of houses and prices to full allocations provides the 
domain of preferences over alternatives.

If money transfers are allowed, since no restrictions are imposed on the agents’ 
preferences over houses and preferences are monotonic with respect to money, the 
domain of definition satisfies our richness domain condition.

To check for respectfulness, we shall use the following fact. Let   R  i    and   R  i  ′    be 
a reshuffling of each other around the indifference class of a given consequence. 
Let   P  i    and   P  i  ′    be the strict preferences resulting from using the same tiebreaking rule 
at   R  i    and   R  i  ′   . Then,   P  i    and   P  i  ′    are reshuffling of each other around the same conse-
quence. By definition of the top trading cycle, the consequences for the agent chang-
ing her preferences remain unchanged. By nonbossiness of the top trading cycle 
applied to the corresponding strict preference profile, all agents obtain the same 
consequence, and respectfulness follows. The same holds for joint monotonicity, 
since an improvement of a given consequence in the preferences including indiffer-
ences is again either an improvement or a reshuffling of the same consequence for 
the corresponding strict preferences. In any case, and by definition of the top trading 
cycle and nonbossiness, we can use an argument similar to the one we made for the 
case without monetary transfers.

One Good Auctions (Vickrey 1961).—There is one seller and a given number of 
buyers. The seller wants to give away one good in exchange for a monetary transfer. 
An auction is given by a set of rules that determines what actions must the seller 
and the eventual buyers use in order to arrive at a transaction, and what positive or 
negative transfers will be made to each partner involved.19 Agents are the seller and 
the buyers. Alternatives are full specifications of who gets the good, and what net 
transfers are made. Consequences for each buyer are whether they get the good and 
the net transfer she obtains. Obtaining the good is typically assumed to be better 

19 Here again, as in the preceding examples, we stick to a simple formulation, for illustrative purposes. 
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than not, at the same level of transfers, and preferences are assumed to be sepa-
rable and monotonic in money. Extending the preferences of selfish agents from 
 consequences to alternatives provides us with the domain of preferences for the 
social choice function that assigns the result of an auction to each preference pro-
file. For simplicity, we assume that the seller’s reservation price is zero and that all 
buyers value the good positively.

We describe the social choice function generated by Vickrey’s second price auc-
tion as follows. Buyers are ranked by their willingness to pay, and if some buyers 
have the same they are ranked according to a given hierarchy. The highest ranked 
agent gets the object, and pays what the second ranked buyer was willing to pay for 
it. The resulting social choice function is   -weakly group strategy-proof for the set 
 of buyers, and satisfies our three conditions.

Now, we claim that in the standard Vickrey (1961) auction framework the domain 
of preferences for buyers is rich. One should only note that for any given pair of 
preference relations, the required intermediate preference in the definition of rich-
ness coincides with one of two we start with.

In order to check for buyers’ respectfulness and joint monotonicity, we distin-
guish between two cases, depending on whether or not the buyer who changes her 
preference relation gets the object.

To check for respectfulness, first notice that if a buyer is not getting the object, 
there is no other reshuffling of her preferences around the original consequence 
than this preference itself. Next, assume that a buyer gets the object and pays for a 
second bid that is strictly lower than hers: then, no reshuffling can affect the conse-
quences that she gets. The remaining subcase is the one where several buyers have 
the same highest bid and the tiebreaking hierarchy applies. But then, again, there is 
no reshuffling of the preferences of the buyer who gets the object around the original 
consequence other than her initial preference relation.

To check for buyers’ joint monotonicity, take any subset of buyers and suppose 
that the consequences they get at an initial profile improve in their respective rank-
ings. For a buyer who did not get the object in the first place, the fact that her 
consequence (no object, no payment) gets higher in her ranking means that her 
willingness to pay for the object has decreased. For a buyer who was getting the 
object in the first place, having her initial consequence (object, payment) become 
higher ranked means that her willingness to pay increases. The identity of the buyer 
getting the object in the Vickrey auction will not change in any of these cases: that 
particular buyer will end up paying less and therefore being strictly better off, while 
the rest of buyers involved in the change will get the same consequence as before 
and remain indifferent.

IV. Our Contribution in Perspective

The purpose of this section is to provide some more perspective on our work, 
connecting it with different important contributions by other authors, explaining 
what we have done and why, and pointing at some additional research of ours that 
addresses related questions.

As we have already pointed out in Section I, the incentives for groups of agents to 
cooperate in manipulating a mechanism can be examined with the help of a variety of 
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tools and definitions. We have presented those of weak and strong  strategy-proofness 
in Section I, but already warned the reader that other variants of this same concept 
can be defined. In addition, similar but related ideas have been developed by other 
authors, or could be studied in further work. Let us comment on those that we find 
closer to the spirit of the present paper.

Once we allow for several agents to participate in a joint manipulative action, the 
question arises whether all members of the group must actively misrepresent their 
preferences. The answer to this question is not substantial to establish whether a 
function is weakly group strategy-proof. This is because if a coalition can manip-
ulate to the strict benefit of all of its members, including some who do not change 
their declaration, then the subsets of those agents who in fact misrepresent theirs 
can still strongly manipulate. However, when considering weak manipulations that 
improve some of the members of a group while leaving others at the same level 
of satisfaction, it makes a difference whether one requires participants to actively 
misrepresent their preferences. Each specification in that respect leads to a different 
notion of strategy-proofness. The one allowing for more manipulations is the one 
where nothing is asked from the participating agents’ actions, and corresponds to 
our definition of strong strategy-proofness. An intermediate version would require 
participants in a group manipulation to actively misrepresent, whether they are to 
gain from it or not. We are not insisting in that intermediate notion of group strate-
gy-proofness, but just mention it here to comment on some of the subtleties involved 
when formalizing the general idea.

Other possible ways to define the consequences of manipulative action by 
groups involve further departures from the idea of joint dominant strategies. If one 
considers that a potential manipulation is a threat, then some threats may be more 
serious than others. For example, one could think of counterthreats, and only take 
into account those threats that have no convincing counterthreats. We shall not 
discuss in detail the variety of refinements of the notions of group and individual 
strategy-proofness that would result from pursuing this line. Let us just mention 
that the underlying ideas are similar to those that lead to different notions of the 
bargaining set, and that they can be traced to very early treatments of the issue of 
manipulation (Farquharson 1969; Pattanaik 1976a,b; and Barberà 1980). More 
specifically, one could consider that, in the absence of enforcement mechanisms, 
agreements for jointly deviating that could further improve the lot of those who 
do not comply with them, if some other members of the group do, should not be 
considered credible. This, again, suggests an attractive line of study.20 All of these 
departures point at weakenings of the notion of group strategy-proofness. Other 
versions of robustness of our generic notion would work in the opposite direc-
tions. Different authors have pointed out that even strategy-proof mechanisms 
can be effectively manipulated if monetary bribes are possible (Crémer 1996; 
Schummer 2000). The point has been made especially in connection with mecha-
nisms that are weakly strategy-proof, like the second price auction: there, the sec-
ond price bidder can improve the lot of the first price bidder by submitting a lower 
offer. Since the player whose preference change is crucial does not gain from 

20 We are grateful to an anonymous referee for this comment. 
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it, the manipulation is weak. However, this paves the way for the high bidder to 
bribe the second one. Similar considerations can be extended further, and avoiding 
manipulations that could be induced through bribes would require even more than 
strong group strategy-proofness. The literature on the subject, which is of great 
practical importance, builds on extended models and mechanisms beyond the ones 
we have considered here. For early treatments of these issues, see Graham and 
Marshall (1987); Roth and Sotomayor (1990); and Mailath and Zemsky (1991). 
What we had to say refers to models where bribes have not yet entered the picture, 
and we think that these further considerations should not be superimposed on the 
models we deal with.

Let us also briefly comment on the connections between our work and the lit-
erature on implementation. We have not insisted on the notion of implementa-
tion, nor in the different solution concepts that can be used to make it specific, 
but concentrated in the use of dominant strategies by individuals, and the further 
idea of group strategy-proofness. Moreover, we have restricted attention to social 
choice functions rather than social choice correspondences, which are the objects 
on which implementation theory has obtained more positive results. Even then 
there are instances of well-defined social choice functions that arise as the result 
of sophisticated play on the part of agents, for which our conditions may hold and 
our theorem may have consequences. Examples of such social choice functions are 
those induced by successive veto (Moulin 1994; Moulin and Shenker 1992) or by 
the use of different tree structures to arrive at majoritarian decisions (Miller 1977; 
Barberà and Gerber forthcoming). When applied to such functions, our theorem 
may lead to further conclusions about the incentives they provide, that we leave for 
further investigation.

It is also relevant to comment on the connection between the results of the present 
paper and those in our preceding one regarding the relationship between individual 
and weak group strategy-proofness. Here we insist in examples that involve private 
components in the consequences of agents, and were thus not covered by our pre-
vious paper for the case of pure public goods (Barberà, Berga, and Moreno 2010). 
There we established that the equivalence between the two properties is precipitated 
by a single condition on the domain of the social choice functions. Here, we com-
bine a domain condition with two others, that time on the social choice functions. 
The model, conditions, and results in the present paper apply in particular to the 
public goods case. Hence, the results in our two papers are different from each other, 
and complementary, because of the different requirements that we use to guarantee 
equivalence in each one of them.

Notice also that the idea of combining strategy-proofness with other properties has 
been exploited by different authors, in search of additional interesting consequences. 
Fleurbaey and Maniquet (1997) proved that under an appropriate domain require-
ment, fair allocations where agents do not envy others will be attained by functions 
satisfying equal treatment of equals, nonbossiness, and strategy-proofness, thus add-
ing an interesting normative justification to the standard reasons to demand the latter 
condition. Another paper that connects strategy-proofness and fairness considerations 
in a similar spirit is Moulin (1993), which proves that within an appropriate domain 
strong group strategy-proof and anonymous social choice functions satisfy no envy.
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Even closer to our present concern is the following result that was first stated 
in Dasgupta, Hammond, and Maskin (1979) and later reproduced in Maskin and 
Sjöström (2002, Theorem 7). A Maskin monotonic social choice function  f  on a rich 
domain is weakly group strategy-proof. Their notion of richness is not the same as 
ours. But the main difference with our result is that Maskin monotonicity is assumed 
in the preceding statement, while we do not require this condition. This makes a big 
difference, because that condition implies, along with the richness of the domain, 
that the corresponding social choice function must be nonbossy. And that immedi-
ately excludes several of the mechanisms we have covered in our theorem, and in 
particular the Gale-Shapley social choice function.

We now want to return to one of the main issues addressed in the paper: the 
question of whether there is a necessary conflict between incentives and efficiency. 
But since part of that discussion involves the interplay between different properties 
of social choice functions, we start with some comments on the weakness and the 
attractiveness of the properties we use in our main result.

Notice that different properties that are considered natural in the literature are 
stronger than the ones we have considered here. Weakening these properties has 
allowed us to encompass a large class of mechanisms, some of which would have 
been excluded ex officio had we insisted on stronger requirements.

There is no doubt that some richness assumption is needed for any relevant anal-
ysis of allocation mechanisms, since we are interested in their performance under a 
variety of circumstances. Different authors, in different contexts, have defined rich-
ness in ways that suit the purposes of their analysis (see, for example, the notions 
of richness in Chatterji and Sen 2011 or in Dasgupta, Hammond, and Maskin 1979; 
or in the literature on VCG mechanisms), all of them different from ours and from 
each other. We have chosen our notion of richness rather empirically, as a com-
mon denominator for the variety of different environments and mechanisms that we 
wanted to put together. Let us also emphasize that its formulation is chosen in such 
a way that one does not need to refer to an agent’s best alternative (like in Chatterji 
and Sen 2011): this allows us to include environments where a maximal element 
need not be defined due to the presence of money.

Monotonicity is, in general terms, an attractive property. We have already pointed 
out that several versions of it exist. Here we shall argue that our formulation of it is 
weaker than Maskin’s, which we now define:

DEFINITION 10: A social choice function  f  satisfies Maskin monotonicity on  
  ×  i∈        i    if for any   R     ∈  ×  i∈        i    , any  i ∈  , and   R  i  ′   ∈    i    such that    

_
 U  ( R  i  ,  f  i  ( R    )) 

⊇   
_

 U  ( R  i  ′  ,  f  i  ( R    )) , then   f  j   ( R  i  ′  ,  R    \{i}  )  =  f  j  ( R    )  for each  j ∈  .

This version of Maskin’s condition involves only the change of preferences by 
one agent at a time, while our joint monotonicity condition starts by assuming 
that several agents have changed from one profile to another. This is inconsequen-
tial, because Maskin’s condition can be applied repeatedly and its consequences 
can be predicated for a group change as well. To establish a comparison with our 
 monotonicity notion, consider the case where  a  is the initially chosen alternative, 
and now its indifference class and that of their immediate followers in the preference 
order do merge. In that case, Maskin monotonicity still applies, but ours does not. 
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Notice that this case (which is well defined when the set of consequences is finite) 
is one where in fact the position of  a  has definitely not improved. By excluding this 
case from consideration, our condition becomes not only weaker, but also more 
attractive normatively. A second difference is also consequential and represents 
another weakening away from Maskin monotonicity. The latter requires that, after 
appropriate preference changes by the members of a group, they all receive the 
same consequences, and all other agents must also stay with the same that they 
got initially. But our condition does not have this strong implication: it imposes no 
restriction on the consequences for agents whose preferences do not change, and 
allows those who change to eventually improve.

Because of that, we feel that our condition becomes quite palatable, even if, as we 
already said when defining it, there are weaker requirements in the same spirit. As 
for the fact that we compare profiles where the preferences of several agents differ 
(hence the qualification of joint monotonicity), this is due to the fact that there are 
 strategy-proof mechanisms under which the repeated application of a similar condi-
tion for single agents would not lead to respect neither the joint requirement nor weak 
group strategy-proofness. Example 3 in the Appendix proves that this may be the case.

We also consider respectfulness to be normatively attractive, since it prohibits 
agents’ changes in preferences to have a utility impact on the consequences for oth-
ers unless they also have a utility impact on themselves. This notion is satisfied by 
the Gale-Shapley social choice function, and also by the one that derives from the 
assignment of one good through the Vickrey auction. Yet, both of these mechanisms 
would fail the stronger test of being nonbossy. For the case of Gale-Shapley, see 
Example 7 in the Appendix (see also Kojima 2010). In the case of Vickrey, this is 
because the second bidder could improve the lot of the high bidder by just bidding 
less, at no cost.

Let us now return to the fundamental question of efficiency. The failure of 
 Clarke-Groves mechanisms to avoid the waste of resources provides a lead-
ing example of situations where good incentives and efficiency are in conflict. 
Fortunately, this conflict is not always so acute. All mechanisms satisfying group 
strategy-proofness of some sort, for given environments, are instances where that 
classical dilemma becomes less dramatic or even nonexisting. Specifically, it dis-
appears in all environments where satisfactory mechanisms that are strong group 
strategy-proof can be identified. We have provided several examples of them, like 
division and house allocation without money. In other cases, strong group strate-
gy-proofness is not achieved by the most well-known mechanisms and some poten-
tial inefficiencies remain possible, but the allocations we get are at least weakly 
efficient (like matching, house allocation with money, cost sharing of a public 
good, and one good auctions). Our main theorem refers to the connection between 
individual and weak group strategy-proofness because we wanted to insist on the 
common features of all mechanisms satisfying at least that weakest demand on 
group incentives and we were aware that asking for more would again eliminate 
some important solutions to important problems.

Finally, a similar result to the one we report here could be envisaged: what 
properties of the domains and the functions could precipitate a direct equivalence 
between individual and strong group strategy-proofness? We have found a set of 
such  properties: obviously they are not satisfied by some of the rules discussed here, 
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but they are satisfied by others, like those we have considered as solutions to  division 
and house allocation problems without money. The interested reader will find them 
in Barberà, Berga, and Moreno (2016).

Our main message is a plea for systematic consideration of group  strategy-proofness 
as a very attractive property, that avoids the threat of manipulations by small groups, 
and at the same time reduces the potential conflict between incentives and efficiency. 
It is a positive message, because it proves that this coincidence is not only possible, 
but also based in the fact that many environments and mechanisms share a common 
set of conditions that allow for this attractive property to be met.

Appendix

ExAMPLE 1: Violation of Theorem 1 when the social choice function is -joint 
monotonic, -strategy-proof,   -respectful but not -weak group strategy-proof 
and the domain is not -rich. Consider a one-to-one matching model. Let  
 = {1, 2, 3}  and   =  {4, 5, 6} . For each  j ∈   ,     j   =  ∪ { j}  and for agent  
3 ∈   ,     3   =  ∪ {3}  any linear order on     l    is admissible. For agents  1  and  
2 ∈   ,     i   =  ∪ {i}  , the set of admissible preferences are as follows:

  R  1  
1    R  1  

2    R  1  
3    R  2  

1    R  2  
2    R  2  

3  

4 5 6 4 5 6

5 4 4 5 4 5

6 6 5 6 6 4

1 1 1 2 2 2

Define the following rule  f  where neither firms nor agent 3 play any role: that is,

f  ( · ,   R  3   ,   R     )   R  2  
1    R  2  

2    R  2  
3  

  R  1  
1  4, 5, 6, 1, 2, 3 4, 5, 6, 1, 2, 3 5, 6, 4, 3, 1, 2

  R  1  
2  5, 4, 6, 2, 1, 3 5, 4, 6, 2, 1, 3 5, 6, 4, 3, 1, 2

  R  1  
3  6, 4, 5, 2, 3, 1 6, 4, 5, 2, 3, 1 5, 4, 6, 2, 1, 3

For   =  , the domain is not   -rich (let   R  1   =  R  1  3   ,    R ̃    1   =  R  1  2   ,   b  i   = 4  
and   a  i   = 5 , there does not exist any   R  1  ′    satisfying the required condition). And 
the rule above is -respectful,   -joint monotonic,   -strategy-proof, but it is not  
 -weak group strategy-proof (agents  1  and  2  deviates from   ( R  1  3 ,  R  2  3 )   to   ( R  1  1 ,  R  2  1 )   and 
they are strictly better off  ).

ExAMPLE 2: Violation of Theorem 1 when the social choice function defined on a  
 -rich domain is -joint monotonic, -strategy-proof but neither -respectful nor 
-weak group strategy-proof. Consider a one-to-one matching model. Let   =  , 
  = {1, 2}  and   = {3, 4} . For each  j ∈  ,     j   =  ∪ {  j}  and any linear order 
on     j    is admissible. For each  i ∈   ,     i   =  ∪ {i}  and any linear order on     i    is 
admissible. The latter is as follows:
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  R  i  
1    R  i  

2    R  i  
3    R  i  

4    R  i  
5    R  i  

6  

3 4 3 4 i i

4 3 i i 3 4

i i 4 3 4 3

Define the following rule  f  where firms do not play any role: that is for any   R      ∈        ,

f  ( · ,   R     )   R  2  
1    R  2  

2    R  2  
3    R  2  

4    R  2  
5    R  2  

6  

  R  1  
1  3, 4, 1, 2 3, 4, 1, 2 3, 2, 1, 4 3, 4, 1, 2 4, 2, 3, 1 4, 2, 3, 1

  R  1  
2  4, 3, 2, 1 4, 3, 2, 1 4, 3, 2, 1 4, 2, 3, 1 4, 2, 3, 1 4, 2, 3, 1

  R  1  
3  3, 4, 1, 2 3, 4, 1, 2 3, 2, 1, 4 3, 4, 1, 2 4, 2, 3, 1 4, 2, 3, 1

  R  1  
4  4, 3, 2, 1 4, 3, 2, 1 4, 3, 2, 1 4, 2, 3, 1 4, 2, 3, 1 4, 2, 3, 1

  R  1  
5  1, 3, 2, 4 1, 3, 2, 4 1, 3, 2, 4 1, 3, 2, 4 4, 3, 2, 1 4, 3, 2, 1

  R  1  
6  1, 3, 2, 4 1, 3, 2, 4 1, 3, 2, 4 1, 3, 2, 4 4, 3, 2, 1 4, 3, 2, 1

For any   R     ∈        , note that  f   ( R  1  5 ,  R  2  5 ,  R    )   =  (4, 3, 2, 1) . Observe that 
  f  1   ( R  1  5 ,  R  2  5 ,  R    )   =   f  1   ( R  1  3 ,  R  2  5 ,  R    )   =  4 ,    

_
 U   ( R  1  5 , 4)   =    

_
 U   ( R  1  3 , 4)  ,    

_
 L   ( R  1  5 , 4)   =    

_
 L   ( R  1  3 , 4)   

but   f   2   ( R  1  5 ,  R  2  5 ,  R    )  ≠  f  2   ( R  1  3 ,  R  2  5 ,  R    )  , violating   -respectfulness. Observe that  f  
is strongly manipulable at   ( R  1  5 ,  R  2  5 ,  R    )   by coalition   = {1, 2} ⊆   via   ( R  1  1 ,  R  2  3 ) ,  
thus violating -weak group strategy-proofness.

ExAMPLE 3: Violation of Theorem 1 when the social choice function defined on a 
rich domain is strategy-proof, respectful, but neither joint monotonic nor weak group 
strategy-proof. Let   = {1, 2} , agents’ consequences     1   =    2   =  {a, b, c, d}  , 
and the set of admissible preferences of each agent over consequences be the 
same:     1   =    2   = {R,  R ′    } , where  R : cIdPaIb  and   R ′  : a I ′  b P ′  c I ′  d . Observe 
that     1   ×    2    is an -rich domain. Let  f  be the social choice function defined 
as follows:  f  ( R  1  ,  R  2  ) = (b, b) ,  f  ( R  1  ,  R  2  ′  ) = (c, a) ,  f  ( R  1  ′  ,  R  2  ) = (a, c) , and  
f  ( R  1  ′  ,  R  2  ′  ) = (d, d  ) . Observe that  f  is strategy-proof and respectful (in a vacuous 
way).21 However,  f  violates weak group strategy-proofness:  f ( R  1  ′  ,  R  2  ′  ) = (d, d  )  but 
both agents would be strictly better off obtaining  b  which would be their assign-
ment if their preferences were  ( R  1  ,  R  2  ) . Furthermore,  f  violates joint monotonicity: 
when going from profile  ( R  1  ′  ,  R  2  ′  )  to profile  ( R  1  ,  R  2  )  we have that for each  i ∈   , 
   
_

 L  ( R  i  ′  , d)   ⊆    
_

 L  ( R  i  , d)  and    
_

 U  ( R  i  , d) ⊆   
_

 U  ( R  i  ′  , d) , but   f  i  ( R  1  ′  ,  R  2  ′  ) = d P  i  b =  f  i  ( R  1  ,  R  2  )  
which contradicts joint monotonicity. Note though that  f  would satisfy a weaker 
version of joint monotonicity requiring only individual preference changes (see a 
discussion about it in Section IV ).

ExAMPLE 4: A social choice function defined on a -rich domain (of strict 
preferences over consequences) that is -respectful, -joint monotonic but not 
 -strategy-proof. Consider a one-to-one matching model. Let   =  . The much 
celebrated Boston mechanism provides an example. In a first round, each student 
applies to her (reported) top choice and each school admits applicants one at a time 

21 Note that  f  also satisfies nonbossiness. 
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according to its preferences until either capacity is exhausted or there are no more 
students who ranked it first. In Round  k , each unmatched student applies to her  k th 
choice and each school with remaining capacity admits applicants one at a time 
according to its preferences until either the remaining capacity is exhausted or there 
are no more students who ranked it  k th.

ExAMPLE 5: A social choice function defined on a   -rich domain that is 
-respectful, -strategy-proof but not -joint monotonic. Consider a one-
to-one matching model. Let   =  ,   = {1, 2, 3}  and   = {4, 5, 6} . For 
each  i ∈   ,     i   =  ∪ {i}  and any linear order on     i    is admissible. For each  
j ∈   ,     j   =  ∪ { j}  and any linear order on     j    is admissible. For any   R  1   ∈    1    , 
let   τ    2 ( R  1  )  be the most preferred alternative on     1  \τ ( R  1  )  of   R  1   . Define the following 
rule  f  where neither firms nor agents in   \{1}  play any role:

∀    R       \{1}   , f (  R       )

If τ (  R  1   ) = 5 then 5, 6, 4, 3, 1, 2

If τ (  R  1   ) = 6 then 6, 5, 4, 3, 2, 1

If τ (  R  1   ) = 1 then 1, 5, 4, 3, 2, 6

If τ (  R  1   ) = 4 and   τ    2  (  R  1   ) = 5 then 5, 4, 6, 2, 1, 3

If τ (  R  1   ) = 4 and   τ    2  (  R  1   ) = 6 then 6, 4, 5, 2, 3, 1

If τ (  R  1   ) = 4 and   τ    2  (  R  1   ) = 1 then 1, 4, 5, 2, 3, 6

For   =  , the rule above is   -respectful,   -strategy-proof (it is also -group 
strategy-proof ), but it is not -joint monotonic. To see this consider the following 
preference profile:

   R ˆ    1      R ˆ    2      R ˆ    3   

4 5 4

1 4 5

5 6 6

6 2 3

For any   R       ∈          , note that  f  (  R ˆ    1  ,   R ˆ    2  ,   R ˆ    3  ,  R    )  = (1, 4, 5, 2, 3, 6) . Suppose that 
the preferences of agents in   =   change and the consequences they have 
obtained are now the most preferred ones,

   R ̃    1      R ̃    2      R ̃    3   
1 4 5

4 5 4

5 6 6

6 2 3

For any   R      ∈        , note that  f  (  R ̃    1  ,   R ̃    2  ,   R ̃    3  ,  R    )  = (1, 5, 4, 3, 2, 6) . Observe that  

  f  1   (  R ̃    1  ,   R ̃    2  ,   R ̃    3  ,  R    )   =   f  1   (  R ˆ    1  ,   R ˆ    2  ,   R ˆ    3  ,  R    )   =  1  but   f  i   (  R ̃    1  ,   R ̃    2  ,   R ̃    3  ,  R    )  ≠    f  i   (  R ˆ    1  ,   R ˆ    2  ,   R ˆ    3  ,  R    )   
for  i = 2, 3 , violating -joint monotonicity.
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ExAMPLE 6: A social choice function defined on a -rich domain that is -weak 
group strategy-proof but not -respectful. Consider a one-to-one matching model. 
Let  = ,  = {1, 2, 3} and  = {4, 5, 6}. For each i ∈ ,     i    =  ∪ {i} and any 
linear order on     i    is admissible. For each j ∈ ,     j    =  ∪ { j} and any linear order 
on      j    is admissible. For any   R  1    ∈     1   , let    τ    2  (  R  1   ) be the most preferred alternative 
on     1   \τ (  R  1   ) of   R  1    and   τ    3  (  R  1   ) be the worst alternative on     1    of   R  1   . Define the fol-
lowing rule f where worker 1 dictates as follows:   f  1   (  R      ) = τ  (  R  1   ),   f  2   (  R      ) =   τ    2  (  R  1   ), 
and   f  3   (  R      ) =   τ    3  (  R  1   ). This rule f is -group strategy-proof but f is not -respectful: 
let   R  1    and   R  1  ′   such that 4  P  1   5  P  1   6 and 4  P  1  ′   6  P  1  ′   5. By definition of f, for any   R    \{1}   ,  
  f  1     ( R  1  ,  R     \{1}  )   =   f  1     ( R  1  ′  ,  R    \{1}  )   = 4,   f  2     ( R  1  ,  R    \{1}  )   = 5 ≠   f  2     ( R  1  ′  ,  R    \{1}  )   = 6 and  
  f  3     ( R  1  ,  R    \{1}  )   = 6 ≠   f  3     ( R  1  ′  ,  R    \{1}  )   = 5,   L 

–
    ( R  1  ,  f  1   ( R  1  ,  R    \{1}  ) )   =   L 

–
    ( R  1  ′  ,  f  1   ( R  1  ,  R    \{1}  ) )  , 

and   U 
–
     ( R  1  ,  f  1   ( R  1  ,  R    \{1}  ) )   =   U 

–
     ( R  1  ′  ,  f  1   ( R  1  ,  R    \{1}  ) )   = ∅.

ExAMPLE 7: The Gale-Shapley social choice function is bossy. Consider a one-
to-one matching model. Let   =  ,   = {5, 6, 7, 8} ,   = {1, 2, 3, 4} , and for 
each  i ∈  ,     i   =  ∪ {i}  and for each  j ∈  ,     j   =  ∪ { j} . Consider the 
following strict preference profile   ( R    ,  R    )   where a column represents the strict 
preference of an agent:

  R  5     R  6     R  7     R  8     R  1     R  2     R  3     R  4   

3 4 2 2 6 6 7 8

1 3 4 4 8 8 5 7

2 2 3 1 7 7 6 6

4 1 1 3 5 5 8 5

5 6 7 8 1 2 3 4

Let   R  5  ′    be 5’s preference deviation such that 1  P  5  ′   3  P  5  ′   2  P  5  ′   4  P  5  ′   5. Applying the women’s 
proposal Gale-Shapley mechanism to   ( R     ,  R    )   and   ( R  5  ′  ,  R    \{5}  ,  R    )   we obtain 
the matchings

 f  ( R    ,  R    )  =  ( 5  6  7  8   
1
  

2
  

3
  

4
 )   , while 

 f  ( R  5  ′  ,  R   \{5}  ,  R    )  =  ( 5  6  7  8   
1
  

3
  

4
  

2
 )  .

Hence, the Gale-Shapley social choice function is bossy. Note also that the Gale-
Shapley is   -weakly manipulable at  ( R    ,  R    )  by coalition   = {5, 6}  via   R  5  ′   .
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