UAB
 Universitat Autònoma de Barcelona

This is the accepted version of the journal article:
Alonso-Fernández, Javier; Benaiges Miñarro, Cristina; Casas Arce, Eva; [et al.]. «Synthetic studies on Stemona alkaloids. Construction of the sessilifoliamides B and C and 1,12-secostenine skeleton». Tetrahedron, Vol. 72, Issue 24 (June 2016), p. 3500-3524. DOI 10.1016/j.tet.2016.04.077

This version is available at https://ddd.uab.cat/record/279308
under the terms of the (cc) BY-NC-ND license

Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.
Synthetic studies on Stemona alkaloids.
Construction of the sessilifoliamides B and C
and 1,12-secostenine skeleton
Javier Alonso-Fernández, Cristina Benaiges ${ }^{\mathrm{a}}$, Eva Casas ${ }^{\mathrm{a}}$, Ramon Alibés ${ }^{\mathrm{a}}$, Pau Bayón ${ }^{\mathrm{a}}$, Félix Busqué, Ángel
Álvarez-Larena ${ }^{\mathrm{b}}$ and Marta Figueredo ${ }^{\mathrm{a}, *}$
Departament de Quimica ${ }^{\text {a }}$ and Servei de Cristal-lografia, Universitat Autònoma de Barcelona, 08193
Bellaterra, Spain

Synthetic studies on Stemona alkaloids. Construction of the sessilifoliamides B and C and 1,12 -secostenine skeleton

Javier Alonso-Fernández ${ }^{\text {a }}$, Cristina Benaiges ${ }^{\text {a }}$, Eva Casas $^{\text {a }}$, Ramon Alibés ${ }^{\text {a }}$, Pau Bayón ${ }^{\text {a }}$, Félix Busqué ${ }^{\text {a }}$, Ángel Álvarez-Larena ${ }^{\mathrm{b}}$ and Marta Figueredo ${ }^{\mathrm{a}, *}$
a Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
${ }^{b}$ Servei de Cristal-lografia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

ARTICLE INFO

Article history:

Received
Received in revised form
Accepted
Available online

Keywords:

Keyword_1
Keyword_2
Keyword_3
Keyword_4
Keyword_5

Abstract

An original synthetic approach to the Stemona alkaloids stenine and sessilifoliamides B and C has been explored. The strategy relays on the early construction of the pyrroloazepine core (rings A and B) and posterior addition of the furanone (ring D) and ethyl chain at $\mathrm{C}-10$, which are the common structural features of the three alkaloids. The formation of the azabicyclic nucleus through an intramolecular Morita-Baylis-Hillman reaction of a properly substituted pyrrolidone has been extensively investigated by modifications on the substrate and all the parameters involved in the process and an efficient protocol in terms of yield and stereoselectivity has been developed. Despite many alternative tactics were explored, insuperable difficulties found in the last synthetic steps have frustrated the completion of the syntheses. However, along the way, a plethora of new compounds was prepared, some of them containing the full skeleton of the targeted alkaloids, which can be useful for future synthetic applications.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

The development of new medicinal drugs has often found its inspiration in the curative properties of some plants used in traditional folk medicine and, hence, the isolation and characterization of the bioactive principles of these plants and, ultimately, their total synthesis have been (and still are) major challenges for organic chemists. The Stemona alkaloids form a group of significant constituents of the extracts of several plants of the Stemonaceae family (Stemona, Croomia and Stichoneuron genera) that have been used for years in eastern Asian countries for the treatment of respiratory disorders and parasitic diseases like helminthiasis and also as domestic insecticides. ${ }^{1}$ At present, more than 180 Stemona alkaloids have been described, ${ }^{2}$ but the discovery of new members of this family is continuously reported in the literature. All the Stemona alkaloids are polycyclic and the majority present a pyrrolo- (more frequently) or pyrido[1,2a]azepine core as the common structural feature. They also incorporate at least one α-methyl- γ-butyrolactone substructure linked to the azabicyclic nucleus in a spiro or fused mode or as a substituent. ${ }^{3}$ On the basis of their chemical structure, the Stemona alkaloids were initially classified by Pilli into six groups, ${ }^{3 a}$ which were later extended to eight with the discovery of new members of the family (Figure 1, A); six of these groups display the pyrroloazepine nucleus, one contains the pyridoazepine core and a miscellaneous group does not present any of these motifs. ${ }^{3 b}$ Considering their biogenetic connections, Greger suggested an alternative classification in three skeletal types, which differ on the
carbon chain attached to $\mathrm{C}-9$ of the pyrroloazepine core (Figure 1, B). ${ }^{\text {1c }}$ More recently, combining both criteria, a third classification has been proposed into two classes (hemiterpenoid pyrrolidine and monoterpenoid pyrrolidine) and fourteen types. ${ }^{2}$

Tuberostemospironine-type

Stenine-type

Parvistemoline-type
B)

Figure 1. Classification of Stemona alkaloids based on: A) their chemical structure; B) their biogenetic connections

The challenging molecular architectures of the Stemona alkaloids have motivated the development of profuse synthetic investigations, ${ }^{3,4}$ but the total syntheses reported to date are limited
to a relatively small number of such compounds. Some years ago, we designed a synthetic strategy, which relied on the use of chiral cyclic nitrones as templates for the stereoselective construction of the pyrroloazepine core and pursued the preparation of intermediates common to several Stemona alkaloids. ${ }^{5}$ This approach was successfully applied in completing enantioselective syntheses of the putative structure of stemonidine, stemospironine and several other analogs, all of them belonging to the tuberostemonine-type according to Pilli's classification. ${ }^{6}$ To investigate the applicability of the same strategy for the synthesis of alkaloids of the stenine group, the key azabicycle 1 (Scheme 1) was prepared from nitrone 3 and diester 4 in six steps and 47% overall yield. ${ }^{5}$ In our retrosynthetic analysis of stenine, the silyl ether and ester group, respectively attached to positions $\mathrm{C}-1$ and C-9 of $1,{ }^{7}$ were intended to be handled for connecting lactone 2 (ring D) and subsequently closing the six member ring C. A strategy based on the initial assemblage of rings A and B has not been reported in any previous synthesis of stenine. ${ }^{8}$ However, the fact that sessilifoliamides B and C present the same connectivity as stenine, except for lacking the $\mathrm{C}-1 / \mathrm{C}-12$ bond, suggests a biogenetic connection as it was proposed by Greger, who enclosed these three alkaloids in the same stichoneurine-type group. Hence, the connection of $\mathrm{C}-1$ and $\mathrm{C}-12$ from a tricyclic precursor with the sessilifoliamides B / C skeleton with concomitant formation of ring C at the end of the synthetic sequence would be a biogenetically inspired approach to stenine that we judged worthy to explore. In contrast to sessilifoliamides B and C , wherein ring A is a pyrrolidone, in the azabicycle 1 the protecting carbonyl group of the nitrogen atom is located in the seven member ring B, therefore we decided to examine also a parallel route through an analogous intermediate 5 , wherein position 1 may be unsubstituted $(X=H)$ or bear a protected hydroxyl group $(\mathrm{X}=\mathrm{OPG})$ and which would provide a more straightforward access to the sessilifoliamides. To the best of our knowledge, only one synthesis of (-)sessilifoliamide C and none of sessilifoliamide B have been reported to date. ${ }^{9}$ Considering that the relative configuration assigned by chemical correlation to sessilifoliamide C^{10} is at $\mathrm{C}-10$ and C-11 opposite to that of stenine, it was interesting to prepare diverse diastereoisomeric analogs for the synthetic studies.

Scheme 1. Retrosynthetic analysis of stenine and sessilifoliamides B and C.

2. Results and discussion

2.1. Synthetic studies from the key intermediate 1

Our first efforts were directed to the installation of the lactone ring D through manipulation of the ester group in $\mathbf{1}$ by using aldol-
type chemistry. Not surprisingly, the attempted vinylogous Claisen reaction between ester $\mathbf{1}$ and lactone 2 was unsuccessful and it was necessary to activate the electrophile by preparing the corresponding aldehyde 7 (Scheme 2). The ester group of $\mathbf{1}$ was reluctant to react with DIBAL-H and, after persistent treatment, amine 12 was the exclusive product detected. Alternatively, reduction of 1 to alcohol 6 with LiBH_{4}, followed by Dess-Martin oxidation provided aldehyde 7 , which was immediately processed to the next step in view of its limited stability, being prone to epimerize to $\mathbf{1 0}$. The vinylogous aldol addition was accomplished in 72% yield by direct reaction ${ }^{11}$ between the lithium dienolate of 2 and aldehyde 7 in THF at $-78{ }^{\circ} \mathrm{C}$ and was completely stereoselective, furnishing the adduct 8 , which configuration was unambiguously established by X-ray analysis of the corresponding alcohol 9 (Figure 2). The Mukayama aldol methodology, frequently employed for vinylogous addition of $2(5 \mathrm{H})$-furanones to aldehydes, ${ }^{12}$ when using the TIPS derivative of 2 , proved ineffective for 7, most probably because of the higher steric demand of the dienoxysilane nucleophile compared to the lithium dienolate. Indeed, the carbonyl group in 7, located in the concave face of the azabicycle, must be hardly accessible to external reagents, as it is the case of the ester group in $\mathbf{1}$, which proved reluctant to react with the bulky DIBAL-H. Eventually, if the starting aldehyde 7 was contaminated with its epimer 10 , a second isomer 11 was also present in the vinylogous aldol crude product that could be even isolated, but its relative configuration at the new stereogenic center was not determined.

Scheme 2. Preparation of tricyclic intermediate 9.

Figure 2. X-Ray structure of alcohol 9.

The complete diastereoselectivity observed in the addition of the lithium enolate of lactone $\mathbf{2}$ to aldehyde $\mathbf{7}$ may be rationalized by the hypothetical transition state depicted in Scheme 3. According to a simple tridimensional molecular model, in the preferred conformation of aldehyde 7 the Si face is more accessible to the approach of an external nucleophile, leading to the S configuration at $\mathrm{C}-10$. On the other hand, the R configuration at C 11 is consistent with an enolate orientation in which the lithium cation is coordinated with the carbonyl oxygen and the bulky methyl group is pointing away from the aldehyde.

Scheme 3. Molecular model of aldehyde 7 (ChemBioDraw Ultra 14.0) and hypothetical transition state for the addition of the lithium enolate of lactone 2 .

With alcohol 9 in hands, our next endeavor was to generate a radical at C-1, R-1, that was expected to induce a 6 -exo-trig cyclization to form the C ring of stenine (Scheme 4). The formation of six member rings by intramolecular insertion of a radical into a carbon-carbon double bond has been broadly illustrated, ${ }^{13}$ including the participation of a $2(5 \mathrm{H})$-furanone subunit acting as the radical acceptor through the β-position. ${ }^{14}$ In the case under study, we expected the conversion of $\mathbf{R}-\mathbf{1}$ to a more stable enoxy radical R-2, which after hydrogen abstraction would provide a product $\mathbf{1 3}$ with the tetracyclic structure of stenine.

Scheme 4. Expected evolution of a radical generated at C-1.

Thiocarbamates are among the derivatives most frequently used for the generation of free radical intermediates. ${ }^{15}$ Treatment of diol 9 with TCDI in THF at room temperature provided thiocarbamate 14 (Scheme 5). As anticipated, the sterically hindered hydroxyl group at $\mathrm{C}-10$ was unreactive under these conditions and $\mathbf{1 4}$ could be isolated in 90% yield, but, unfortunately, the thiocarbamate spontaneously cyclized to the ether $\mathbf{1 5}$, even keeping it at $4^{\circ} \mathrm{C}$ under inert atmosphere. Hence, we decided to orthogonally protect

Scheme 5. Preparation of the MOM derivative 18
the alcohol 8, prior to the preparation of the radical precursor. After several failed attempts of benzylation, we succeeded in preparing the methoxymethyl derivative $\mathbf{1 6}$ by heating a mixture of 8, MOMBr, NaI, and DIPEA in refluxing DME. ${ }^{16}$ The desilylation of $\mathbf{1 6}$ was initially assayed by treatment with TBAF in THF, but this reaction furnished alkene 17 in 65% yield, as the only isolable product. The Z configuration of $\mathbf{1 7}$ was evidenced by a strong NOE interaction between the olefinic protons at C-10 and $\mathrm{C}-12$. This stereochemistry is in agreement with an E1cB mechanism, namely previous formation of the dienolate followed by elimination of the MOMO fragment, and not consistent with a concerted E2 process that would lead to the E isomer. The competitive elimination reaction could be avoided by performing the desilylation by treatment of 16 with a large excess of the complex $3 \mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N},{ }^{17}$ and the alcohol 18 was isolated in 90% yield.

Next, alcohol 18 was converted into the corresponding imidazolylthiocarbamate 19 , which was highly sensitive to any trace of acid and was rapidly treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing toluene in order to generate the radical species (Scheme 6). This reaction was attempted many times under different conditions, changing the relative amounts of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN and their rate of addition to the refluxing solution of the substrate. In all the different runs we always observed partial hydrolysis of the carbamate, reverting to alcohol 18, along with the formation of the cyclic ether $\mathbf{1 5}$ and a new compound identified as the enamide 20. Since these three products were detected irrespective of the quantities of reagents added, we suspected that they may have been generated by thermal activation of the substrate without any intermediacy of a radical. To confirm or discard this hypothesis, in a reference experiment, thiocarbamate 19 alone was heated in refluxing toluene for 12 hours and we observed that the alcohol 18 and the ether $\mathbf{1 5}$ were indeed formed, but the enamide $\mathbf{2 0}$ was not detected and hence it should be produced by evolution of an intermediate radical species. In any case, the competitive thermal reactions predominated and invalidated the reaction for synthetic purposes. As an alternative, the more resistant-to-hydrolysis p fluorophenylthiocarbamate 21 was prepared ${ }^{18}$ and the radical reaction was attempted from this new derivative under two different conditions. In a first experiment, a 0.07 M solution of 21 in toluene was added to a refluxing solution of $\mathrm{Bu}_{3} \mathrm{SnH}(4 \mathrm{eq})$ and AIBN (1 eq) in the same volume of toluene and the mixture was heated under reflux for three hours. These conditions, usually applied for the Barton-McCombie deoxygenation reaction, ${ }^{15 \mathrm{a}}$ were particularly intended to ensure the formation of the radical from 21. After purification of the crude material, we were able to identify only one product that was characterized as the alkene 22, to which we assigned the E configuration due to the lack of NOE

19
20

$$
\begin{aligned}
& \text { NHS, pyr } \\
& \text { toluene }
\end{aligned}
$$

23

Scheme 6. Attempted radical cyclization from 18.
between $\mathrm{H}-10(\delta 5.14)$ and $\mathrm{H}-12(\delta 6.97)$. In a second experiment, a 0.025 M solution of 21 in toluene and another solution of $\mathrm{Bu}_{3} \mathrm{SnH}(4 \mathrm{eq})$ and $\operatorname{AIBN}(1 \mathrm{eq})$ in the same volume of toluene were simultaneously added, during a 12 h period, over the same volume of refluxing toluene and then heating was prolonged for two additional hours. From this trial we isolated a fraction containing three stereoisomers of the dimeric structure 23. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{2 3}$ is consistent with two minor isomers with axial symmetry (R, R and S, S in the new stereogenic centers at C-13/13'), each one presenting one set of signals ($\delta 5.76$ and 5.75 for $\mathrm{H}-12$ and $\delta 4.73$ and 4.65 for $\mathrm{H}-10$, respectively), and one asymmetric major isomer (R, S at $\mathrm{C}-13 / 13^{\prime}$), presenting two sets of signals with identical relative area ($\delta 5.50$ and 5.37 for H 12 and $\delta 4.33$ and 4.26 for $\mathrm{H}-10$).

The formation of $\mathbf{2 2}$ and $\mathbf{2 3}$ can be only explained by the intermediacy of radical species (Scheme 7). Hypothetically, from the originally formed radical R-3, hydrogen atom abstraction of the allylic position is preferred over 6-exo-trig cyclization. The new radical formed R-4 may then evolve by losing the MOMO group and leading to diene $\mathbf{2 2}$ or by dimerizing to $\mathbf{2 3}$. Curiously enough, the dimerization was only observed when the reaction was performed under higher dilution, but, in any case, it was clear that the generated radical did not have the proper geometry to cyclize and, hence, the planned synthetic route to stenine was invalidated.

Scheme 7. Evolution of the intermediate radical R-3 to the isolated products.

We reasoned that a change in the nitrogen atom hybridization from sp^{2} to sp^{3} would provide a more flexible radical and hopefully facilitate the desired cyclization. Since the selective reduction of lactam 16 to the corresponding tertiary amine ${ }^{19}$ met with failure, we decided to perform the reduction in an earlier step of the sequence (Scheme 8). After extensive experimentation, the aminoalcohol 24 could be prepared in an acceptable yield by treatment of lactam 1 with an excess of DIBAL-H in toluene. ${ }^{20}$ The subsequent Swern oxidation ${ }^{21}$ delivered the aminoaldehyde 25, which was rapidly reacted with the lithium enolate of furanone $\mathbf{2}$, furnishing the addition product $\mathbf{2 6}$ as a single isomer. Although the relative configuration of $\mathbf{2 6}$ could not be firmly established, we assumed that it was the same as in the analogous lactam 9 . Then, by analogy with the precedent investigations within the lactam series of intermediates, the protection of the hydroxyl group of $\mathbf{2 6}$ as the MOM ether was intended. Unfortunately, the above conditions that had worked very well for the derivatization of lactam 9 , when applied to amine 26, led to a complex mixture of decomposition products. An alternative protocol, using

Scheme 8. Truncated sequence with intermediate amines.
dimethoxymethane and p-toluensulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ${ }^{22}$ produced simultaneous desilylation, giving the MOM ether 27, as the only product, which was isolated in 40% yield and presented low stability, disabling any purpose of going further in the synthetic sequence.

In view that the vinylogous aldol addition of lactone 2 had worked well on both lactam 7 and amine 25, we next considered the possibility of linking the lactone ring D to position 1 of the azabicycle through a metal mediated carbon-carbon coupling methodology in the first place, and then generating ring C through the aldol type process. To explore this option, we intended to replace the OTIPS substituent in lactam 1 by a bromine atom (Scheme 9). With this purpose, the TIPS group was removed and the resulting alcohol 28 was treated with CBr_{4} and $\mathrm{Ph}_{3} \mathrm{P}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{23}$ We predicted that the substitution reaction would take place with retention of configuration at $\mathrm{C}-1$ thanks to the anchimeric assistance of the ester group (path a); however, instead of the expected bromine 29, this reaction delivered lactone 30, as the unique identifiable product, most probably because the competitive attack of the bromide to the methyl group (path b) was favored.

Scheme 9. Attempted preparation of bromide 29.

As a mean to overcome this problem, we decided to prepare the homologous ester 32, which keeps the electrophilic character at C10 , enabling conjugate addition of the lactone moiety, incorporates the two-carbon fragment ($\mathrm{C}-12 / \mathrm{C}-13$) present in the target alkaloids, and disables the formation of undesired products as $\mathbf{1 5}$ or $\mathbf{3 0}$ by oxycyclization (Scheme 10). The Wittig alkenylation of aldehyde 7 in refluxing ethyl acetate as the solvent furnished the expected ester 31 in high yield with excellent stereoselectivity, which was desilylated to the corresponding alcohol 32 . However, several attempts to convert 32 into the corresponding bromide 33, including treatment with $\mathrm{CBr}_{4} / \mathrm{Ph}_{3} \mathrm{P}, \mathrm{SOBr}^{24}$ or $(\mathrm{COBr})_{2} / \mathrm{DMF},{ }^{25}$ met with failure, being the bisoxalate $\mathbf{3 4}$ the only isolated product under the last conditions.

Scheme 10. Preparation of ester 31 and attempted conversion to bromide 33.

In any case, we decided to test the viability of installing the lactone ring D by means of a conjugate addition reaction. To this aim, we intended to adapt to our substrates the conditions described by McMillan and coworkers for the enantioselective Mukaiyama-Michael reaction between silyloxyfurans and simple α, β-unsaturated aldehydes. ${ }^{26}$ Hence, it was necessary to activate the electrophile by reduction of the α, β-unsaturated ester $\mathbf{3 1}$ to the
corresponding aldehyde (Scheme 11). In the event, treatment of $\mathbf{3 1}$ with DIBAL-H (4 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ led to a mixture of the expected hydroxylactam $\mathbf{3 5}$ and the hydroxylamine $\mathbf{3 6}$ in a $1: 2$ ratio and 74% overall yield. Other reducing agents $\left(\mathrm{LiBH}_{4}\right.$, LiAlH_{4}) and/or conditions gave lower yields and significant amounts of decomposition products. Lactam 35 and amine $\mathbf{3 6}$ were then converted into the corresponding aldehydes 37 and 38 by oxidation with the Dess-Martin periodinane (DMPI). Unfortunately, despite many efforts were made by exploring different silyloxyfuranes, organocatalytic bases, additives, solvents and conditions, only in one case we were able to detect the expected addition product, when the reaction between lactam 37 and silyloxyfurane 39 was performed in the presence of the imidazolidinone 40, 2,4-dinitrobenzoic acid (DNBA) and water, in toluene. Under these conditions, in a fraction of the crude product, compound 41 was recognized as a mixture of three diastereoisomers in an overall yield around 15%.

Scheme 11. Synthesis of aldehydes 37 and 38 and attempted conjugate addition of silyloxyfurane 39 .

In view of these unsatisfactory results, we next focused our investigations on exploring the alternative route through a pyrrolidone intermediate 5 (Scheme 1), which would be straightforwardly related to the sessilifoliamide B / C structure.

2.2. Synthetic atudies based on the key synthon 5

In a publication describing the synthesis of grandisine D , as part of a supplementary study, Tamura and coworkers reported the preparation of aldehyde 46 starting from L-malic acid and using an intramolecular Morita-Baylis-Hillman (MBH) reaction of a properly substituted pyrrolidone 45 to generate the azepine ring (Scheme 12). ${ }^{27}$ The synthesis involved four steps, the overall yield was 34%, and the bicyclic lactam was obtained as a roughly $2: 1$ (trans/cis) mixture of diastereoisomers, which could not be chromatographically separated.

Scheme 12. Synthesis of aldehyde 46 described by Tamura and coworkers. ${ }^{27}$

The similarity between aldehyde 46 and our key synthon 5 encouraged us to explore the possibility of adapting the reported synthesis of 46 to a suitable intermediate for the targeted alkaloids. In our laboratories, the preparation of imide $\mathbf{4 3}$ could be slightly improved to 86% yield by treating 2-acetoxy-L-malic anhydride with 5 -amino-1-pentene generated in situ from the corresponding hydrochloride prepared by a Gabriel synthesis, ${ }^{28}$ the subsequent reduction to the acylaminal 44 could be accomplished in 93% yield, and the cross metathesis with acrolein and 5% of the second generation Hoveyda-Grubbs catalyst (HG-II) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was achieved in 94% yield. Then, the MBH cyclization was studied in detail with the aim of finding conditions to improve the efficiency and stereoselectivity of the process. Originally, this transformation was described to proceed by using triflic acid (to generate the iminium ion) and dimethyl sulfide (as the nucleophile to make the enolate) in acetonitrile as the solvent.

Based on the published studies leading to the formation of the indolizidine intermediate for grandisine D , we expected that eventual improvements on yield and/or diastereoselectivity in the cyclization to the pyrroloazepine system of interest would be mainly associated to modification of the acid promoter and, hence, the MBH reaction was assayed in the presence of various Lewis acids (Table 1). Firstly, we intended to reproduce the reported conditions (entry 1), which in our hands lead to an even lower trans/cis ratio of 46. Boron trifluoride (entry 2) gave lower conversion and stereoselectivity, while trimethylsilyl triflate (entry 3), dibutylboryl triflate (entry 4) and triisopropylsilyl triflate (entry 5) gave all better conversion but low diastereoselectivity, and changing the solvent to ether (entries 6-7) did not produce significant improvements either. The most interesting observation of this study was that the substitution of TfOH by TMSOTf improved the yield of isolated 46 from 64% to 82% without decreasing the diastereoselectivity. In summary, the overall yield of the sequence from L-malic acid to the azabicyclic acetate 46 was enhanced from the reported 34% to 62%.

Table 1. Synthesis of aldehydes 37 and 38 and attempted conjugate addition of silyloxyfurane 39. ${ }^{\text {a }}$

Entry	Acid Promoter	Solvent	Conversion $^{\mathrm{b}}$	trans/cis ${ }^{\mathrm{b}}$
1^{c}	TfOH	$\mathrm{CH}_{3} \mathrm{CN}$	70%	$1.4: 1$
2	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	60%	$1.2: 1$
3	TMSOTf	$\mathrm{CH}_{3} \mathrm{CN}$	$100 \%^{\mathrm{d}}$	$2: 1$
4	$\mathrm{Bu}_{2} \mathrm{BOTf}$	$\mathrm{CH}_{3} \mathrm{CN}$	80%	$1: 1.1$
5	$\mathrm{TIPSOTf}^{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	86%	$1: 1$
6	TMSOTf^{2}	$\mathrm{Et}_{2} \mathrm{O}$	70%	$2: 1$
7	$\mathrm{Bu}_{2} \mathrm{BOTf}$	$\mathrm{Et}_{2} \mathrm{O}$	90%	$2: 1$

${ }^{\text {a }}$ All the reactions were performed using $\mathrm{Me}_{2} \mathrm{~S}$ as the nucleophile, from $-35^{\circ} \mathrm{C}$ to room temperature, for an overall time of 3 h .
${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude material.
${ }^{\mathrm{c}}$ Reaction performed under the conditions described in ref. 26.
${ }^{\text {d Isolated yield: }} 82 \%$.

We then explored the possibility of applying an analogous sequence to the preparation of the azabicyclic enone 48, which contains the C-10 ethyl chain present in the targeted alkaloids (Scheme 13). Unfortunately, both reactions involved in the transformation of acylaminal 44 to enone 48 , the cross metathesis with ethyl vinyl ketone (EVK) and the subsequent intramolecular MBH reaction, gave substantially lower yields compared to the aldehyde analogs, but the bicyclic enone 48 was isolated as a single diastereoisomer, to which we assigned the trans relative configuration by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with those described for cis- and trans-46. ${ }^{27}$

Scheme 13. Preparation of azabicyclic enone 48.

With the aim of studying the subsequent steps of the synthetic plan on simpler intermediates, we also decided to prepare enal 51 and enone 53 lacking the substituent at C-1 (Scheme 14). Thus, the known acylaminal $\mathbf{4 9}^{29}$ was converted into 51 by cross metathesis with acrolein followed by MBH cyclization in 89% yield for the two steps. A parallel protocol with EVK as the metathesis partner led to the lineal enone 52 in 76% yield, but its cyclization was very ineffective. We assayed to invert the order of steps and performed an intermolecular MBH reaction between 49 and EVK, which delivered dienone 54 in 88% yield, but the subsequent intramolecular cross metathesis met with failure, leading to polymeric material, despite the reaction was intended under high dilution conditions. Finally, enone 53 was obtained in good yield by ethylmagnesium bromide addition to aldehyde 51 and oxidation with DMPI of the corresponding mixture of diastereoisomeric alcohols 55.

Scheme 14. Preparation of the model azabicyclic enal 51 and enone 53.

Next, in the search for a more effective asymmetric induction in the MBH cyclization within the homochiral series of intermediates, we decided to explore the replacement of the acetate substituent in 45 by other hydroxyl derivatives. To this aim, starting from 43 , we synthesized the series of analogs 59 according to the sequence depicted in Scheme 15 (Table 2). Ethanolysis of acetate 43 furnished the free alcohol $56,{ }^{30}$ from which the benzyl ($\left.\mathrm{R}^{1}=\mathrm{Bn}\right)$, p-methoxybenzyl $\quad\left(\mathrm{R}^{1}=\mathrm{PMB}\right)$, pivaloyl $\quad\left(\mathrm{R}^{1}=\mathrm{Piv}\right)$, benzoyl $\left(\mathrm{R}^{1}=\mathrm{Bz}\right)$, tert-butyldimethylsilyl $\left(\mathrm{R}^{1}=\mathrm{TBS}\right)$, and tertbutyldiphenylsilyl ($\mathrm{R}^{1}=$ TBDPS) derivatives, $\mathbf{5 7 a} \mathbf{a}$, were prepared by standard procedures in good yields. Then, these compounds
were reduced to the corresponding acylaminals 58a-f by treatment with NaBH_{4} in methanol at $-20^{\circ} \mathrm{C}$. This reduction was totally regioselective except for the TBDPS derivative 57f, from which a minor amount of the other regioisomer was also identified. ${ }^{31}$ On the other hand, 58a, 58b and $\mathbf{5 8 f}$ were obtained as mixtures of two epimers, while for the rest of compounds $\mathbf{5 8}$ only one epimer was detected, but it should be noticed that the occurrence of epimers at the aminal position is synthetically inconsequent. On the TBDPS derivative 57 f , the reduction of the imide was assayed in other solvents $\left(\mathrm{EtOH}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and with other reducing agents $\left(\mathrm{LiBH}_{4}\right.$, L-selectride ${ }^{\circledR}$, $\mathrm{LiEt}_{3} \mathrm{BH}$, DIBAL-H, $\mathrm{BH}_{3} \cdot \mathrm{THF}$, and $\left.\mathrm{NaB}(\mathrm{OAc})_{3} \mathrm{H}\right)$, but the isolated yields of acylaminal were lower in all cases and the regioselectivity could not be improved either. Two additional acylaminals $\mathbf{5 8 g}$ and $\mathbf{5 8 h}$ were prepared by imide reduction of the free alcohol 56 and posterior in situ treatment with ethanol or acetone, respectively, under acid catalysis.

Scheme 15. Synthesis of the pyrroloazepinones 59.

Next, the optimal conditions for the cross metathesis reaction were investigated using $\mathbf{5 8 f}$ as the model substrate, and it was found that the reaction with crotonaldehyde (easier to handle than acrolein) with 2% molar second generation Grubbs catalyst (G-II) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature proceeded quantitatively. The same conditions were then applied to the rest of acylaminals and the enals 59a-h were all isolated in excellent yields.
Table 2. Isolated yields of compounds 57a-f, 58a-h, and 59a-h.

Entry	R^{1}	R^{2}	57 (Yield)	58 (Yield)	59 (Yield)
1	Bn	H	57a (97\%)	58a (85\%)	59a (87\%)
2	PMB	H	57b (92\%)	58b (61\%)	59b (89\%)
3	Piv	H	57c (80\%)	58c (72\%)	59c (86\%)
4	Bz	H	57d (86\%)	58d (78\%)	59d (83\%)
5	TBS	H	57e (92\%)	58e (61\%)	59e (86\%)
6	TBDPS	H	57f (90\%)	$588(67 \%)^{\text {a }}$	59 f (100\%)
7	H	Et		58g (88\%)	$\mathbf{5 9 g}$ (91\%)
8	$\mathrm{Me}_{2} \mathrm{C}$			58h (51\%)	59h (82\%)

${ }^{\mathrm{a}} \mathrm{A}$ regioisomer was also isolated in 11% yield.

With derivatives 59a-h in hand, we undertook the study of their MBH cyclization (Scheme 16). We hypothesized that the lower regioselectivity observed for the reduction of $\mathbf{5 7} \mathbf{f}$ compared to the rest of analogs was due to the larger steric hindrance triggered by the bulky TBDPS group, a factor that could now benefit the trans stereoselectivity of the cyclization process and, hence, we initially focused the study on this substrate (Table 3). All the reactions were performed at the same temperature (from $-35{ }^{\circ} \mathrm{C}$ to room temperature) for a total time of 4 h and the substrate conversion and diastereoisomeric ratio were monitored by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction product. The first experiments were done
with TMSOTf as the acid promoter, which had given the best result in the previous cyclization of acetate 45, and dimethyl sulfide (DMS) as the nucleophile. With this pair of reagents, the reaction in acetonitrile (entry 1) proceeded faster and with higher diastereoselectivity than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (entry 2). The replacement of DMS by DABCO (entry 3) was ineffective, leaving the substrate unchanged. Then, other acids were tested keeping DMS as the nucleophile and acetonitrile as the solvent. Using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (entry 4) the conversion was good but the stereoselectivity very poor, indium triflate (entry 5) did not promote any reaction, and triflic acid (entry 6) did not improve the selectivity. However, triethylsilyl triflate (entry 7) led to total conversion with complete steric induction and, quite surprisingly, afforded exclusively the cis isomer $\mathbf{6 0 f}$ in 68% isolated yield. It is worth mention that, if
isolated as a unique product in a fair yield, any diastereoisomer cis or trans was equally valuable for our synthetic purposes. Curiously, by using triisopropylsilyl triflate (entry 8) the stereoselectivity decreased.

Scheme 16. Intramolecular MBH reaction of 59.

Table 3. MBH cyclization of substrates 59 to pyrroloazeopinones 60. ${ }^{\text {a }}$

Entry	59	R^{1}	R^{2}	Acid Promoter	Conversion ${ }^{\text {b }}$	60 (Yield)	trans/cis ${ }^{\text {b }}$
1	59f	TBDPS	H	TMSOTf	100\%		1:8
$2^{\text {c }}$	59f	TBDPS	H	TMSOTf	67\%		1:2.2
$3{ }^{d}$	59f	TBDPS	H	TMSOTf	-		
4	59f	TBDPS	H	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	100\%		1:1.3
5	59f	TBDPS	H	$\mathrm{In}(\mathrm{OTf})_{3}$	-		
6	59f	TBDPS	H	TfoH	72\%		1:6
7	59f	TBDPS	H	TESOTf	100\%	$\mathbf{6 0 f}$ (68\%)	only cis
8	59f	TBDPS	H	TIPSOTf	100\%		1:15
9	59a	Bn	H	TESOTf		60a (30\%)	1:1
10	59b	PMB	H	TESOTf	100\% ${ }^{\text {e }}$		
11	59c	Piv	H	TESOTf	100\%	60c (56\%)	1:1.2
12	59c	Piv	H	TMSOTf	56\%		1:1.2
13	59c	Piv	H	TfOH	45\%		1:1.4
14	59d	Bz	H	TESOTf		60d (63\%)	1.7:1
15	59e	TBS	H	TESOTf	$100 \%{ }^{e}$		
16	59g	H	Et	TESOTf	-		
17	59h	$\mathrm{Me}_{2} \mathrm{C}$		TESOTf	$100 \%{ }^{e}$		

${ }^{\text {a }}$ All the reactions were performed in $\mathrm{CH}_{3} \mathrm{CN}$ (except entry 2), using $\mathrm{Me}_{2} \mathrm{~S}$ as the nucleophile (except entry 3), from $-35^{\circ} \mathrm{C}$ to room temperature, for an overall time of 4 h .
${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude material. ${ }^{\mathrm{c}}$ Reaction performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\mathrm{d}} \mathrm{DABCO}$ was used as the nucleophile.
${ }^{\mathrm{e}}$ Converted to the corresponding free alcohols.

Then, the conditions of entry 7 were applied to the rest of derivatives 59. We observed that the substrates bearing acid sensitive functionalizations (entries 10,15 and 17) did not survive to the MBH reaction conditions and transformed into the corresponding free alcohol, which did not evolve to the azabicyclic product. Consistently, from alcohol $\mathbf{5 9 g}$ cyclization products were not observed either (entry 16). On the contrary, the benzyl derivative 59a furnished the azabicycle 60a, albeit in quite low yield and without any stereoselectivity (entry 9), while the ester
derivatives 59c and 59d (entries 11 and 14) gave reasonable yields of cyclization product but the stereodifferentiation was still very low. Two complementary acid promoters, TMSOTf and and TfOH , assayed on the pivaloate 59c did not give better results (entries 12 and 13).

The relative configuration of $\mathbf{6 0 f}$ was assigned by ${ }^{1} \mathrm{H}$ NMR analysis, including NOE experiments. Although the minor isomer could not be isolated, the spectrum of a mixture of both isomers
showed a clear correlation with the data reported for the acetates cis and trans-46. Moreover, for the major isomer, selective irradiation of $\mathrm{H}-1$ produced a very strong enhancement of the signal corresponding to $\mathrm{H}-9 \mathrm{a}$, which is only compatible with its cis relative geometry. The fact that for the cyclization of $\mathbf{5 9 f}$ the face selectivity was opposite to the expected one evidences that the intramolecular MBH reaction occurs through a quite complex mechanistic pathway. For this process, it is broadly accepted that the formation of the new carbon-carbon bond requires the conjugate addition of the nucleophile to effect vinylogous enolization of the α, β-unsaturated aldehyde, followed by quenching of the zwitterionic adduct with an electrophile, and then proton transfer and elimination of the nucleophilic promoter. ${ }^{32}$ However, since the cyclization of 59 requires the use of nucleophile and Lewis acid amounts superior to the stoichiometric ones, a series of equilibriums may be at play (Scheme 17). The a priori expected pathway would imply the formation of the acyliminium intermediate $\mathbf{I}-\mathbf{4}$, accessible from $\mathbf{I} \mathbf{- 1}$ or $\mathbf{I}-\mathbf{3}$, respectively resulting from the acid promoted generation of the electrophile or the vinilogous enolization by $\mathrm{Me}_{2} \mathrm{~S}$ addition. Based on steric effect considerations, the cyclization of $\mathbf{I}-4$ should deliver the trans isomer of $\mathbf{6 0}$, produced by attack of the enolate to the less hindered face of the acyliminium ion. However, there is also the possibility that the iminium intermediates $\mathbf{I}-\mathbf{1}$ and/or $\mathbf{I}-4$ react with the external nucleophile ultimately leading to a new species $\mathbf{I}-5$, which would then evolve to the cis isomer of $\mathbf{6 0}$. This intricate mechanistic landscape may account for the apparently random stereoselectivity observed in the MBH cyclization of substrates 59 due to changes (even quite subtle) on the substrate, Lewis acid or solvent. In any case, we concluded that azabicycle 60f, available in 68% yield as a unique isomer under the conditions of entry 7 , was the intermediate of choice to continue the synthetic studies towards the targeted alkaloids, but the following steps of the sequence were previously explored with the racemic model compounds lacking the substituent at $\mathrm{C}-1$.

Scheme 17. Mechanistic pathways for the MBH cyclization of 59 .

Surprisingly, the reaction between the model aldehyde 51 and the lithium enolate of furanone 2 furnished exclusively the 1,4addition product 61 (Scheme 18) and, when the reaction was assayed on aldehyde 62, prepared by catalytic hydrogenation of the carbon-carbon double bond, the expected alcohol 63 was obtained in quite low yield. Moreover, both $\mathbf{6 1}$ and $\mathbf{6 3}$ were
isolated as complex mixtures of various diastereoisomers. The Mukayama aldol protocol was also intended by addition of silyloxyfuran 39 under Lewis acid catalysis, ${ }^{33}$ but the best conditions found led to a mixture of the two regioisomers 64 and 65, wherein the 1,4 -addition product predominated, and the isolated fractions of each regioisomer contained as well several diastereoisomers. Analogous reactions using enones 53 or $\mathbf{4 8}$ as the substrate met also with failure and only 1,4 -addition products were occasionally detected.

Scheme 18. Model studies for the introduction of the furanone fragment to the azabicyclic aldehyde 51.

We next decided to attempt the two-carbon homologation of aldehydes $\mathbf{5 1}$ and $\mathbf{6 2}$ in order to assay the Mukayama-Michael methodology to introduce the furanone fragment (Scheme 19). Horner-Wadsworth-Emmos (HWE) reaction of the α, β unsaturated aldehyde 51 furnished the expected ester in excellent yield and E stereoselectivity, but the subsequent reduction met with chemoselectivity problems, caused by partial reduction of the lactam and carbon-carbon double bonds, and dienol 67 was isolated in a poor 37% yield, as the best result, when the reduction was performed with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. Oxidation of 67 with DMPI rendered the $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde 68 in 78% yield. A parallel set of transformations was applied to aldehyde 62. From this substrate, the HWE alkenylation resulted less stereoselective and, besides the E ester 69, a minor quantity of its Z isomer was also formed. From the subsequent DIBAL-H

Scheme 19. Two-carbon homologation of aldehydes 51 and 62.
reduction of $\mathbf{6 9}$, lactam 70 and amine $\mathbf{7 1}$ could be isolated in 32% and 21% yield, respectively, provided that the reaction was quenched before complete consumption of the starting material, 30% of which being recovered. Hydroxylactam 70 was then oxidized to the corresponding aldehyde 72 that was extremely unstable. Hence, the model studies for the addition of the furanone to the β-carbonyl position were performed with the $\alpha, \beta, \gamma, \delta$ unsaturated aldehyde $\mathbf{6 8}$ as the electrophile partner. The synthesis of this aldehyde could be substantially improved by reaction of 51 with (E)-(2-ethoxyvinyl)(ethyl)zinc, prepared in situ from ethoxyacetylene, $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ and $\mathrm{Et}_{2} \mathrm{Zn},{ }^{34}$ a procedure leading directly to 68 in 70% yield.

The conjugate addition of the furanone moiety to aldehyde $\mathbf{6 8}$ was studied in deep by modification of all the parameters involved. Besides the trimethylsilyloxyfurane 19, its 5-methyl derivative and their triisopropylsilyl analogues were also explored as nucleophiles, using always an excess amount going from 20% to threefold. The experiments were performed employing the chiral McMillan's organocatalyst 40 or pyrrolidine, in combination with three different acids, DNBA, TfOH and TFA. Most reactions were run in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but toluene was also assayed, one or two equivalents of water were added to the reaction medium, and a temperature range from $-70^{\circ} \mathrm{C}$ to room temperature was covered. The best conditions found involved the use of 1.5 equivalent of silyloxyfurane 19 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, in the presence of pyrrolidine, DNBA and 2 equivalents of water, from $-20^{\circ} \mathrm{C}$ to room temperature for 72 h , and allowed the isolation of the adduct 73 as a 4.3:1.9:1 mixture of three diastereoisomers in 70% overall yield (Scheme 20). Deoxygenation of $\mathbf{7 3}$ was accomplished by formation of dithiane 74, ${ }^{35}$ followed by desulfuration by treatment with Raney $\mathrm{Ni},{ }^{36}$ which was concomitant with the reduction of the conjugated carbon-carbon double bond. Subsequent hydrogenation of the remaining alkene functionality proceeded in quantitative yield to furnish 76, still as a mixture of three stereoisomers. To complete the sessilifoliamides B and C skeleton, it remained only attaching the methyl group at C-13. This endeavor was achieved by an α -selenylation/methylation/oxidation-elimination protocol that delivered a mixture of lactones 78 and 79. Since we were dealing with model compounds and very small quantities of materials, further efforts to improve the efficiency of these last steps or to separate and independently characterize the regioisomers 78 and 79 were not made.

Next, our efforts were focused on applying the same sequence of reactions to the enantiomerically pure aldehyde $\mathbf{6 0 f}$ (Scheme 21). The straight conversion of $\mathbf{6 0 f}$ into the two-carbon homolog $\mathbf{8 2}$ by reaction with (E)-(2-ethoxyvinyl)(ethyl)zinc was inefficient in this case, lacking reproducibility. However, the HWE reaction took place with complete stereoselectivity, providing ester 80 in 83% yield and the conversion of $\mathbf{8 0}$ to the aldehyde $\mathbf{8 2}$, through reduction to the alcohol followed by oxidation with DMPI, was accomplished in good yield. Unfortunately, when the above conditions for the Mukayama-Michael reaction optimized for the model aldehyde $\mathbf{6 8}$ were applied to $\mathbf{8 2}$ the expected addition product $\mathbf{8 3}$ was formed in very low yield. ${ }^{1} \mathrm{H}$ NMR analysis of the reaction evolution of an experiment performed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as the solvent (Figure 3), evidenced that the rate of formation of $\mathbf{8 3}$ is lower than its decomposition. Despite the reaction was attempted under modified conditions, we were unable to set up a synthetically useful method for the preparation of $\mathbf{8 3}$ and our efforts were directed to alternative

Scheme 21. Attempted synthesis of 83 .

Figure 3. ${ }^{1} \mathrm{H}$ NMR analysis ($250 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of the reaction evolution between $\mathbf{8 2}$ and $\mathbf{3 9}$; a) fragment of the ${ }^{1} \mathrm{H}$ NMR spectrum of adduct $\mathbf{8 3}$; b) Reaction mixture at time 0 min .

Scheme 20. Model studies for the introduction of the furanone fragment to the azabicyclic aldehyde 68.

3. Conclusions

In summary, we have explored an original synthetic approach to the Stemona alkaloids stenine and sessilifoliamides B and C based on the early construction of the pyrroloazepine core (rings A and B) and posterior addition of the furanone (ring D) and the ethyl chain at $\mathrm{C}-10$. The formation of the azabicyclic nucleus through an intramolecular Morita-Baylis-Hillman reaction of a properly substituted pyrrolidone has been extensively investigated by modifications on the substrate and all the parameters involved in the process. As a result of these studies, an efficient protocol in terms of yield and stereoselectivity has been developed. Despite many alternative tactics were explored, insuperable difficulties found in the last synthetic steps have frustrated the completion of the syntheses. However, along the way, a plethora of new compounds has been prepared, some of them containing the full skeleton of the targeted alkaloids, which can be useful for future synthetic applications.

4. Experimental section

4.1. General remarks

Commercially available reagents were used as received. The solvents were dried by distillation over the appropriate drying agents. All reactions were performed avoiding moisture by standard procedures and under nitrogen atmosphere. Flash column chromatography was performed using silica gel (230-400 mesh) unless otherwise indicated. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 250 and $62.5 \mathrm{MHz}, 400$ and $100 \mathrm{MHz}, 360$ and 90 MHz , or 500 and 125 MHz . Proton and carbon chemical shifts are reported in ppm (δ) $\left(\mathrm{CDCl}_{3}, \delta 7.26\right.$ for ${ }^{1} \mathrm{H} ; \mathrm{CDCl}_{3}, \delta 77.2$ for $\left.{ }^{13} \mathrm{C}\right)$. NMR signals were assigned with the help of COSY, HSQC, HMBC, and NOESY experiments. Melting points were determined on hot stage and are uncorrected. Optical rotations were measured at $22 \pm 2^{\circ} \mathrm{C}$. This section need to include the type of elemental analyzer and the name of the analytical lab.

4.2. (6S,7R,8S)-6-Hydroxymethyl-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-2-one (6)

A solution of LiBH_{4} in THF ($2 \mathrm{M}, 12.0 \mathrm{~mL}, 23.7 \mathrm{mmol}$) was added to a solution of ester $\mathbf{1}(2.3 \mathrm{~g}, 5.9 \mathrm{mmol})$ in dry diethyl ether $(100 \mathrm{~mL})$ and the mixture was stirred at room temperature overnight. The excess of LiBH_{4} was quenched by slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The volatiles were removed under vacuum and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100$ mL). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (hexanes/EtOAc, 1:1, to EtOAc) afforded $\mathbf{6}$ as a white solid ($2.1 \mathrm{~g}, \quad 5.8 \mathrm{mmol}, ~ 99 \%): ~ \mathrm{Mp} 80-85{ }^{\circ} \mathrm{C}$ (hexanes/EtOAc); $[\alpha]_{\mathrm{D}}+11$ (c 1.15, CHCl_{3}); IR (ATR) 3414, 2940, 2861, 1617, 1462, 1431, 1354, 1137, 1159, 1118, $1031 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{H}-7), 3.69\left(\mathrm{dt}, J_{10,10}=11.8 \mathrm{~Hz}, \mathrm{~J}_{10,9}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 3.59(\mathrm{dd}$, $\left.J_{1^{\prime}, 1^{\prime}}=10.7 \mathrm{~Hz}, J_{1^{\prime}, 6}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.46\left(\mathrm{dd}, J_{1^{\prime}, 1^{\prime}}=10.7 \mathrm{~Hz}\right.$, $\left.J_{1,6}^{\prime}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}\right), 3.36\left(\mathrm{ddd}, J_{10,10}=11.9 \mathrm{~Hz}, J_{10,9}=7.9 \mathrm{~Hz}\right.$, $\left.J_{10,9}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 3.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.43(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3)$; 2.12 (m, 3H, H-5, H-6, H-9), 1.65 (m, 4H, 2H-4, H-5, H-9), 1.02 (br s, 21H); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6$ (CO), 78.6 (C8), 71.1 (C-7), 60.3 (C-1'), 46.0 (C-10), 40.9 (C-6), 38.6 (C-3), 33.6 (C-9), 33.0 (C-5), 19.0 (C-4), 18.5 (CHMe ${ }_{3}$), 12.6 (CHMe_{3}); MS m / z (ESI + , MeOH): $378\left(\mathrm{MNa}^{+}\right)$; HRMS (ESI +) calcd for [$\left.\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{SiH}^{+}\right]: 356.2621$, found: 356.2613 .

azabicyclo[5.3.0]decan-6-carbaldehyde (7)

A solution of DMPI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{wt} \%, 11.4 \mathrm{~mL})$ was added dropwise to a solution of alcohol $6(1.8 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(90 \mathrm{~mL})$ under a nitrogen atmosphere and the mixture was stirred at room temperature for 2 h . To eliminate the excess of oxidant, the mixture was quenched with 7 mL of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to saturated aqueous $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$. The phases were separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by column chromatography (hexanes/EtOAc, 1:1) to give 7 as a white solid ($1.6 \mathrm{~g}, 4.5 \mathrm{mmol}$, 90%): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74$ (s, 1H, $\mathrm{H}-1$ '), $4.60(\mathrm{td}$, $\left.J_{8,9}=6.6 \mathrm{~Hz}, J_{8,7}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.91\left(\mathrm{ddd}, J_{10,10}=11.8 \mathrm{~Hz}\right.$, $\left.J_{10,9}=8.2 \mathrm{~Hz}, J_{10,9}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 3.71\left(\mathrm{br} \mathrm{d}, J_{7,8}=5.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7$), 3.36 (ddd, $J_{10,10}=11.8 \mathrm{~Hz}, J_{10,9}=8.8 \mathrm{~Hz}, J_{10,9}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 2.83 (br t, $J_{6,5}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $2.55(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-3$, $\mathrm{H}-5), 2.12$ (m, 1H, H-9), 1.80 (m, 4H, 2H-4, H-5, H-9), 1.04 (br s, 21 H); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3$ (C-1'), 173.7 (CO), 77.8 (C-8), 67.7 (C-7), 50.8 (C-6), 45.6 (C-10), 38.2 (C-3), 33.6 (C-9), 31.4 (C-5), 20.5 (C-4), $\left.18.5(\mathrm{CHMe})_{3}\right), 12.7\left(\mathrm{CHMe}_{3}\right)$. To avoid epimerization, aldehyde 7 was immediately processed to the next step.
4.4. (6S, 7R, $8 S)-6$ - $\{(1 S)$-1-Hydroxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl\}-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-2-one (8) and ($6 R, 7 R, 8 S$)-6-[(1-Hydroxy)(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)methyl]-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-2-one (11)

LDA (2 M in THF, $1.0 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added dropwise to a solution of $2(5 \mathrm{H})$-furanone $2(183 \mu \mathrm{~L}, 2.1 \mathrm{mmol})$ in dry THF (25 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was stirred for 5 min and then a solution of aldehyde $7(750 \mathrm{mg}, 2.1 \mathrm{mmol})$ in dry THF (10 mL) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The layers were separated and the aqueous one was extracted with EtOAc (2×20 mL). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated to dryness. The crude material was purified by column chromatography (hexanes/EtOAc, 1:1, to EtOAc) to afford compound $\mathbf{8}$ as a white solid ($683 \mathrm{mg}, 1.5 \mathrm{mmol}$, 72%): Mp 148-152 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); $[\alpha]_{\mathrm{D}}+35\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (ATR) 3339, 2932, 2862, 1757, 1617,1460, 1352, 1212, 1161, 1095, 1059, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{q}$, $J_{3^{\prime \prime}, 2^{\prime \prime}}=J_{3^{\prime \prime}, \mathrm{Me}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '"), $4.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$ ''), $4.91(\mathrm{td}$, $\left.J_{8,9}=6.1 \mathrm{~Hz}, J_{8,7}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.11\left(\mathrm{dd}, J_{1^{\prime}, 6}=10.1 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime \prime}}\right.$ $\left.=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{OH}), 3.74\left(\mathrm{br} \mathrm{d}, J_{7,8}=3.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.44\left(\mathrm{dt}, J_{10,10}=11.8 \mathrm{~Hz}, J_{10,9}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right)$, $2.60(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 2.18\left(\mathrm{br} \mathrm{d}, J_{6,1^{\prime}}=10.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6), 1.93\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2}{ }^{\prime \prime}=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70(\mathrm{~m}, 5 \mathrm{H}$, $2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-9$), 1.04 (br s, $21 \mathrm{H}, 3 \mathrm{CH}, 6 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9(\mathrm{CO}), 173.5(\mathrm{CO}), 144.0(\mathrm{C}-3$ ''), 132.5 (C$\left.4^{\prime \prime}\right), 82.0$ (C-2'’), 78.4 (C-8), 71.9 (C-7), 67.6 (C-1'), 46.0 (C-10), 40.3 (C-6), 37.8 (C-3), 33.2 (C-9), 32.6 (C-5), 18.6 (C-4), 17.9 $\left.(\mathrm{CHMe})_{3}\right), 12.1\left(\mathrm{CHMe}_{3}\right), 10.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI +) calcd for [$\left.\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{SiH}^{+}\right]: 452.2832$, found: 452.2831.

Eventually, a small quantity of aldehyde 11, of unknown configuration at C-1' and C-2'', was also isolated: Mp $146-150^{\circ} \mathrm{C}$ (hexanes/EtOAc); $[\alpha]_{\mathrm{D}}-36.0$ (c 1.00, CHCl_{3}); IR (ATR) 3372, 2935, 2861, 1759, 1611, 1456, 1380, 1306, 1188, 1092, $1029 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{q}, J_{3^{\prime \prime}, 2^{\prime \prime}}=J_{3^{\prime \prime}, \mathrm{Me}}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3$ '"), 5.02 (m, 1H, H-2'), 4.67 (m, 1H, H-8), 3.93 (td, $J_{1, ~}^{\prime}, 6$ $\left.=J_{1^{\prime}, \text { ОН }}=8.5 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 3.77$ (dt, $\left.J_{10,10}=11.6 \mathrm{~Hz}, J_{10,9}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 3.50\left(\mathrm{ddd}, J_{10,10}=\right.$
$\left.11.6 \mathrm{~Hz}, J_{10,9}=8.4 \mathrm{~Hz}, J_{10,9}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.40(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-$ $3, \mathrm{H}-6, \mathrm{H}-9), 2.06\left(\mathrm{~d}, J_{\mathrm{OH}, 1^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 1.92\left(\mathrm{t}, J_{\mathrm{Me}, 3^{3}}=\right.$ $\left.J_{\mathrm{Me}, 2}{ }^{\prime \prime}=1.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-9), 1.02(\mathrm{br}$ $\mathrm{s}, 21 \mathrm{H}, 3 \mathrm{CH}, 6 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8(\mathrm{CO})$, 173.7 (CO), 147.3 (C-3'), 131.1 (C-4'), 81.8 (C-2'), 79.2 (C-8), 73.0 (C-7), 67.9 (C-1'), 46.4 (C-10), 42.3 (C-6), 38.3 (C-3), 33.3/32.5 (C-5/C-9), 19.0 (C-4), 17.9 (CHMe $), 12.0\left(\mathrm{CHMe}_{3}\right)$, $10.9\left(\mathrm{CH}_{3}\right)$.
4.5. (6S,7R,8S)-8-Hydroxy-6-\{(1S)-hydroxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl\}-1-azabicyclo[5.3.0]decan-2one (9)

Trifluoromethansulfonic acid ($75 \mu \mathrm{~L}, 0.82 \mathrm{mmol}$) was added to a solution of alcohol $\mathbf{8}(95 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the mixture was stirred at room temperature for 5 min . The solvent was partially removed under reduced pressure and the resulting solution was purified by column chromatography (EtOAc) to deliver diol 9 as a white solid ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$, 81\%): Mp 195-198 ${ }^{\circ} \mathrm{C}$ (EtOAc/pentane); $[\alpha]_{\mathrm{D}}+17$ (c 1.45 , MeOH); IR (ATR) 3358, 2970, 2882, 1757, 1597,1456, 1326, 1287, 1193, 1090, 1047, $982 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.33\left(\mathrm{q}, J_{3^{\prime \prime}, 2^{\prime \prime}}=J_{3^{\prime \prime}, \mathrm{Me}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 5.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}{ }^{\prime}\right)$, 4.76 (ddd, $J_{8,9}=6.3 \mathrm{~Hz}, J_{8,9}=5.6 \mathrm{~Hz}, J_{8,7}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$); 4.03 (dd, $J_{1^{\prime}, 6}=10.4 \mathrm{~Hz}, J_{1^{\prime}, 2,2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}$), 3.87 (br d, $J_{7,8}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.62(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-3$); 2.37 (m, 1H, H-9), 2.20 (m, 2H, H-5, H-6), 1.94 (t, $\left.J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2^{\prime \prime}}=1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.0$ (CO), 147.9 (C-3''), 133.9 (C-4''), 85.0 (C-2'"), 79.3 (C-8), 73.8 (C-7), 69.6 (C-1'), 48.1 (C10), 43.0 (C-6), 39.5 (C-3), 34.3/33.8 (C-5/C-9), 20.5 (C-4), 11.6 $\left(\mathrm{CH}_{3}\right)$; MS $m / z(\mathrm{ESI}+, \mathrm{MeOH}): 318\left(\mathrm{MNa}^{+}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{H}^{+}\right]: 296.1498$, found: 296.1505.

4.6. Methyl ($6 S, 7 R, 8 S$)-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-carboxylate (12)

A solution of DIBAL-H (1M in hexane, $208 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1}(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry toluene (2 mL) under nitrogen atmosphere and the mixture was stirred at room temperature for 12 h . The excess of hydride was eliminated by the slow addition of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, the mixture filtered through Celite ${ }^{\circledR}$ and the solvent was removed under vacuum. Purification by column chromatography (hexanes/EtOAc, 1:1) led to recovering of unreacted material (10 $\mathrm{mg}, 0.03 \mathrm{mmol}, 50 \%$) and afforded amine 12 as a yellowish oil (5 $\mathrm{mg}, 0.01 \mathrm{mmol}, 7 \%):{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38(\mathrm{br} \mathrm{d}$, $\left.J_{8,9}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.98$ (m, 1H, H-10), $2.90\left(\mathrm{dt}, J_{6,5}=7.0 \mathrm{~Hz}, J_{6,7}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.72$ (dd, $J_{7,6}=3.9 \mathrm{~Hz}, J_{7,8}=1.6,1 \mathrm{H}, \mathrm{H}-7$), 2.64 (ddd, $J_{2,2}=12.0 \mathrm{~Hz}$, $\left.J_{2,3}=8.6 \mathrm{~Hz}, J_{2,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.27\left(\mathrm{ddd}, J_{2,2}=12.0 \mathrm{~Hz}, J_{2,3}\right.$ $\left.=9.0 \mathrm{~Hz}, J_{2,3}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.00-1.40(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{H}-3,2 \mathrm{H}-4$, $2 \mathrm{H}-5,2 \mathrm{H}-9$), 1.03 (br s $21 \mathrm{H}, 3 \mathrm{CH}, 6 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ RMN (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.1(\mathrm{CO}), 78.0(\mathrm{C}-8), 75.7(\mathrm{C}-7), 57.1 / 55.0(\mathrm{C}-2 / \mathrm{C}-$ 10), $51.2\left(\mathrm{OCH}_{3}\right), 46.5(\mathrm{C}-6), 34.7(\mathrm{C}-3), 30.0 / 29.5(\mathrm{C}-5 / \mathrm{C}-9)$, 24.1 (C-4), 18.0 (CHMe $), 12.2$ (CHMe_{3}).
4.7. (6S, $7 R, 8 S$)-6- $\{(1 S)$-Hydroxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl $\}$-8-imidazolylthiocarbonyloxy-1-azabicyclo[5.3.0]decan-2-one (14) and ($\left.1 R, 2 a R, 2 a^{I} R, 8 a S\right)-1$ -[(R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]octahydro-2-oxa-4a-azacyclopenta[cd]azulen-5(1H)-one (15)

A solution of TCDI ($72 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry THF (1 mL) was added to a solution of diol $9(30 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry THF (1 mL) and the mixture was stirred at room temperature for 4 h . The solvent was removed under vacuum and the residue was purified by column chromatography (EtOAc) to afford 14 ($37 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 90 \%$ yield) as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.35$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}$), $7.60(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}), 7.07(\mathrm{q}$, $\left.J_{3^{\prime \prime}, 2^{\prime \prime}}=J_{3^{\prime \prime}, \mathrm{Me}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.03\left(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J^{\prime}=0.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}$), 6.07 (br d, $J_{8,9}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$), 5.25 (br s, 1H, $\mathrm{OH}), 4.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.21\left(\mathrm{dd}, J_{1^{\prime}, 6}=10.6 \mathrm{~Hz}, J_{\mathrm{l}^{\prime}, 2^{\prime \prime}}=3.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1$ '), 4.16 (br s, 1H, H-7), 3.75 (m, 2H, 2H-10), 2.85 (m, 1H, $\mathrm{H}-9), 2.58(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-3, \mathrm{H}-6), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.95\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime}}=J_{\mathrm{Me}, 2^{\prime}}\right.$ $\left.=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75(\mathrm{~m}, 3 \mathrm{H})$. Compound 14 is unstable and undergoes spontaneous cyclization to ether $\mathbf{1 5}$, which was isolated as a yellowish oil. $[\alpha]_{\mathrm{D}}+34\left(c 1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.06\left(\mathrm{q}, J_{3^{\prime}, 2}=J_{3^{\prime}, \mathrm{Me}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2}, \mathrm{H}-2 \mathrm{a}\right), 4.35\left(\mathrm{dd}, J_{1,8 \mathrm{a}}=7.2 \mathrm{~Hz}, J_{1,2^{\prime}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 3.81$ (ddd, $\left.J_{4,10}=11.1 \mathrm{~Hz}, J_{4,3}=8.8 \mathrm{~Hz}, J_{4,3}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.64(\mathrm{t}$, $\left.J_{2 \mathrm{a}^{a^{\prime}}, 2 \mathrm{a}}=J_{2 \mathrm{a}^{\prime}, 2 \mathrm{a}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}^{1}\right), 3.32\left(\mathrm{td}, J_{4,4}=J_{4,3}=11.1 \mathrm{~Hz}\right.$, $\left.J_{4,3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.42(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-6), 2.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-$ 3), $1.92\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime}}=J_{\mathrm{Me}, 2^{2}}=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-$ 7, H-8), 1.45 (m, 2H, H-7, H-8); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.3 (CO), 171.5 (CO), 146.5 (C-3'), 132.1 (C-4'), 87.1 (C-2a1), 86.1/83.1 (C-5/C-2a), 65.9 (C-1), 44.7 (C-4), 43.7 (C-8a), 34.2 (C6), 30.7 (C-3), 27.8/19.9 (C-7/C-8), $11.3\left(\mathrm{CH}_{3}\right)$; MS $m / z(\mathrm{ESI}+$, $\mathrm{MeOH}): 300\left(\mathrm{MNa}^{+}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{H}^{+}\right]$: 278.1392, found: 278.1388.
4.8. (6S, $7 R, 8 S$)-6- $\{(1 S)$-Methoxymethoxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl $\}$-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-2-one (16)
$\operatorname{MOMBr}(90 \mu \mathrm{~L}, 1.10 \mathrm{mmol})$ was added to a solution of NaI $(135 \mathrm{mg}, 0.90 \mathrm{mmol})$ in dry DME (2 mL). Then, ${ }^{{ }^{~}{ }{ }^{2} \mathrm{r}_{2} \mathrm{NEt}(215 \mu \mathrm{~L} \text {, }}$ $1.23 \mathrm{mmol})$ and a solution of alcohol $9(100 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry DME (3 mL) was added and the reaction mixture was heated at the reflux temperature overnight. The volatiles were removed under vacuum and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated to dryness. Purification of the crude material by column chromatography (EtOAc) afforded ether $\mathbf{1 6}$ as a yellowish oil ($108 \mathrm{mg}, 0.22 \mathrm{mmol}$, $98 \%):[\alpha]_{\mathrm{D}}+58\left(c 2.85, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2936, 2863, 1759, 1637, 1460, 1422, 1344, 1158, $1060 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.99\left(\mathrm{q}, J_{3^{\prime \prime}, 2^{\prime}}=J_{3^{\prime}, \mathrm{Me}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.03(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2^{\prime}$ '), 4.91 (td, $\left.J_{8,9}=7.0 \mathrm{~Hz}, J_{8,7}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.52(\mathrm{~s}, 2 \mathrm{H}$, OCH_{2}), $3.99\left(\mathrm{dd}, J_{1^{\prime}, 6}=9.5 \mathrm{~Hz}, J_{1^{\prime}, 2,}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.92$ (ddd, $J_{10,10}=11.8 \mathrm{~Hz}, J_{10,9}=8.8 \mathrm{~Hz}, J_{10,9}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 3.22 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.15(\mathrm{~m} \mathrm{1H}, \mathrm{H}-10), 2.55(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 2.30(\mathrm{br} \mathrm{d}$, $\left.J_{6,1}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-5), 1.92\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime}}=\right.$ $J_{\mathrm{Me}, 2}{ }^{\prime \prime}=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.65 (m, 4H, 2H-4, H-5, H-9), 1.03 (br $\mathrm{s}, 21 \mathrm{H}, 3 \mathrm{CH}, 6 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9(\mathrm{CO})$, 144.1 (C-3''), 132.9 (C-4'), $99.4\left(\mathrm{OCH}_{2}\right), 82.4$ (C-2'’), 77.7 (C8), $77.4\left(\mathrm{C}-1\right.$ '), $71.4(\mathrm{C}-7), 56.8\left(\mathrm{OCH}_{3}\right), 46.0(\mathrm{C}-10), 39.0(\mathrm{C}-6)$, 38.4 (C-3), 33.8/33.3 (C-5/C-9), 19.0 (C-4), 18.4 (CHMe 3), 12.6 $\left(\mathrm{CHMe}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{6} \mathrm{SiH}^{+}\right]$: 496.3094, found: 496.3088.

4.9. (6S, 7R, 8S)-8-Hydroxy-6-[(Z)-4-methyl-5-oxo-5H-furan-2-ylidenmethyl]-1-azabicyclo[5.3.0]decan-2-one (17)

A solution of TBAF in THF ($1 \mathrm{M}, 87 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added to an ice-cooled solution of $\mathbf{1 6}(45 \mathrm{mg}, 0.09 \mathrm{mmol})$ in dry THF (1 mL) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . The solvent was removed and the crude material purified by column chromatography (EtOAc) to deliver a white solid ($16 \mathrm{mg}, 0.06$ $\mathrm{mmol}, 65 \%$) identified as 17: Mp 180-184 ${ }^{\circ} \mathrm{C}$ (EtOAc); [$\left.\alpha\right]_{\mathrm{D}}-71$ (c 1.15, CHCl_{3}); IR (ATR) 3246, 2855, 2364, 2331, 1759, 1592, 1462, 1433, 1320, 1254, 1181, 1151, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{q}, J_{3^{\prime}, \mathrm{Me}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 5.13\left(\mathrm{~d}, J_{1^{\prime}, 6}\right.$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $4.14\left(\mathrm{td}, J_{8,9}=5.7 \mathrm{~Hz}, J_{8,7}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 8), 4.16 (br d, $\left.J_{7,8}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.42(\mathrm{br}$ d, $\left.J_{6,1^{\prime}}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.33\left(\mathrm{dt}, J_{10,10}=12.0 \mathrm{~Hz}, J_{10,9}=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-10), 2.55(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 1.99\left(\mathrm{~d}, J_{\mathrm{Me}, 3}{ }^{\text {, }}=1.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$,
CH_{3}), 1.82 (m, 6H, 2H-4, 2H-5, 2H-9); ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , CDCl_{3}) $\delta 174.7(\mathrm{CO}), 171.3(\mathrm{CO}), 149.9$ (C-2'’), 138.1 (C-3'’), 131.0 (C-4''), 111.0 (C-1'), 77.3 (C-8), 69.8 (C-7), 45.7 (C-10), 38.4 (C-3), 37.0 (C-6), 36.4/32.3 (C-5/C-9), 19.1 (C-4), 11.1 $\left(\mathrm{CH}_{3}\right) ;$ MS $m / z(\mathrm{ESI}+, \mathrm{MeOH}): 300\left(\mathrm{MNa}^{+}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{H}^{+}\right]: 278.1392$, found: 278.1388.
4.10. (6S, $7 R, 8 S$)-8-Hydroxy-6-methoxymethoxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl-1-azabicyclo[5.3.0]decan-2one (18)

To a stirred solution of $\mathbf{1 6}(108 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry THF (5 mL) was added $3 \mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}(720 \mu \mathrm{~L}, 4.40 \mathrm{mmol})$ under nitrogen atmosphere and the resulting mixture was heated at the reflux temperature for 3 h . The solvent was removed under reduced pressure and the residue was taken up with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The crude material was purified by column chromatography (EtOAc) to afford alcohol $\mathbf{1 8}$ as a white solid ($67 \mathrm{mg}, 0.20 \mathrm{mmol}, 90 \%$): Mp 134-137 ${ }^{\circ} \mathrm{C}$ (EtOAc); $[\alpha]_{\mathrm{D}}$ +36 (c 1.40, CHCl_{3}); IR (ATR) 3367, 2944, 2906, 1748, 1602, 1463, 1352, 1210, 1155, 1102, 1049, $1014 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07\left(\mathrm{q}, J_{3^{\prime}, 2^{\prime}}=J_{3^{\prime}, \text {,Me }}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 5.11$ (m, 1H, H-2''), 4.78 (td, $J_{8,9}=7.7 \mathrm{~Hz}, J_{8,7}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 4.60 (d, $J_{\text {gem }}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$-acetal), $4.53\left(\mathrm{~d}, J_{\text {gem }}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}-\right.$ acetal), $3.94\left(\mathrm{ddd}, J_{10,10}=11.4 \mathrm{~Hz}, J_{10,9}=8.9 \mathrm{~Hz}, J_{10,9}=2.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-10), 3.94\left(\mathrm{dd}, J_{1^{\prime}, 6}=7.9 \mathrm{~Hz}, J_{1^{\prime}, 2,{ }^{\prime \prime}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.62$ (br d, $\left.J_{7,8}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14\left(\mathrm{td}, J_{10,10}=\right.$ $\left.J_{10,9}=11.4 \mathrm{~Hz}, J_{10,9}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 2.15$ (m, 2H, H-6, H-9), $1.94\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2^{\prime \prime}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70$ (m, 5H, 2H-4, 2H-5, H-9); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3$ (CO), 173.8 (CO), 144.7 (C-3''), 132.7 (C-4''), 98.6 (C-acetal), 82.9 (C-2'’), 78.1 (C-1'), 76.2 (C-8), $69.3(\mathrm{C}-7), 56.7\left(\mathrm{OCH}_{3}\right)$, 45.8 (C-10), 38.2 (C-3), 37.0 (C-6), 33.9 (C-5), 32.7 (C-9), 19.0 (C-4), $11.2\left(\mathrm{CH}_{3}\right)$. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 60.16 ; $\mathrm{H}, 7.43$; $\mathrm{N}: 4.13$, found: $\mathrm{C}, 60.16 ; \mathrm{H}, 7.48$; $\mathrm{N}, 4.07$.
4.11. ($6 S, 7 R, 8 S$)-8-Imidazolylthiocarbonyloxy-6-\{(1S)-methoxymethoxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl\}-1-azabicyclo[5.3.0]decan-2-one (19)

A solution of TCDI ($63 \mathrm{mg}, 0.36 \mathrm{mmol}$) in dry THF (1 mL) was added to a solution of alcohol $\mathbf{1 8}(30 \mathrm{mg}, 0.09 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$ and the mixture was stirred at room temperature for 3 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica Baker® (EtOAc) to afford 19 ($36 \mathrm{mg}, 0.08 \mathrm{mmol}, 90 \%$) as yellowish oil that presented low stability and was used in the next step without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{t}, J \sim 1.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}$), 7.58 (dd, $J=1.7 \mathrm{~Hz}, J^{\prime}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}$), 7.07 (q, $\left.J_{3^{\prime}, 2^{\prime \prime}}=J_{3^{\prime \prime}, \text {, }}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 7.03\left(\mathrm{dd}, J=1.7 \mathrm{~Hz}, J^{\prime}=\right.$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Im}$), $6.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.06$ (sext, $J_{2^{\prime \prime}, 3^{\prime \prime}}=J_{2^{\prime \prime}, 1^{\prime}}=$ $J_{2^{\prime \prime}, \mathrm{Me}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 4.60 (s, 2H, 2 H -acetal), 4.10 (br s, 1 H , $\mathrm{H}-7), 4.03\left(\mathrm{dd}, J_{1^{\prime}, 6}=8.6 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime \prime}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.92(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-10), 3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.60(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-9), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2^{\prime \prime}}=1.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}\right), 1.70(\mathrm{~m}, 3 \mathrm{H})$.
4.12. (6S)-6- \{(1S)-methoxymethoxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl $\}$-1-azabicyclo[5.3.0]dec-7-en-2-one (20)

To a refluxing solution of $\mathbf{1 9}(\mathbf{3 5 m g}, 0.08 \mathrm{mmol})$ in anhydrous toluene (8 mL) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ (from $21 \mu \mathrm{~L}, 0.08$ mmol , to $314 \mu \mathrm{~L}, 1.17 \mathrm{mmol}$) and AIBN (from $5 \mathrm{mg}, 0.03 \mathrm{mmol}$, to $19 \mathrm{mg}, 0.12 \mathrm{mmol}$) in anhydrous toluene (8 mL), dropwise during a 12 h period using a dosing pump, and the reaction mixture was heated for two additional hours. Then, the solvent was removed under reduced pressure and the residue was purified by
column chromatography (hexanes to EtOAc) to afford mixtures of 15, 16 and 20, in different relative proportions depending on the run. 20: $[\alpha]_{\mathrm{D}}+8\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2925, 1756, 1614, 1443, 1342, 1210, 1152, 1096, $1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.18\left(\mathrm{q}, J_{3^{\prime \prime}, 2^{\prime \prime}}=J_{3^{\prime}, \text {,Ме }}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 5.33(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-8), 5.13\left(\mathrm{dt}, J_{2^{\prime \prime}, 1^{\prime}}=5.9 \mathrm{~Hz}, J_{2^{\prime \prime}, 3^{\prime}}=J_{2^{\prime \prime}, \mathrm{Me}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}{ }^{\prime}\right)$, $4.66\left(\mathrm{~d}, J_{\mathrm{gem}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}-\right.$ acetal $), 4.62\left(\mathrm{~d}, J_{\mathrm{gem}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 1 H -acetal), 3.87 (m, 3H, H-1', 2H-10), 3.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.05 (m, 1H, H-6), $2.55(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-9), 1.95\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2^{\prime \prime}}\right.$ $\left.=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0(\mathrm{CO}), 171.2(\mathrm{CO}), 147.0(\mathrm{C}-3 \times), 141.3(\mathrm{C}-$ 7), 131.6 (C-4''), 111.8 (C-8), 99.0 (C-acetal), 82.1 (C-1'), 80.9 $(\mathrm{C}-2 ’), 56.8\left(\mathrm{OCH}_{3}\right), 48.5(\mathrm{C}-10), 39.7(\mathrm{C}-6), 35.0(\mathrm{C}-3)$, 27.9/27.6 (C-5/C-9), $21.6(\mathrm{C}-4), 11.4\left(\mathrm{CH}_{3}\right)$.
4.13. (6S, $7 R, 8 S$)-8-(4-Fluorophenyloxy)thiocarbonyloxy-6-\{(1S)-methoxymethoxy-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-
yl]methyl $\}$-1-azabicyclo[5.3.0]decan-2-one (21)
4-Fluorophenyl chlorothionoformate ($25 \mu \mathrm{~L}, 176 \mu \mathrm{~mol}$) and pyridine ($21 \mu \mathrm{~L}, 264 \mu \mathrm{~mol}$) were added to a solution of alcohol 18 ($30 \mathrm{mg}, 88 \mu \mathrm{~mol}$) and N-hydroxysuccinimide ($5 \mathrm{mg}, 44 \mu \mathrm{~mol}$) in anhydrous toluene (2 mL) and the mixture was heated under reflux for 1 h . After cooling, the solvent was evaporated in vacuum and the residue was purified by column chromatography (hexanes/EtOAc, 1:1) to afford 21 as oil ($35 \mathrm{mg}, 71 \mu \mathrm{~mol}, 80 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{F}}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}\right)$, $7.08\left(\mathrm{~d}, J_{\mathrm{H}, \mathrm{F}}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}\right), 7.05\left(\mathrm{t}, J_{3^{\prime}, 2^{\prime},}=J_{3^{\prime \prime}, \mathrm{Me}}=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3$ ''), $5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 5.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ ''), $4.60\left(\mathrm{~d}, J_{\mathrm{gem}}=\right.$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$-acetal), 4.57 (d, $J_{\text {gem }}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$-acetal), 4.11 (br d, $J_{7,8}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $4.01\left(\mathrm{dd}, J_{1^{\prime}, 6}=9.1 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime \prime}}=2.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 3.92 (m, 1H, H-10), 3.48 (m, 1H, H-10), 3.30 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.60(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-9), 1.94\left(\mathrm{t}, J_{\mathrm{Me}, 3^{\prime \prime}}=J_{\mathrm{Me}, 2^{\prime \prime}}\right.$ $\left.=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6$ (CS), 173.4 (CO), 173.3 (CO), 160.7 (d, $\left.J_{\mathrm{C}, \mathrm{F}}=236.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ar}\right), 149.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ar}\right), 143.7(\mathrm{C}-$ 3 '"), 132.7 (C-4'"), 123.4 (d, $\left.J_{\mathrm{C}, \mathrm{F}}=8.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ar}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $22.6 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ar}), 98.5$ (C-acetal), 89.9 (C-8), 82.1 (C-2'’), 76.7 (C$\left.1^{\prime}\right), 67.7(\mathrm{C}-7), 56.6\left(\mathrm{OCH}_{3}\right), 46.2(\mathrm{C}-10), 39.5(\mathrm{C}-6), 38.0(\mathrm{C}-3)$, 32.9 (C-5), 28.7 (C-9), 18.6 (C-4), $10.9\left(\mathrm{CH}_{3}\right)$.

4.14. (6S,7R)-6-[(E)-4-Methyl-5-oxo-5H-furan-2-ylidenmethyl)-1-azabicyclo[5.3.0]decan-2-one (22)

To a refluxing solution of $\mathrm{Bu}_{3} \mathrm{SnH}(76 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ and AIBN ($12 \mathrm{mg}, 0.07 \mathrm{mmol}$) in anhydrous toluene (1.5 mL) in a schlenk vessel connected to a nitrogen line was added a solution of $21(35 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous toluene $(1.0 \mathrm{~mL})$ and the mixture was heated under reflux for 3 h . Then, the solvent was removed under vacuum. Column chromatography of the residue (hexanes to EtOAc) afforded, as the unique identifiable product, an analytical sample of 22: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97$ (c, $J_{3^{\prime}, \mathrm{Me}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}$), 5.14 (d, $J_{1^{\prime}, 6}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.00 $\left(\mathrm{t}, J_{7,8}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$, $\mathrm{H}-10), 2.53$ (m, 2H, 2H-3), $2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.99$ (d, $J_{\mathrm{Me}, 3^{\prime \prime}}=1.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.75(\mathrm{~m}, 7 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-8,2 \mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8(\mathrm{CO}), 170.5(\mathrm{CO}), 149.6\left(\mathrm{C}-2^{\prime}\right)$), 137.5 (C-3'"), 130.2 (C-4'’), 110.8 (C-1'), 61.0 (C-7), 47.7 (C-10), 38.9 (C-6), 38.0 (C-3), 35.8/23.4 (C-5/C-9), 32.7 (C-8), 18.7 (C4), $10.6\left(\mathrm{CH}_{3}\right)$.
4.15. 5,5'-Bis $\{(S)$-(methoxymethoxy) [(9S,9aS)-5-oxooctahydro-1H-pyrrolo[1,2-a]azepin-9-yl]methyl\}-3,3'-dimethyl-[3,3'-bifuran]-2, 2' $\left(3 H, 3^{\prime} H\right)$-dione (23)

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(43 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ and $\mathrm{AIBN}(7 \mathrm{mg}$, 0.04 mmol) in anhydrous toluene (1 mL) and a solution of 21 (20 $\mathrm{mg}, 0.04 \mathrm{mmol}$) in anhydrous toluene (1 mL) were simultaneously
added to refluxing anhydrous toluene (1 mL) in a schlenk vessel connected to a nitrogen line, dropwise, during a 12 h period using a dosing pump. After the addition, the reaction mixture was heated for two additional hours. Then, the solvent was removed under vacuum. Column chromatography of the residue (hexanes to EtOAc) afforded, as the unique identifiable product, an analytical sample of a mixture of 3 diastereoisomers of 23: ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of 3 diastereoisomers) $\delta 5.76(\mathrm{~s}), 5.75(\mathrm{~s})$, $5.50(\mathrm{~s}), 5.37(\mathrm{~s})(1 \mathrm{H}, \mathrm{H}-4), 4.73\left(\mathrm{~d}, J_{\text {СНомом, } 9^{\prime}}=7.4 \mathrm{~Hz}\right), 4.65(\mathrm{~d}$, $J_{\text {Сномом }, 9}=6.8 \mathrm{~Hz}$), $4.33\left(\mathrm{~d}, J_{\text {Сномом }, 9^{\prime}}=10.0 \mathrm{~Hz}\right), 4.26(\mathrm{~d}$, $J_{\text {Сномом }, 9^{\prime}}=10.0 \mathrm{~Hz}$) ($1 \mathrm{H}, \mathrm{CHOMOM}$), $4.60(\mathrm{~s}), 4.59(\mathrm{~s}), 4.58(\mathrm{~s})$ $\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), $3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~s}), 3.35(\mathrm{~s})$, $3.32(\mathrm{~s}), 3.29(\mathrm{~s}), 3.28(\mathrm{~s})\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~s}), 2.55$ (m, 1H, H-6'), 2.47 (m, 2H, H-6', H-1'), 2.32 (m, 1H, H-9'), 2.17 (m, 1H, H-1'), 1.89 (m, 1H, H-2'), 1.60 (m, 5H, 2H-7', 2H-8', H$\left.2^{\prime}\right), 1.34(\mathrm{~s}), 1.30(\mathrm{~s}), 1.23(\mathrm{~s}), 1.21$ (s) ($3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (62.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of 3 diastereoisomers) $\delta 178.0(\mathrm{CO}), 177.8$ (CO), 174.0 (CO), 173.6 (CO), 152.7, 152.6 (C-5), 111.0, 110.9 (C-4), 95.9, $95.6\left(\mathrm{OCH}_{2}\right), 74.3,74.0,72.8(\mathrm{CHOMOM}), 61.1(\mathrm{C}-$ $\left.9 \mathrm{a}^{\prime}\right), 56.2,56.0\left(\mathrm{OCH}_{3}\right), 52.6,52.5,51.7(\mathrm{C}-3), 47.5\left(\mathrm{C}-3{ }^{\prime}\right), 40.7$, 40.2 (C-9'), 37.9 (C-6'), 32.8, 32.5 (C-8'), 31.9 (C-1'), 23.4 (C$\left.2^{\prime}\right), 19.1$ (C-7'), 18.9, $18.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS} m / z(\mathrm{ESI}+, \mathrm{MeOH}): 667$ $\left(\mathrm{MNa}^{+}\right)$.
4.16. (6S, $7 R, 8 S$)-6-Hydroxymethyl-8-triisopropylsilyloxy-1azabicyclo[5.3.0]decane (24)

To a solution of ester $\mathbf{1}(265 \mathrm{mg}, 0.69 \mathrm{mmol})$ in anhydrous toluene (30 mL) under nitrogen atmosphere, DIBAL-H (1 M in toluene, $4.2 \mathrm{~mL}, 4.2 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 3 h . When TLC analysis (hexanes/EtOAc, 7:3) showed total consumption of 1, $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was allowed to warm to room temperature. Then, it was washed with a saturated aqueous solution of sodium tartrate (4 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The remaining oil was purified by column chromatography on neutral alumina (hexanes/EtOAc, from 1:1 to 3:7) to yield aminoalcohol 24 as a syrup ($160 \mathrm{mg}, 0.47 \mathrm{mmol}$, 68%): $\mathrm{R}_{\mathrm{f}} 0.44$ (hexanes/EtOAc, 7:3); ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.29\left(\mathrm{~d}, J_{8,9}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.91\left(\mathrm{dd}, J_{1^{\prime}, 1}=10.9 \mathrm{~Hz}, J_{1^{\prime}, 6}=\right.$ $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}\right), 3.50\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=10.9 \mathrm{~Hz}, J_{1^{\prime}, 6}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 1^{\prime}), 3.04 (m, 2H, H-2, H-10), 2.95 (bs, 1H, H-7), 2.69 (ddd, $J_{10,10}$ $\left.=12.7 \mathrm{~Hz}, J_{10,9}=8.7 \mathrm{~Hz}, J_{10,9}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.24\left(\mathrm{ddd}, J_{2,2}\right.$ $\left.=11.7 \mathrm{~Hz}, J_{2,3}=9.3 \mathrm{~Hz}, J_{2,3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1,79(\mathrm{~m}, 9 \mathrm{H}, 2 \mathrm{H}-$ $3,2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-6,2 \mathrm{H}-9$), 1.07 (bs, $21 \mathrm{H}, 3 \mathrm{SiCHCH}_{3}, 18$ $\left.\mathrm{SiCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.9$ (C-8), $76.9(\mathrm{C}-7)$, 66.29 (C-1'), 56.4 (C-2), 54.9 (C-10), 37.6 (C-6), 35.4 (C-9), 31.1 (C-5), $30.5(\mathrm{C}-3), 25.0(\mathrm{C}-4), 18.0\left(\mathrm{SiCHCH}_{3}\right), 12.17\left(\mathrm{SiCHCH}_{3}\right)$; HRMS (ESI +) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{SiH}^{+}\right]: 342.2823$, found: 342.2819 .

4.17. (6S, 7 R, $8 S$)-8-Triisopropylsilyloxy-1-azabicyclo[5.3.0]decane-6-carbaldehyde (25)

A solution of DMSO $(46 \mu \mathrm{~L}, 647 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(113 \mu \mathrm{~L})$ was added to a stirred solution of oxalyl chloride (2 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $176 \mu \mathrm{~L}, 351 \mu \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere and the mixture was stirred at this temperature for 30 min . Next, a solution of $\mathbf{2 4}(100 \mathrm{mg}, 293 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(321 \mu \mathrm{~L})$ was added and the mixture was stirred for 3 h . Then, $\mathrm{Et}_{3} \mathrm{~N}(500 \mu \mathrm{~L})$ was added, the mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum, affording aldehyde $\mathbf{2 5}(93 \mathrm{mg}, 274 \mu \mathrm{~mol}$, 94%) which was immediately submitted to the next transformation without further purification: $\mathrm{R}_{\mathrm{f}} 0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 4: 1\right) ;{ }^{1} \mathrm{H}$ NMR
($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74$ (d, $\left.J_{1,6}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right), 4.43(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-8$), 3.01 (m, 2H, H-2, H-10), 2.84 (bs, 1H, H-7), 2.66 (m, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-10), 2.31$ (m, 1H, H-2), $2.20-1.52$ (m, 8H, 2H-3, 2H$4,2 \mathrm{H}-5,2 \mathrm{H}-9), 1.05$ (bs, $21 \mathrm{H}, 3 \mathrm{SiCHCH}_{3}, 18 \mathrm{SiCHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7$ (C-1'), 78.1 (C-8), 74.5 (C-7), 56.5 (C-2), 55.1 (C-10), 51.9 (C-6), 35.1 (C-9), 29.3 (C-5), 26.6 (C-3), $24.0(\mathrm{C}-4), 18.0\left(\mathrm{SiCHCH}_{3}\right), 12.2,\left(\mathrm{SiCHCH}_{3}\right)$.

4.18. (6S, 7R, 8S)-6-\{(1S)-Hydroxy-(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl $\}$-8-triisopropylsilyloxy-1azabicyclo[5.3.0]decane (26)

BuLi (1.6 M in hexanes, $188 \mu \mathrm{~L}, 301 \mu \mathrm{~mol}$) was added to a solution of diisopropylamine ($47 \mu \mathrm{~L}, 301 \mu \mathrm{~mol}$) in dry THF (1.4 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the mixture was stirred for 30 min . A solution of furanone $2(26 \mu \mathrm{~L}, 301 \mu \mathrm{~mol})$ in dry THF (3.6 mL) was added over the freshly prepared LDA solution and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min . Then, a solution of aldehyde $25(93 \mathrm{mg}, 274 \mu \mathrm{~mol})$ in dry THF (1.4 mL) was added and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography on neutral alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 4: 1\right)$ to furnish compound 26 as a pale yellow liquid ($93 \mathrm{mg}, 212 \mu \mathrm{~mol}$, 78%): $\mathrm{R}_{\mathrm{f}} 0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 4: 1\right)$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34 (m, 1H, H-3'), 4.69 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{2}^{\prime}$), 4.57 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 3.44 (dd, $J_{1^{\prime}, 2^{\prime}}=9.2 \mathrm{~Hz}, J_{1^{\prime}, 6}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.17-2.96(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $7, \mathrm{H}-10, \mathrm{OH}), 2.70\left(\mathrm{ddd}, J_{10,10}=12.2 \mathrm{~Hz}, J_{10,9}=9.0 \mathrm{~Hz}, J_{10,9}=5.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-10), 2.36\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{2}, \mathrm{H}-6\right), 2.15\left(\mathrm{tdd}, J_{9,9}=12.4 \mathrm{~Hz}\right.$, $\left.J_{9,10}=6.7 \mathrm{~Hz}, J_{9,10}=J_{9,8}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 1.91\left(\mathrm{t}, J_{\mathrm{Me}-3^{\prime}}=1.6\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-1.65(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{H}-3,2 \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-9$, $3 \mathrm{SiCHCH}_{3}$), $1.05\left(\mathrm{bs}, 18 \mathrm{H}, 3 \mathrm{SiCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(62.5 \mathrm{MHz}$, CDCl_{3}) $\delta 174.4$ (C-5'), 149.4 (C-3'); 129.9 (C-4'), 83.0 (C-2'), 81.3 (C-1'), 78.0 (C-8), 77.4 (C-7), 55.7 (C-2), 54.9 (C-10), 36.8 (C-6), 35.6, 34.9, 28.8, 24.7 (C-3/C-4/C-5/C-9), $18.2\left(\mathrm{SiCHCH}_{3}\right)$, $12.34\left(\mathrm{SiCHCH}_{3}\right), 10.80\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{SiH}^{+}\right]: 438.3040$, found: 438.3029. The relative configuration of 26 was assumed to be the same as that of the analogous lactam 9 .
4.19. (6S, $7 R, 8 S$)-8-Hydroxy-6-\{(1S)-(methoxymethoxy)-[(2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]methyl $\}$-1-
azabicyclo[5.3.0]decane (27)
Dimethoxymethane ($120 \mu \mathrm{~L}, 1346 \mu \mathrm{~mol}$) and PTSA (21 mg , $112 \mu \mathrm{~mol})$ were added to a solution of $\mathbf{2 6}(43 \mathrm{mg}, 98 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature. A Dean-Stark apparatus with molecular sieves ($4 \AA$) was connected to the system and the reaction mixture was heated at the reflux temperature and stirred overnight. Next, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ was added to the reaction mixture and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 500 \mu \mathrm{~L})$. The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography on neutral alumina ($\mathrm{EtOAc} / 30 \%$ aqueous $\mathrm{NH}_{3}, 95: 5$) to furnish aminoalcohol 27 as a pale yellow liquid ($13 \mathrm{mg}, 40 \mu \mathrm{~mol}, 40 \%$): $\mathrm{R}_{\mathrm{f}} 0.14$ (EtOAc/30\% aqueous $\mathrm{NH}_{3}, 95: 5$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ '), $4.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.40 (ddd, $\left.J_{8,9}=6.1 \mathrm{~Hz}, J_{8,9}=3.9 \mathrm{~Hz}, J_{8,7}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.59$ (dd, $J_{1^{\prime}, 2^{\prime}}=8.3 \mathrm{~Hz}, J_{1^{\prime}, 7}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, $3.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{OH}), 2.97$ (bdd, $\mathrm{J}_{7,1}=3.9 \mathrm{~Hz}, \mathrm{~J}_{7,6}=1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7), 2.61\left(\mathrm{ddd}, J_{10,10}=11.2 \mathrm{~Hz}, J_{10,9}=9.5 \mathrm{~Hz}, J_{10,9}=7.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-10), 2.40(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-2, \mathrm{H}-6), 2.15$ (dddd, $J_{9,9}=13.7 \mathrm{~Hz}$, $\left.J_{9,10}=11.3 \mathrm{~Hz}, J_{9,10}=J_{9,8}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 1.95\left(\mathrm{t}, J_{\mathrm{Me}-3}=1.7\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.78 (m, 7H, 2H-3, 2H-4, 2H-5, H-9); HRMS (ESI+) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{H}^{+}\right]$: 326.1967, found: 326.1958.
4.20. Methyl (6S, 7R, 8S)-2-oxo-8-hydroxy-1-azabicyclo[5.3.0]decane-6-carboxylate (28)

To a solution of ester $\mathbf{1}(200 \mathrm{mg}, 520 \mu \mathrm{~mol})$ in anhydrous THF $(9.4 \mathrm{~mL})$ under nitrogen atmosphere, was added $3 \mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}$ (1.7 $\mathrm{mL}, 10.43 \mathrm{mmol}$) and the mixture was heated at the reflux temperature under stirring for 3 h . Then, the organic solvent was removed under vacuum and the resultant oil was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (from EtOAc to $\mathrm{EtOAc} / \mathrm{MeOH}, 10: 1$) to afford alcohol 28 as a yellowish syrup ($62.5 \mathrm{mg}, 280 \mu \mathrm{~mol}, 53 \%$): $\mathrm{R}_{\mathrm{f}} 0.18$ (EtOAc/MeOH, 10:1); IR (ATR) 3439, 2953, 1729, 1618, 1464, $1159,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.52\left(\mathrm{ddd}, J_{8,9}=\right.$ $\left.J_{8,7}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 3.81\left(\mathrm{ddd}, J_{10,10}=15.0 \mathrm{~Hz}, J_{10,9}=7.5 \mathrm{~Hz}\right.$, $\left.J_{10,9}=5.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-10\right), 3.72\left(\mathrm{bd}, J_{7,8}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 3.64(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.36\left(\mathrm{ddd}, J_{10,10}=15.0 \mathrm{~Hz}, J_{10,9}=J_{10,9}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 10), 3.07 (bt, $\left.J_{6,5}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.63-2.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5,2 \mathrm{H}-$ 3), $2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 1.73$ (m, 4H, H-9, H-5, 2H-4); ${ }^{13} \mathrm{C}$ NMR ($\left.62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5(\mathrm{C}-2), 172.2\left(\mathrm{CO}_{2} \mathrm{Me}\right), 76.6(\mathrm{C}-8)$, 67.3 (C-7), $51.7\left(\mathrm{CH}_{3}\right), 45.2(\mathrm{C}-10), 43.7(\mathrm{C}-6), 37.7(\mathrm{C}-3), 32.5$ (C-5), 32.1 (C-9), 19.7 (C-4); HRMS (ESI +) calcd for [$\left.\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 250.1050$, found: 250.1044 .

4.21. (4R, 7 , , 12R)-5-Oxa-1-azatricyclo[5.4.1. $0^{4,12}$]dodecane-

 6,11-dione, (30)$\mathrm{PPh}_{3}(276 \mathrm{mg}, 1.05 \mathrm{mmol})$ was added to a solution of alcohol $28(77 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(343 \mathrm{mg}, 1.04 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(670 \mu \mathrm{~L})$ under nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and the mixture was allowed to warm to room temperature and stirred for 2 h . The reaction mixture was quenched with $\mathrm{EtOH}(60 \mu \mathrm{~L})$ and stirred for 30 min . Then, $\mathrm{Et}_{2} \mathrm{O}(670 \mu \mathrm{~L})$ was added to favour the precipitation of $\mathrm{Ph}_{3} \mathrm{PO}$. The mixture was filtered through a short pad of Celite $\mathbb{}$, the organic solvent was removed under reduced pressure and the resultant precipitate was purified by column chromatography (from hexanes/EtOAc, 1:1, to $\mathrm{EtOAc} / \mathrm{MeOH}, 9: 1$) to furnish a white solid which was identified as lactone 30 ($20 \mathrm{mg}, 0.10 \mathrm{mmol}, 30 \%$): $\mathrm{R}_{\mathrm{f}} 0.18$ ($\mathrm{EtOAc} / \mathrm{MeOH}$, 9:1); IR (ATR) 2954, 2861, 1762, 1641, 1423, 1185, 1163, 994 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13\left(\mathrm{t}, J_{4,12} \approx J_{4,3} \approx 5.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4), 4.58$ (dd, $J_{12,7}=7.2 \mathrm{~Hz}, J_{12,4}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.93 (ddd, $J_{2,2}=11.7 \mathrm{~Hz}, J_{2,3}=9.0 \mathrm{~Hz}, J_{2,3}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.34(\mathrm{dt}$, $\left.J_{2,2}=11.7 \mathrm{~Hz}, J_{2,3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.77\left(\mathrm{ddd}, J_{7,8}=11.5 \mathrm{~Hz}\right.$, $\left.J_{7,12}=7.2 \mathrm{~Hz}, J_{7,8}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-10), 2.36$ (m, 1H, H-3), $2.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.10\left(\mathrm{dddd}, J_{3,3}=14.0 \mathrm{~Hz}, J_{3,2}=\right.$ $\left.11.3 \mathrm{~Hz}, J_{3,2}=9.0 \mathrm{~Hz}, J_{3,4}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9)$, $1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 1.51$ (dddd, $J_{8,8}=14.4 \mathrm{~Hz}, J_{8,9}=12.5 \mathrm{~Hz}, J_{8,9}=$ $\left.11.6 \mathrm{~Hz}, J_{8,7}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.7 (C-6), 171.0 (C-11), 82.4 (C-4), 60.5 (C-12), 43.4 (C-2), 42.1 (C-7), 33.7 (C-10), 29.7 (C-3), 24.5 (C-8), 18.8 (C-9); HRMS (ESI +) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 218.0793, found: 218.0790.

4.22. (E)-3-\{($6 R, 7 R, 8 S$)-2-Oxo-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-yl? acrylate (31)

Methyl (triphenylphosphanyl)acetate ($2.4 \mathrm{~g}, 7.2 \mathrm{mmol}$) was added to a solution of aldehyde $7(853 \mathrm{mg}, 2.4 \mathrm{mmol})$ in EtOAc $(54 \mathrm{~mL})$ at room temperature and the resulting mixture was heated at $75{ }^{\circ} \mathrm{C}$ under stirring overnight. After cooling the reaction mixture, it was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The resultant oil was purified by column chromatography (hexanes/EtOAc, 1:1) to furnish ester 31 as a white solid ($860 \mathrm{mg}, 2.1 \mathrm{mmol}, 87 \%$): $\mathrm{R}_{\mathrm{f}} 0.48$ (EtOAc); IR (ATR) 2942, 2865, 1721, 1605, 1433, 1241, 1157, 988, $803 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=15.7 \mathrm{~Hz}, J_{1^{\prime}, 6}=9.8\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.87\left(\mathrm{~d}, J_{2}, 1^{\prime}=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 8), $3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-10), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37\left(\mathrm{ddd}, J_{10,10}=\right.$ $\left.18.7 \mathrm{~Hz}, J_{10,9}=7.5 \mathrm{~Hz}, J_{10,9}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 6), $2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 1.79(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-5,2 \mathrm{H}-9), 1.04$ (bs, $\left.21 \mathrm{H}, 3 \mathrm{SiCHCH}_{3}, 18 \mathrm{SiCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.0 (C-2), 166.5 (C-3'), 146.7 (C-1'), 124.2 (C-2'), 78.4 (C-8), $70.1(\mathrm{C}-7), 52.2\left(\mathrm{CH}_{3}\right), 45.5(\mathrm{C}-10), 42.8(\mathrm{C}-6), 38.4(\mathrm{C}-3), 37.3$ (C-9), 32.9 (C-5), 18.4 (C-4), $17.7\left(\mathrm{SiCHCH}_{3}\right), 11.9\left(\mathrm{SiCHCH}_{3}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{SiNa}^{+}\right]: 432.2541$, found: 432.2538.
4.23. (E)-3-\{ $\{(6 R, 7 R, 8 S)-2-$-xo- 8 -hydroxy-1-
azabicyclo $[5.3 .0]$ decan- $6-y l\}$ acrylate (32) azabicyclo[5.3.0]decan-6-yl\}acrylate (32)
$3 \mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}(4.0 \mathrm{~mL}, 24.4 \mathrm{mmol})$ was added to a solution of ester $31(500 \mathrm{mg}, 1.2 \mathrm{mmol})$ in anhydrous THF $(25 \mathrm{~mL})$ under nitrogen atmosphere at room temperature and the mixture was heated at the reflux temperature under stirring for 3 h . Then, the organic solvent was removed under vacuum and the residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resultant oil was purified by column chromatography (EtOAc to $\mathrm{EtOAc} / \mathrm{MeOH}, 9: 1$) to furnish alcohol 32 as a white solid ($300 \mathrm{mg}, 1.2 \mathrm{mmol}, 97 \%$): $\mathrm{R}_{\mathrm{f}} 0.23$ (EtOAc/MeOH, 9:1); IR (ATR) 3345, 2932, 1715, 1618, 1464, $1159,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=\right.$ $\left.14.2 \mathrm{~Hz}, J_{1^{\prime}, 6}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.90\left(\mathrm{~d}, J_{2^{\prime}, 1^{\prime}}=15.2 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-\right.$ 2^{\prime}), $4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-10), 3.68(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.33\left(\mathrm{ddd}, J_{10,10}=18.7 \mathrm{~Hz}, J_{10,9}=7.5 \mathrm{~Hz}, J_{10,9}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-10), 2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 1.92(\mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{H}-5, \mathrm{H}-9$), 1.71 (m, 3H, 2H-4, H-9); ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , CDCl_{3}) $\delta 174.0(\mathrm{C}-2), 166.2\left(\mathrm{C}-3\right.$ '), $145.9\left(\mathrm{C}-1\right.$ '), $124.0\left(\mathrm{C}-2{ }^{\prime}\right)$, 76.3 (C-8), $68.5(\mathrm{C}-7), 51.6\left(\mathrm{CH}_{3}\right), 45.1(\mathrm{C}-10), 42.1(\mathrm{C}-6), 37.8$ (C-3), 36.3 (C-9), 31.7 (C-5), 18.4 (C-4); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]:$276.1206, found: 276.1197.
4.24. Bis $\{9-[(E)-3-m e t h o x y-3-$ oxoprop-1-en-1-yl]-5-
oxooctahydro-1H-pyrrolo[1,2-a]azepin-1-yl\} oxalate (34)

Anhydrous DMF $(44 \mu \mathrm{~L})$ and oxalyl bromide $(19 \mu \mathrm{~L}, 205$ $\mathrm{mmol})$ were added to a solution of alcohol $32(43 \mathrm{mg}, 170 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the mixture was allowed to warm up to room temperature and stirred for 1 h . After that time, the mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.5 \mathrm{~mL})$. Then, the combined organic extracts were washed with brine (2 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residual yellowish oil was identified as compound 34 ($20 \mathrm{mg}, 34 \mu \mathrm{~mol}, 42 \%$): $\mathrm{R}_{\mathrm{f}} 0.41$ (EtOAc/MeOH, 9:1); IR (ATR) 2928, 2855, 1719, 1635, 1536, $1162 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.91\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=15.7 \mathrm{~Hz}, J_{1^{\prime}, 6}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.97$ (d, $\left.J_{2}, 1^{\prime}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 4.07$ (bs, $1 \mathrm{H}, \mathrm{H}-$ 7), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65\left(\mathrm{dd}, J_{10,9}=8.4 \mathrm{~Hz}, J_{10,9}=4.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \mathrm{H}-10), 2.87$ (m, 1H, H-6), $2.53(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 1.95(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}-$ $4,2 \mathrm{H}-5,2 \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6$ (C-2), 165.9 $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 156.9\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CO}_{2}\right), 144.5(\mathrm{C}-1$ '), 124.6 (C-2'), $83.0(\mathrm{C}-$ 8), $66.4(\mathrm{C}-7), 51.8\left(\mathrm{CH}_{3}\right), 45.4(\mathrm{C}-10), 42.7(\mathrm{C}-6), 38.0(\mathrm{C}-3)$, 36.3 (C-9), 29.7/18.5 (C-4/C-5); HRMS (ESI +) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}^{+}\right]: 583.2268$, found: 583.2107. Attempted purification of 34 by column chromatography (from hexanes $/ \mathrm{EtOAc}, 4: 1$, to $\mathrm{EtOAc} / \mathrm{MeOH}, 9: 1$) led to hydrolysis, furnishing the starting alcohol 32 .
4.25. (E)-3-\{(6R,7R,8S)-2-oxo-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-yl\}-2-propen-1-ol (35) and (E)-3-
$\{(6 R, 7 R, 8 S)$-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-yl\}-2-propen-1-ol (36)

DIBAL-H (1 M in toluene, $8.9 \mathrm{~mL}, 8.90 \mathrm{mmol}$) was added to a solution of ester $\mathbf{3 1}(912 \mathrm{mg}, 2.22 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and the resulting mixture was stirred for 4 h . Then, the reaction mixture was quenched with $\mathrm{MeOH}(25 \mathrm{~mL})$ and filtered through Celite®. The organic solvents were removed under reduced pressure affording a crystaline solid, which purification by column chromatography (from hexanes/EtOAc, 1:1, to $\mathrm{EtOAc} / \mathrm{MeOH}, 9: 1$) furnished hydroxylactam 35 as a white solid ($200 \mathrm{mg}, 0.52 \mathrm{mmol}, 24 \%$) and aminoalcohol 36 as a white solid ($405 \mathrm{mg}, 1.10 \mathrm{mmol}, 50 \%$). 35: $\mathrm{R}_{\mathrm{f}} 0.16$ (EtOAc/MeOH,10:1); IR (ATR) 3367, 2940, 2865, 2360, 1623, 1460, 1381, $882 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right), 4.20\left(\mathrm{dd}, J_{8,9}=8.2 \mathrm{~Hz}, J_{8,9}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$, $4.12\left(\mathrm{~d}, J_{3^{\prime}, 2}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 3.75$ (m, 2H, H-7, H-10), 3.36 (ddd, $\left.J_{10,10}=11.6 \mathrm{~Hz}, J_{10,9}=6.9 \mathrm{~Hz}, J_{10,9}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.55$ (m, 3H, 2H-3, H-6), 1.99 (m, 3H, 2H-5, H-9), 1.77 (m, 3H, 2H-4, H-9), 1.06 (bs, 21 H, TIPS); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1$ (C-2), 132.8 (C-1'), 128.8 (C-2'), 78.0 (C-8), 70.4 (C-7), 63.3 (C3'), 45.3 (C-10), 42.5 (C-6), 38.1 (C-3), 37.5 (C-9), 32.7 (C-5), 18.6 (C-4), $18.1\left(\mathrm{SiCHCH}_{3}\right), 12.3\left(\mathrm{SiCHCH}_{3}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]$: 404.2597, found: 404.2592. 36: R_{f} 0.14 (EtOAc); IR (ATR) 3341, 2926, 2864, 2360, 1627, 1462, 1386, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83\left(\mathrm{dd}, J_{1^{\prime}, 2^{2}}=\right.$ $\left.15.5 \mathrm{~Hz}, J_{1}, 6=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$; $5.63\left(\mathrm{dt}, J_{2^{\prime}, 1^{\prime}}=15.5 \mathrm{~Hz}, J_{2^{2}, 3^{\prime}}=\right.$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '); 4.15 (m, 3H, 2H-3', H-8), 3.15 (m, 2H, H-2, H10), 2.80 (bd, $\left.J_{7,6}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 2.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 2.49(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$), 1.66 (m, $8 \mathrm{H}, 2 \mathrm{H}-3,2 \mathrm{H}-4,2 \mathrm{H}-5,2 \mathrm{H}-9$), 1.05 (bs, $21 \mathrm{H}, \mathrm{TIPS}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.7$ (C-1'), 130.5 (C-2'), 77.3/77.2 (C-7/C-8), 63.6 (C-3'), 56.7 (C.10), 55.3 (C-2), 43.3 (C-6), $\quad 34.7 / 34.1 / 30.2 / 23.1 \quad$ (C-3/C-9/C-5/C-4), $\quad 18.2$ $\left(\mathrm{SiCHCH}_{3}\right), 12.3\left(\mathrm{SiCHCH}_{3}\right) ;$ HRMS (ESI+) calcd for [$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{SiH}^{+}$]: 368.2985 , found: 368.2981 .
4.26. (E)-3-\{(6R,7R,8S)-2-Oxo-8-triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-yl\}-2-propenal (37)

DMPI ($395 \mu \mathrm{~L}, 15 \%$ wt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to a solution of alcohol $35(54 \mathrm{mg}, 141 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ at room temperature under nitrogen atmosphere and the mixture was stirred at this temperature for 2 h . After this time, the mixture was quenched with $200 \mu \mathrm{~L}$ of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to saturated aqueous $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$, and the resulting mixture was stirred for 15 min . Then, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The residue was purified by column chromatography (hexanes/EtOAc, 1:1) affording aldehyde 37 as a colourless syrup ($36 \mathrm{mg}, 95 \mu \mathrm{~mol}, 68 \%$): $\mathrm{R}_{\mathrm{f}} 0.40$ (EtOAc); $[\alpha]_{\mathrm{D}}$ +16 (c 1.66, CHCl_{3}); IR(ATR) 2925, 2864, 2360, 2341, 1734, 1687, 1672, 1637, 1455, 1425, 1382, 1365, 1208, 1185, 1032, 881 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53\left(\mathrm{~d}, J_{3}, 2^{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 6.84\left(\mathrm{dd}, J_{\mathrm{l}^{\prime}, 2^{\prime}}=15.8 \mathrm{~Hz}, J_{1^{\prime}, 6}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.22(\mathrm{dd}$, $\left.J_{2^{\prime}, 1^{\prime}}=15.6 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.17\left(\mathrm{dd}, J_{8,9}=9.0, J_{8,9}\right.$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-10), 3.39\left(\mathrm{dt}, J_{10,10}=\right.$ $\left.12.0, J_{10,9}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10\right), 2.95\left(\mathrm{~d}, J_{6,11}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $2.59(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 1.89(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}-4,2 \mathrm{H}-5,2 \mathrm{H}-9), 1.07$ (bs, 21H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3$ (C-3'), 173.8 (C-2), 154.8 (C-1'), 135.4 (C-2'), 78.0 (C-8), 69.7 (C-7), 45.3 (C10), 42.3 (C-6), 38.1/37.0/32.7/29.8 (C-3/C-4/C-5/C-9); 18.1 $\left(\mathrm{SiCHCH}_{3}\right) ; 12.3 \quad\left(\mathrm{SiCHCH}_{3}\right) ;$ HRMS (ESI+) calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]: 402.2435$, found: 402.2428. Aldehyde 37 epimerizes rapidly and it was immediately submitted to the next synthetic transformation.
4.27. (E)-3-\{(6R,7R,8S)-8-Triisopropylsilyloxy-1-azabicyclo[5.3.0]decan-6-yl\}-2-propenal (38)

DMPI ($440 \mu \mathrm{~L}, 15 \% \mathrm{wt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to a solution of alcohol $36(61 \mathrm{mg}, 166 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature under nitrogen atmosphere and the mixture was stirred at this temperature for 2 h . After this time, the mixture was quenched with $200 \mu \mathrm{~L}$ of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to a saturated aqueous solution of $\mathrm{NaHCO}_{3}(90$ mL), and the mixture was stirred for 15 min . Then, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$, the combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The residue was purified by column chromatography (hexanes/EtOAc, 1:1) affording aldehyde 38 as a colorless syrup ($35 \mathrm{mg}, 96 \mu \mathrm{~mol}, 57 \%$): $\mathrm{R}_{\mathrm{f}} 0.36$ (EtOAc); $[\alpha]_{\mathrm{D}}$ +70 (c 1.14, CHCl_{3}); IR(ATR) 2925, 2864, 2805, 2360, 2341, 1692, 1461, 1109, 1045, $882 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.53\left(\mathrm{~d}, J_{3^{\prime}, 2},^{\prime}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.05\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=15.7 \mathrm{~Hz}, J_{1^{\prime}, 6}=\right.$ $\left.9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.10\left(\mathrm{dd}, J_{2^{\prime}, 1^{\prime}}=15.7 \mathrm{~Hz}, J_{2^{2}, 3^{\prime}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 2'), 4.00 (bs, 1H, H-8), 3.04 (m, 2H, H-2, H-10), 2.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 7), 2.75 (m, 2H, H-6, H-10), 2.45 (m, 1H, H-2), 1.72 (m, 8H, 2H$3,2 \mathrm{H}-4,2 \mathrm{H}-5,2 \mathrm{H}-9$), 1.06 (bs, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.3$ (C-3'), 161.4 (C-1'), 132.7 (C-2'), 77.7 (C-8), 76.0 (C-7), 56.0 (C-10), 54.9 (C-2), 44.4 (C-6), 34.8/33.9/30.6/22.9 (C-3/C-4/C-5/C-9), $18.1\left(\mathrm{SiCHCH}_{3}\right), 12.1\left(\mathrm{SiCHCH}_{3}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{SiH}^{+}\right]: 366.2823$, found: 366.2820 . Aldehyde 38 epimerizes rapidly and it was immediately submitted to the next synthetic transformation.
4.28. (2R,3S)- (trans-47) and (2S,3S)-2-Ethoxy-5-oxo-1-[(E)-6-oxohex-4-enyl]pyrrolidin-3-yl acetate (cis-47)

1-Penten-3-one ($193 \mu \mathrm{~L}, 1.95 \mathrm{mmol}$) and a solution of HG-II catalyst ($12 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mu \mathrm{~L})$ under nitrogen atmosphere were added to a solution of aminal 44 $(166 \mathrm{mg}, 0.65 \mathrm{mmol})$ in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ at room temperature under nitrogen atmosphere. The resulting green solution was stirred for 1 h at room temperature. Then, an additional portion of catalyst ($12 \mathrm{mg}, 0.02 \mathrm{mmol}, 3 \mathrm{~mol} \%$) was added to the brown solution and the mixture was stirred for 1 h more. After this time, TLC analysis of the reaction mixture (EtOAc) did not show starting aminal 44. The reaction mixture was filtered through silica gel, washing with EtOAc. The organic solvent was evaporated under vacuum and the remaining brown oil was purified by column chromatography (hexanes/EtOAc, 1:1) to afford a mixture of diastereoisomers (6:1) of ketone 47 as a pale yellow oil ($157 \mathrm{mg}, 0.50 \mathrm{mmol}, 78 \%$): HRMS (ESI+) calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}\right]: 334.1625$, found: 334.1627 . Analytical samples of trans- and cis-47 could be isolated by repeated column chromatography. trans-47: $\mathrm{R}_{\mathrm{f}} 0.44$ (EtOAc); $[\alpha]_{\mathrm{D}}-40$ (c 1.01, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.80\left(\mathrm{dt}, J_{4^{\prime}, 5}=15.9 \mathrm{~Hz}\right.$, $\left.J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.11\left(\mathrm{dt}, J_{5^{\prime}, 4^{\prime}}=15.9 \mathrm{~Hz}, J_{5^{\prime}, 3^{\prime}}=1.5 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.05\left(\mathrm{~d}, J_{3,4}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 3.72$ (dq, $\left.J_{1^{\prime}, 1^{\prime \prime}}=9.3 \mathrm{~Hz}, J_{1^{\prime \prime}, 2^{\prime \prime}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.56\left(\mathrm{dq}, J_{1^{\prime}}, 1^{\prime \prime}=\right.$ $9.3 \mathrm{~Hz}, J_{1}{ }^{\prime}, 2^{\prime},=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '' $), 3.43$ (ddd, $J_{1,}, 1^{\prime}=14.0 \mathrm{~Hz}, J_{1^{\prime}, 2}$ $\left.\approx J_{1^{\prime}, 2^{\prime}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.22\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=14.0 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}} \approx J_{1^{\prime}, 2^{\prime}}\right.$ $\left.=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.87\left(\mathrm{dd}, J_{4,4}=17.9 \mathrm{~Hz}, J_{4,3}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), $2.54\left(\mathrm{q}, J_{7}, 8^{8}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-7\right.$) $), 2.32$ (d, $J_{4,4}=17.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 2.24 (ddd, $J_{3^{\prime}, 2^{\prime}}=14.2 \mathrm{~Hz}, J_{3^{\prime}, 4^{\prime}}=6.7 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \mathrm{H}-3^{\prime}$), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.73 (ddd, $J_{2^{\prime}, 3^{\prime}}=14.2 \mathrm{~Hz}, J_{2}{ }^{\prime}, \mathrm{l}^{\prime}=7.4$ $\left.\mathrm{Hz}, J_{2^{\prime}, 3^{\prime}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 1.22\left(\mathrm{t}, J_{2^{\prime \prime},{ }^{\prime}}{ }^{\prime}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-2^{\prime}{ }^{\prime}\right)$, $1.08\left(\mathrm{t}, J_{8,7},=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-8{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.9$ (C-6), 172.6 (C-5), $170.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 145.2(\mathrm{C}-4$ '), 130.4 (C-3'), 93.2 (C-2), 70.4 (C-3), 63.7 (C-1''), 40.2 (C-1'), 35.7 (C4), 33.4 (C-7'), 29.6 (C-3'), 26.3 (C-2'), $20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right), 15.2$ (C2'), 8.0 (C-8'). cis-47: $\mathrm{R}_{\mathrm{f}} 0.44$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.79\left(\mathrm{dt}, J_{4,5^{\prime}}=15.8 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.12$
$\left(\mathrm{dt}, J_{5^{\prime}, 4^{\prime}}=15.9 \mathrm{~Hz}, J_{5^{\prime}, 3^{\prime}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.16\left(\mathrm{td}, J_{3,4}=8.1\right.$ $\left.\mathrm{Hz}, J_{3,4}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.00\left(\mathrm{~d}, J_{2,3}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.54$ (m, 3H, 2H-1'’, H-1'), 3.16 (ddd, $J_{1^{\prime}, 1^{\prime}}=14.0 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=7.9 \mathrm{~Hz}$, $\left.J_{1^{\prime}, 2^{\prime}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.62\left(\mathrm{dd}, J_{4,3}=8.1 \mathrm{~Hz}, J_{4,4}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 2.54\left(\mathrm{q}, J_{7^{\prime}, 8^{\prime}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-7^{\prime}\right), 2.22\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 2.11$ (s, 3H, CH ${ }_{3} \mathrm{CO}$), 1.73 (m, 2H, 2H-2'), 1.18 (t, $J_{2^{\prime \prime}, 1^{\prime \prime}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $3 \mathrm{H}-2^{\prime}$) $), 1.08\left(\mathrm{t}, J_{8}, 7^{\prime}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-8^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.0(\mathrm{C}-6), 171.1(\mathrm{C}-5), 170.8\left(\mathrm{CH}_{3} \mathrm{CO}\right), 145.2\left(\mathrm{C}-4{ }^{\prime}\right)$, 130.5 (C-3'), 88.4 (C-2), 67.9 (C-3), 65.6 (C-1''), 40.4 (C-1'), 34.6 (C-4), $33.6\left(\mathrm{C}-7^{\prime}\right), 29.8\left(\mathrm{C}-3^{\prime}\right), 26.4\left(\mathrm{C}-2^{\prime}\right), 20.8\left(\mathrm{CH}_{3} \mathrm{CO}\right), 15.6$ (C-2'"), 8.2 (C-8').
4.29. (1S,9aR)-3-Oxo-9-propionyl-2,3,5,6,7,9a-hexahydro-1Hpyrrolo [1,2-a]azepin-1-yl acetate (48)
$\mathrm{Me}_{2} \mathrm{~S}(12 \mu \mathrm{~L}, 160 \mu \mathrm{~mol})$ and TMSOTf $(48 \mu \mathrm{~L}, 267 \mu \mathrm{~mol})$ were added to a mixture of diastereoisomers of ketone 47 ($33 \mathrm{mg}, 107$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{3} \mathrm{CN}(600 \mu \mathrm{~L})$ at $-35^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred for 2 h . Then, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. After evaporation of the acetonitrile under vacuum, the whole mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by column chromatography (EtOAc) afforded starting 47 ($10 \mathrm{mg}, 32 \mu \mathrm{~mol}, 30 \%$) and bicycle 48 as colourless oil ($12 \mathrm{mg}, 45 \mu \mathrm{~mol}, 41 \%$): $\mathrm{R}_{\mathrm{f}} 0.28$ (EtOAc); $[\alpha]_{\mathrm{D}}$ -71 (c 0.31, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ (ddd, $J_{8,7}$ $\left.=9.0 \mathrm{~Hz}, J_{8,7}=5.1 \mathrm{~Hz}, J_{8,9 \mathrm{a}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 5.09\left(\mathrm{ddd}, J_{1,2}=\right.$ $\left.7.0 \mathrm{~Hz}, J_{1,2}=J_{1,9 \mathrm{a}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.77\left(\mathrm{td}, J_{9 \mathrm{a}, 1}=2.4 \mathrm{~Hz}, J_{9 \mathrm{a}, 8}\right.$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 4.18$ (ddd, $J_{5,5}=14.1 \mathrm{~Hz}, J_{5,6}=8.8 \mathrm{~Hz}, J_{5,6}=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.92$ (ddd, $J_{5,5}=14.4 \mathrm{~Hz}, J_{5,6}=7.8 \mathrm{~Hz}, J_{5,6}=6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.68(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2,2 \mathrm{H}-2$ '), $2.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$, $2 \mathrm{H}-7), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.08\left(\mathrm{t}, J_{3^{\prime}, 2}=7.3\right.$ $\mathrm{Hz}, 3 \mathrm{H}, 3 \mathrm{H}-3 \mathrm{l}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3$ ($\mathrm{C}-1^{\prime}$), $172.0(\mathrm{C}-3), 170.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 143.0(\mathrm{C}-9), 140.4(\mathrm{C}-8), 71.7(\mathrm{C}-1)$, 66.0 (C-9a), 38.7 (C-5), 37.2 (C-2), 30.8 (C-2'), 24.5 (C-6), 22.8 (C-7), $21.0\left(\mathrm{CH}_{3} \mathrm{CO}\right), 8.3$ (C-3'); HRMS (ESI+) calcd for [$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}$]: 288.1212, found: 288.1206.

4.30. (E)-6-(2-Ethoxy-5-oxopyrrolidin-1-yl)hex-2-enal (50)

Freshly distilled acrolein ($394 \mu \mathrm{~L}, 5.96 \mathrm{mmol}$) and a solution of HG-II catalyst ($41 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.8 \mathrm{~mL})$ under nitrogen atmosphere were added to a solution of aminal $49(392 \mathrm{mg}, 1.99 \mathrm{mmol})$ in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4$ mL), under nitrogen atmosphere, at room temperature. The resulting green solution was stirred at room temperature for 1 h . Then, an additional portion of catalyst $(41 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%)$ in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added to the brown solution and the mixture was stirred for 1 hour more. After this time, TLC analysis of the reaction mixture (EtOAc) did not show starting aminal 49. The reaction mixture was filtered through silica gel, washing with EtOAc. The organic solvent was evaporated under vacuum and the remaining brown oil was purified by column chromatography (hexanes/EtOAc, 1:1) to afford aldehyde 50 as a pale yellow oil ($400 \mathrm{mg}, 1.78 \mathrm{mmol}, 89 \%$): $\mathrm{R}_{\mathrm{f}} 0.18$ (EtOAc); IR (ATR) 3340, 2931, 2360, 2052, 1954, 1673, 1420, 1374, 1344, 1280, 1161, 1131, 1069, $976 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50\left(\mathrm{~d}, J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 6.85\left(\mathrm{dt}, J_{3,2}\right.$ $\left.=15.6 \mathrm{~Hz}, J_{3,4}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.13\left(\mathrm{dd}, J_{2,3}=15.6 \mathrm{~Hz}, J_{2,1}=\right.$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.94\left(\mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=6.2 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 2^{\prime}), 3.44 (m, 3H, H-6, 2H-1''), 3.24 (ddd, $J_{6,6}=14.0 \mathrm{~Hz}, J_{6,5}=7.6$ $\left.\mathrm{Hz}, J_{6,5}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.53\left(\mathrm{dt}, J_{4^{\prime}, 3^{\prime}}=17.6 \mathrm{~Hz}, J_{4^{\prime}, 4^{4}}=8.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.15$ (m, 5H, 2H-4, 2H-3', H-4'), 1.77 (m, 2H, 2H-5), 1.22 (t, J_{2},, ,, , $=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-2$ '’); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8$ (C-1), 175.1 (C-5'), 157.3 (C-3), 133.2 (C-2), 89.4 (C-2'), 61.4 (C-1'’), 40.2 (C-6), 30.1/28.9/26.2/24.8 (C-4'/C-5/C-3'/C-4),
15.3 (C-2'’); HRMS (ESI +) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 248.1257, found: 248.1262 .

4.31. 3-Oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepine-9-carbaldehyde (51)

In a schlenk vessel connected to a nitrogen line, aldehyde $\mathbf{5 0}$ $(5.85 \mathrm{~g}, 26 \mathrm{mmol})$ was solved in dry acetonitrile $(160 \mathrm{~mL})$ and the solution cooled down to $-50^{\circ} \mathrm{C}$. At this temperature, $\mathrm{Me}_{2} \mathrm{~S}(3.29$ $\mathrm{mL}, 44.5 \mathrm{mmol})$ and TMSOTf $(13.4 \mathrm{~mL}, 73.9 \mathrm{mmol})$ were added and the resulting mixture was allowed to warm to room temperature and stirred overnight. After this time, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$. After evaporation of the acetonitrile under vacuum, the remaining aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (EtOAc) to afford aldehyde $\mathbf{5 1}$ as a pale white solid $\left(4.81 \mathrm{~g}, 26 \mathrm{mmol}\right.$, quantitative): $\mathrm{R}_{\mathrm{f}} 0.34$ (EtOAc/MeOH, 10:1, silica gel); $\mathrm{R}_{\mathrm{f}} 0.36$ (EtOAc, neutral alumina); IR (ATR) 2947, 2866, 2360, 1991, 1668, 1638, 1454, $1418,1390,1356,1318,1265,1223,1181,1150,1073,1030,972$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1$ '), $6.84(\mathrm{dd}$, $\left.J_{8,7}=8.2, J_{8,7}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.59\left(\mathrm{bt}, J_{9 \mathrm{a}, 4}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 9a), 4.18 (ddd, $J_{5,5}=14.0, J_{5,6}=7.9 \mathrm{~Hz}, J_{5,6}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.85 (ddd, $\left.J_{5,5}=14.0, J_{5,6} \approx J_{5,6}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.57(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-1, \mathrm{H}-7), 2.39(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-2, \mathrm{H}-7), 2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.81(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR ($90.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.5$ (C-1'), 175.0 (C-2), 152.9 (C-8), 145.3 (C-9), 59.2 (C-9a), 39.2 (C-5), 30.1 (C7), 25.8/24.5/24.3 (C-3/C-4/C-8); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]: 202.0844$, found: 202.0838 .

4.32. (E)-8-(5-Ethoxy-2-oxo-pyrrolidin-1-yl)-4-octen-3-one (52)

1-Penten-3-one ($155 \mu \mathrm{l}, 1.57 \mathrm{mmol}$) was added to a solution of aminal $49(103 \mathrm{mg}, 0.52 \mathrm{mmol})$ in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ mL) under nitrogen atmosphere. Then, a solution of HG-II catalyst $(17 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added dropwise at room temperature. The resulting green solution was stirred for 1 h at room temperature. Then, an additional portion of catalyst ($17 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added to the brown solution and the mixture was stirred for an additional hour. After this time, TLC analysis of the reaction mixture (EtOAc) did not show starting aminal 49. The mixture was filtered through a silica pad, washing with EtOAc. The organic solvent was evaporated under vacuum and the remaining brown oil was purified by column chromatography (hexanes/EtOAc, 1:1) to afford ketone 52 as a pale yellow oil (100 $\mathrm{mg}, 0.39 \mathrm{mmol}, 76 \%$): $\mathrm{R}_{\mathrm{f}} 0.30$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.81\left(\mathrm{dt}, J_{4,5}=15.9 \mathrm{~Hz}, J_{4,3}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.13(\mathrm{dt}$, $\left.J_{5,4}=15.9 \mathrm{~Hz}, J_{5,3}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.94\left(\mathrm{dd}, J_{5^{\prime}, 4}=6.0 \mathrm{~Hz}, J_{5^{\prime}, 4}\right.$ $\left.=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.44(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-1$ '', $\mathrm{H}-1), 3.18\left(\mathrm{ddd}, J_{1,1}=\right.$ $\left.13.9 \mathrm{~Hz}, J_{1,2}=7.8 \mathrm{~Hz}, J_{1,2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 2.54\left(\mathrm{q}, J_{7,8}=7.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-7), 2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$) , 2.36-1.90 (m, 5H, $2 \mathrm{H}-3,2 \mathrm{H}-$ $4^{\prime}, \mathrm{H}-3$ '), 1.72 (m, 2H, 2H-2), 1.21 ($\mathrm{t}, J_{2^{\prime}, 1^{\prime}}$, $\left.=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-2^{\prime}{ }^{\prime}\right)$, $1.08\left(\mathrm{t}, J_{8,7}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-8\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.1 (C-6), 175.2 (C-2'), 145.6 (C-4), 130.4 (C-5), 89.4 (C-5'), $61.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 40.3(\mathrm{C}-1), 33.5(\mathrm{C}-7), 29.9(\mathrm{C}-3), 29.1(\mathrm{C}-4)$), 26.4 (C-2), 24.9 (C-3'), $15.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 8.2$ (C-8); HRMS (ESI+) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{H}^{+}\right]: 254.1756$, found: 254.1743.

4.33. 5-(3-Oxo-1-penten-2-yl)-1-(4-penten-1-yl)pyrrolidin-2-one (54)

In a schlenk vessel connected to a nitrogen line, aminal 49 (580 $\mathrm{mg}, 2.94 \mathrm{mmol}$) was solved in dry acetonitrile (13 mL) and cooled down to $-50^{\circ} \mathrm{C}$. At this temperature, 1-penten-3-one ($437 \mu \mathrm{~L}, 4.41$ $\mathrm{mmol}), \mathrm{Me}_{2} \mathrm{~S}(326 \mu \mathrm{~L}, 4.41 \mathrm{mmol})$ and TMSOTf $(1.32 \mathrm{~mL}, 7.32$
mmol) were added and the resulting mixture was allowed to warm up to room temperature and stirred overnight. After this time, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$. After evaporation of the acetonitrile under vacuum, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$ and the combined organic extracts dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (EtOAc) to afford lactam $\mathbf{5 4}$ as a yellowish syrup ($610 \mathrm{mg}, 2.59 \mathrm{mmol}, 88 \%$): $\mathrm{R}_{\mathrm{f}} 0.14$ (EtOAc); IR (ATR) 3368, 3076, 2974, 2936, 1671, 1457, 1416, 1373, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18$ (bs, $1 \mathrm{H}, \mathrm{H}-1$ ''), 5.77 (ddd, $J_{4,5} 5^{\prime}=10.2$ $\left.\mathrm{Hz}, J_{4^{\prime}, 3^{\prime}}=6.7 \mathrm{~Hz}, J_{4^{4}, 5^{\prime}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.65\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$), 4.99 (m, 2H, 2H-5'), 4.69 (bd, $J_{5,4}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.73 (dt, $\left.J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-4^{\prime}\right)$), $2.59\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.30(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{H}-4$), 2.01 (m, 2H, 2H-3'), 1.60 (m, 4H, 2H-3, 2H-2'), 1.13 (t, $\left.J_{5^{\prime}, 4},{ }^{\prime \prime}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-5{ }^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.6$ (C-3'’), 175.9 (C-2'), 146.8 (C-2'’), 137.7 (C-4), 123.4 (C-1’'), 115.3 (C-5), 56.9 (C-5'), 40.6 (C-1), 31.5/31.2/29.3/26.6/26.2 (C-2/C-3/C-3'/C-4'/C-4'), 8.3 (C-5''); HRMS (ESI+) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]: 258.1470$, found: 258.1465 .
4.34. 9-(1-Hydroxypropyl)-5,6,7,9a-tetrahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one (55)

Aldehyde 51 ($105 \mathrm{mg}, 590 \mu \mathrm{~mol}$) was dissolved in dry THF (2 mL) and cooled down to $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere. Ethyl magnesium bromide (3 M in $\mathrm{Et}_{2} \mathrm{O}, 234 \mu \mathrm{~L}, 700 \mu \mathrm{~mol}$) was added dropwise and the resulting mixture was stirred overnight at $-20^{\circ} \mathrm{C}$. Then, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The organic fractions were combined, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residual oil was purified by column chromatography (EtOAc) to yield a mixture of two diastereoisomers (4:1) of alcohol $\mathbf{5 5}$ as a pale yellow syrup (107 $\mathrm{mg}, 0.51 \mathrm{mmol}, 88 \%): \mathrm{R}_{\mathrm{f}} 0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 20: 1\right)$; IR (ATR) 3371, 2934, 2870, 1657, 1459, $1420 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.80\left(\mathrm{dd}, J_{8,7}=8.7 \mathrm{~Hz}, J_{8,7}=6.2 \mathrm{~Hz}\right)$ and $5.73\left(\mathrm{dd}, J_{8,7}=\right.$ $\left.8.8 \mathrm{~Hz}, J_{8,7}=5.8 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-8), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 4.01(\mathrm{~m}, 2 \mathrm{H}$, H-1', H-5), 2.85 (ddd, $J_{5,5}=13.8 \mathrm{~Hz}, J_{5,6}=9.6 \mathrm{~Hz}, J_{5,6}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 2.50-1.50$ (m, 10H, 2H-1, 2H-2, 2H-6, 2H-7, 2H-2'), $0.94\left(\mathrm{t}, J_{3^{\prime}, 2^{\prime}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-3^{\prime}\right)$; HRMS (ESI+) Calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]: 232.1308$, found: 232.1312 .
4.35. 9-Propionyl-5,6,7,9a-tetrahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one (53)

A commercially available solution of DMPI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \%$ $\mathrm{wt}, 885 \mu \mathrm{~L}, 0.42 \mathrm{mmol})$ was added via syringe to a solution of alcohol $55(70 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at room temperature under nitrogen atmosphere. After stirring for 2 h at room temperature, TLC analysis (EtOAc) indicated the complete consumption of the starting material. The reaction was quenched with 3 mL of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to a saturated aqueous solution of $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$ and the mixture was stirred for 15 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 8 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Column chromatography (EtOAc) of the resulting oil provided ketone 53 as a yellow syrup ($60 \mathrm{mg}, 0.29 \mathrm{mmol}, 86 \%$): $\mathrm{R}_{\mathrm{f}} 0.18$ (EtOAc); IR (ATR) 2937, 2873, 1660, 1458, 1418, 1458, 1418, $1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95\left(\mathrm{dd}, J_{8,7}=9.0 \mathrm{~Hz}\right.$, $\left.J_{8,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 4.09$ (ddd, $J_{5,5}=14.0$ $\left.\mathrm{Hz}, J_{5,6}=8.7 \mathrm{~Hz}, J_{5,6}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.84\left(\mathrm{dt}, J_{5,5}=14.0 \mathrm{~Hz}\right.$, $\left.J_{5,6}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.66\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 2.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-$ 7, 2H-2), 2.14 (m, 2H, H-6, H-7), 1.70 (m, 2H, H-1, H-6), 1.08 (t, $J_{3^{\prime}, 2}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.5$
(C-1'), 175.1 (C-3), 143.6 (C-9), 140.4 (C-8), 60.9 (C-9a), 38.7 (C-5), 30.7/30.4 (C-2/C-2'), 26.9 (C-1), 24.1 (C-6), 22.7 (C-7), 8.6 (C-3'); HRMS (ESI +) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]$: 230.1151, found: 230.1154.

4.36. (3S)-3-Hydroxy-1-(4-penten-1-yl)-2,5-pyrrolidinedione (56)

Acetyl chloride ($8 \mathrm{ml}, 0.12 \mathrm{~mol}$) was added dropwise to a solution of imide $43(1.31 \mathrm{~g}, 5.77 \mathrm{mmol})$ in EtOH at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at room temperature and then concentrated under reduced pressure. Benzene was added and then the solution concentrated in vacuo (this procedure was repeated 3 times) affording $\mathbf{5 6}^{30}$ as a yellow syrup ($1.06 \mathrm{~g}, 5.77 \mathrm{mmol}$, quantitative): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74$ (ddt, $J_{4,5}{ }^{\prime}=16.9$ $\mathrm{Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.00\left(\mathrm{dd}, J_{4^{\prime}, 5^{\prime}}=17.1\right.$ $\left.\mathrm{Hz}, J_{5^{\prime}, 5^{\prime}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.96\left(\mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.63 (dd, $\left.J_{3,4}=8.5 \mathrm{~Hz}, J_{3,4}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.27$ (s, 1H, OH), 3.55-3.38 (m, 2H, 2H-1'), 3.04 (dd, $J_{4,4}=18.2 \mathrm{~Hz}$, $\left.J_{4,3}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.65\left(\mathrm{dd}, J_{4,4}=18.2 \mathrm{~Hz}, J_{4,3}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 2.03\left(\mathrm{dd}, J_{3^{\prime}, 2}=14.6 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.65(\mathrm{dt}$, $\left.J_{3^{\prime}, 2}=14.8 \mathrm{~Hz}, J_{2}, 1^{1}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 178.7 / 174.3$ (C-2/C-5), $136.9\left(\mathrm{C}-4^{\prime}\right), 115.4$ (C-5'), 66.7 (C-3), 38.4 (C-1'), 37.1 (C-4), 30.8 (C-3'), 26.5 (C-2').

4.37. (3S)-3-Benzyloxy-1-(4-penten-1-yl)-2,5-pyrrolidinedione (57a)

Benzyl bromide ($345 \mu \mathrm{l}, 2.90 \mathrm{mmol}$) and silver oxide (672 mg , $2.90 \mathrm{mmol})$ were added to a solution of $56(177 \mathrm{mg}, 0.97 \mathrm{mmol})$ in diethyl ether $(6 \mathrm{~mL})$. After stirring at dark for two days at room temperature, the mixture was filtered through Celite ${ }^{\circledR}$ and concentrated in vacuo. Column chromatography (hexanes/EtOAc, 6:1 to $1: 1$) of the crude material afforded $\mathbf{5 7} \mathbf{a}^{30}$ as a colourless oil $(257 \mathrm{mg}, 0.94 \mathrm{mmol}, 97 \%)$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-$ $7.31(\mathrm{~m}, 5 \mathrm{H}, 5 \mathrm{H}-\mathrm{Ar}), 5.79\left(\mathrm{ddt}, J_{4,5^{\prime}}=16,9 \mathrm{~Hz}, J_{4,5^{\prime}}=10.2 \mathrm{~Hz}\right.$, $\left.J_{4^{\prime}, 3^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.04\left(\mathrm{~d}, J_{4^{\prime}, 5^{\prime}}=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.99$ (d, $\left.J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.79(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{O}$), 4.34 (dd, $\left.J_{3,4}=8.2 \mathrm{~Hz}, J_{3,4}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.54(\mathrm{t}$, $\left.J_{1^{\prime}, 2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1^{\prime}\right), 2.92\left(\mathrm{dd}, J_{4,4}=18.2 \mathrm{~Hz}, J_{3,4}=8.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4), 2.64\left(\mathrm{dd}, J_{4,4}=18.2 \mathrm{~Hz}, J_{3,4}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.09(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-3$ '), $1.75-1.67$ (m, 2H, 2H-2'); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 175.8 / 174.1$ (C-2/C-5), 137.0 (C-4'), 136.6 (C-Ar), 128.5 (C-Ar), 128.2 (C-Ar), 115.4 (C-5'), 73.1 ($\mathrm{ArCH}_{2} \mathrm{O}$), 71.8 (C-3), 38.8 (C-1'), 36.1 (C-4), 30.8 (C-3'), 26.5 (C-2').
4.38. (S)-3-[(4-Methoxybenzyl)oxy]-1-(4-penten-1-yl)-2,5pyrrolidinedione (57b)
p-Methoxybenzyl chloride ($770 \mu \mathrm{l}, 5.62 \mathrm{mmol}$) and silver oxide $(1.30 \mathrm{~g}, 5.62 \mathrm{mmol})$ were added to a solution of $56(343 \mathrm{mg}, 1.87$ $\mathrm{mmol})$ in diethyl ether $(12 \mathrm{~mL})$. After stirring at dark for two days at room temperature, the mixture was filtered through Celite $®$ and concentrated in vacuo. Column chromatography (hexanes/EtOAc, 6:1 to $1: 1$) of the crude material afforded $\mathbf{5 7 b}$ as a colourless oil ($522 \mathrm{mg}, 1.72 \mathrm{mmol}, 92 \%$): $[\alpha]_{\mathrm{D}}+36.3$ ($c 1.26, \mathrm{CHCl}_{3}$); IR (ATR): 3015, 2933, 2839, 1704, 1586, 1514, 1440, 1402, 1343, 1248, $1174,1113,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}$, $\left.J_{\text {ortho,meta }}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}\right), 6.91\left(\mathrm{~d}, J_{\text {ortho,meta }}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\right.$ Ar), $5.80\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=16.9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-4^{\prime}\right), 5.06\left(\mathrm{dq}, J_{4^{\prime}, 5^{\prime}}=17.2 \mathrm{~Hz}, J_{5^{\prime}, 3^{\prime}}=J_{5^{\prime}, 5^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 5.00 (ddd, $\left.J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, J_{5^{\prime}, 3^{\prime}}=3.4 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, $4.93\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.74(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{O}$), 4.34 (dd, $\left.J_{3,4}=8.2 \mathrm{~Hz}, J_{3,4}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.83(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $3.51\left(\mathrm{t}, J_{1^{\prime}, 2^{2}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1\right.$ '), $2.90\left(\mathrm{dd}, J_{4,4}=18.2\right.$ $\left.\mathrm{Hz}, J_{3,4}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.63\left(\mathrm{dd}, J_{4,4}=18.2 \mathrm{~Hz}, J_{3,4}=4.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4), 2.07\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.68$ (qn, $J_{3^{\prime}, 2}=J_{2^{\prime}, 1}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \mathrm{H}-2^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.0/174.2 (C-2/C-5), $159.6\left(\mathrm{CH}_{3} \mathrm{OC}\right), 137.1\left(\mathrm{C}-4{ }^{\prime}\right), 129.9$ (C-Ar), 128.7 (C-Ar), 115.4
(C-5'), 113.9 (C-Ar), $72.6\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 71.6(\mathrm{C}-3), 55.2\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 38.2 (C-1'), 36.2 (C-4), 30.8 (C-3'), 26.5 (C-2'); HRMS (EI): calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}{ }^{+}\right]: 303.1471$; found: 303.1465.
4.39. (S)-2,5-Dioxo-1-(4-penten-1-yl)pyrrolidin-3-yl pivalate (57c)

Pivaloyl chloride ($240 \mu \mathrm{l}, 1.92 \mathrm{mmol}$) was added to a solution of 56 ($176 \mathrm{mg}, 0.96 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ containing triethylamine ($1.3 \mathrm{ml}, 9.60 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to reach room temperature and stirred overnight. Then, it was poured into $2 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5$ mL). The organic layer was dried over MgSO_{4} and concentrated under vacuum. The crude material was purified by column chromatography (hexanes/EtOAc, from 6:1 to 1:1) affording 57c as a brown oil ($205 \mathrm{mg}, 0.77 \mathrm{mmol}, 80 \%$): $[\alpha]_{\mathrm{D}}-7.9$ (c 1.70, CHCl_{3}); IR (ATR): 2975, 1714, 1403, 1281, $1144 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78\left(\mathrm{ddt}, J_{4}, 5^{\prime}=16.9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}\right.$, $\left.J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.36\left(\mathrm{dd}, J_{3,4}=8.7 \mathrm{~Hz}, J_{3,4}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3$), 5.04 ($\mathrm{d}, J_{4^{\prime}, 5^{\prime}}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 4.98 ($\mathrm{d}, J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.55 (t, $J_{1^{\prime}, 2^{\prime}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1^{\prime}$), 3.11 (dd, $J_{4,4}=18.3$ $\left.\mathrm{Hz}, J_{3,4}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.60\left(\mathrm{dd}, J_{4,4}=18.2 \mathrm{~Hz}, J_{3,4}=4.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4), 2.07\left(\mathrm{q}, J_{3^{\prime}, 4^{4}}=J_{3^{\prime}, 2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.71\left(\mathrm{qn}, J_{3^{\prime}, 2}\right.$, $\left.=J_{2,1}{ }^{\prime}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2{ }^{\prime}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4\left({ }^{(} \mathrm{BuCO}\right), 173.5 / 173.2(\mathrm{C}-2 / \mathrm{C}-5), 137.0(\mathrm{C}-$ 4^{\prime}), 115.4 (C-5'), 67.3 (C-3), 38.7 ($\mathrm{Me}_{3} C$), 38.6 (C-1'), 35.5 (C4), 30.8 (C-3'),26.7 (3C, Me ${ }_{3} \mathrm{C}$), 26.4 (C-2'); HRMS (ESI+): calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 290.1363$, found: 290.1361 .
4.40. (S)-2,5-Dioxo-1-(4-penten-1-yl)pyrrolidin-3-yl benzoate (57d)

Benzoyl chloride ($155 \mu \mathrm{l}, 1.33 \mathrm{mmol}$) was added to a solution of $56(222 \mathrm{mg}, 1.21 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing triethylamine ($185 \mu \mathrm{~L}, 1.33 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred overnight. Then, it was poured into $2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, from 7:1 to $1: 1$) affording 57d as a brown oil ($300 \mathrm{mg}, 1.05 \mathrm{mmol}, 86 \%$): $[\alpha]_{\mathrm{D}}$ +11.5 (c 1.00, CHCl_{3}); IR (ATR) 2942, 1711, 1453, 1405, 1350, 1271, 1180, 1117, 1070, 1029, $916 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 8.06-7.94(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 7.61-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $7.48-7.35(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 5.78\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=17.2 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2\right.$ $\left.\mathrm{Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 5.60\left(\mathrm{dd}, J_{3,4}=8.7 \mathrm{~Hz}, J_{3,4}=4.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3$), 5.00 (m, 2H, 2H-5'), 3.55 (m, 2H, 2H-1'), 3.23 (dd, $J_{4,4}$ $\left.=18.3 \mathrm{~Hz}, J_{3,4}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.77\left(\mathrm{dd}, J_{4,4}=18.4 \mathrm{~Hz}, J_{3,4}=\right.$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.08\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.71\left(\mathrm{qn}, J_{3^{\prime}, 2}=J_{2^{\prime}, 1^{\prime}}=7.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2$) $){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.4/173.2 (C-2/C-5), 165.4 (ArCO), 137.0 (C-4'), 133.8 (C-Ar), 129.9 (C-Ar), 128.5 (C-Ar), 128.4 (C-Ar), 115.4 (C-5'), 68.0 (C-3), 38.7 (C-1'), 35.7 (C-4), 29.6 (C-3'), 26.4 (C-2'); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 310.1050$, found: 310.1055 .

4.41. (S)-3-(tert-Butyldimethylsilyl)oxy-1-(4-penten-1-yl)-2,5pyrrolidinedione (57e)

TBS-Imidazole ($430 \mu \mathrm{~L}, 2.20 \mathrm{mmol}$) was added dropwise to a solution of $56(366 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and the mixture was stirred overnight at room temperature. Then, 0.1 M $\mathrm{HCl}(3 \mathrm{~mL})$ was added and the organic layer was washed with water (3 mL) and brine (3 mL), dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography (hexanes/EtOAc, from 8:1 to 1:1) affording 57e as a brown oil ($547 \mathrm{mg}, 1.84 \mathrm{mmol}, 92 \%$): $[\alpha]_{\mathrm{D}}-30.1$ (c 1.36, CHCl_{3}); IR (ATR) 2930, 2857, 1709, 1439, 1401, 1346, 1252, $1129,941 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=\right.$
$\left.16.9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.96\left(\mathrm{dd}, J_{4^{\prime}, 5^{\prime}}\right.$ $\left.=17.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.91\left(\mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5}\right.$, $\left.=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.51\left(\mathrm{dd}, J_{3,4}=8.1 \mathrm{~Hz}, J_{3,4}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3), $3.43\left(\mathrm{t}, J_{1^{\prime}, 2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1{ }^{\prime}\right), 2.92\left(\mathrm{dd}, J_{4,4}=17.9 \mathrm{~Hz}, J_{3,4}\right.$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.50\left(\mathrm{dd}, J_{4,4}=17.9 \mathrm{~Hz}, J_{3,4}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), 1.99 (q, $\left.J_{3^{3}, 4^{\prime}}=J_{3^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.61\left(\mathrm{qn}, J_{3^{\prime}, 2^{2}}=J_{2^{\prime}, 1}\right.$, $\left.=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.11$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5 / 174.0(\mathrm{C}-$ 2/C-5), 137.0 (C-4'), 115.2 (C-5'), 67.7 (C-3), 38.7 (C-1'), 38.6 (C-4), 30.1 (C-3'), 26.5 (C-2'), 25.5 (3C, $M e 3_{3} \mathrm{C}$), $18.1 \mathrm{Me}_{3} C$), -4.8 $\left(\mathrm{CH}_{3} \mathrm{Si}\right),-5.4\left(\mathrm{CH}_{3} \mathrm{Si}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}\right.$ $\left.\mathrm{Na}^{+}\right]: 320.1652$, found: 320.1650 .
4.42. (S)-3-(tert-Butyldiphenylsilyl)oxy-1-(4-penten-1-yl)-2,5pyrrolidinedione, (57f)

TBDPSCl ($1.74 \mathrm{ml}, 6.68 \mathrm{mmol}$) was added dropwise to a solution of $56(1.20 \mathrm{~g}, 6.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ containing imidazole ($464 \mathrm{mg}, 6.81 \mathrm{mmol}$) and the mixture was stirred overnight at room temperature. Then, $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added and the organic layer was washed with water $(10 \mathrm{ml})$ and brine (10 ml), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (hexanes/EtOAc, from 8:1 to $1: 1$) affording $\mathbf{5 7 f}$ as a yellow oil ($2.49 \mathrm{~g}, 5.90 \mathrm{mmol}, 90 \%$): $[\alpha]_{\mathrm{D}}-1.4\left(c 1.39, \mathrm{CHCl}_{3}\right.$); IR (ATR) 2931, 2858, 1711, 1428, 1402, 1362, $1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar})$, $7.52-7.37(\mathrm{~m}, 6 \mathrm{H}-\mathrm{Ar}), 5.79\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=16.9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.3 \mathrm{~Hz}\right.$, $\left.J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.04\left(\mathrm{dd}, J_{4^{\prime}, 5^{\prime}}=17.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.99\left(\mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=10.3 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.54$ (dd, $\left.J_{3,4}=7.9 \mathrm{~Hz}, J_{3,4}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-1^{\prime}\right)$, $2.66\left(\mathrm{dd}, J_{4,4}=17.9 \mathrm{~Hz}, J_{3,4}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.57\left(\mathrm{dd}, J_{4,4}=\right.$ $\left.17.9 \mathrm{~Hz}, J_{3,4}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.07\left(\mathrm{q}, J_{3^{\prime}, 4^{4}}=J_{3^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \mathrm{H}-3^{\prime}$), $1.69\left(\mathrm{qn}, J_{3^{\prime}, 2^{\prime}}=J_{2^{\prime}, 1^{\prime}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 1.13(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3$ (C-2), 173.9 (C-5), 137.9 (C-4'), 135.9 (C-Ar), 135.6 (2C-Ar), 132.8 (C-Ar), 131.9 (C-Ar), 130.2 (C-Ar), 130.1 (C-Ar), 127.9 (C-Ar), 127.8 (C-Ar), 115.3 (C-5'), 68.2 (C-3), 38.7/38.3 (C-4/C-1'), 30.9 (C-3'), 26.7 $\left(\mathrm{Me}_{3} \mathrm{C}\right), 26.5$ (C-2'), 19.1 ($\mathrm{Me}_{3} \mathrm{C}$); HRMS (ESI +) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]: 444.1965$, found: 444.1960 .

4.43. General procedure for the reduction of imides $\mathbf{5 7}$ to acylaminals 58

To a 0.4 M solution of the imide in MeOH at $-20^{\circ} \mathrm{C}$ was added NaBH_{4} (2.5 mol per mol of imide) and the mixture was stirred at this temperature for 2 h . Then, a saturated aqueous solution of NaHCO_{3} (same volume as MeOH) was added carefully and the mixture was stirred at room temperature for 5 min . The volatiles were removed under vacuum and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (same volume as MeOH), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography.
4.44. (S)-4-Benzyloxy-5-hydroxy-1-(4-pentenyl)-2-pyrrolidinone (58a)

Following the general procedure, from $57 \mathrm{a}(169 \mathrm{mg}, 619$ $\mu \mathrm{mol}$), after column chromatography (hexanes/EtOAc, from 3:1 to 1:3) of the crude product, two diastereoisomers of 58a were isolated as a brown oil ($148 \mathrm{mg}, 539 \mu \mathrm{~mol}, 85 \%$). HRMS (EI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}{ }^{+}\right]$: 275.1521 , found. 275.1516. Analytical samples of each isomer were isolated by repeated chromatography. 58alp (less polar): $[\alpha]_{\mathrm{D}}+25.2$ (c 1.18, CHCl_{3}); IR (ATR) 3347, 2929, 1701, 1457, 1352, 1078, $915 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}-\mathrm{Ar}), 5.79\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=17.0 \mathrm{~Hz}, J_{4^{4}, 5^{\prime}}=\right.$ $\left.10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.13\left(\mathrm{~d}, J_{5,4}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, $5.03\left(\mathrm{dd}, J_{4}, 5^{\prime}=17.0 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.97\left(\mathrm{dd}, J_{5^{\prime}, 4^{\prime}}\right.$
$\left.=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.11$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4), 3.77(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.44\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=14.5 \mathrm{~Hz}, J_{1^{1}, 2^{\prime}}=\right.$ $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.26$ (dt, $J_{1^{\prime}, 1^{\prime}}=14.5 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 2.52(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 2.06\left(\mathrm{q}, J_{3^{3}, 2}=J_{3^{\prime}, 4^{\prime}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right)$, $1.64\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4(\mathrm{C}-2)$, 137.6 (C-4'), 136.6 (C-Ar), 128.6 (C-Ar), 128.3 (C-Ar), 127.9 (C$\mathrm{Ar}), 115.0\left(\mathrm{C}-5\right.$ '), $82.2(\mathrm{C}-5), 72.0\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 71.7(\mathrm{C}-4), 39.9(\mathrm{C}-$ $\left.1^{\prime}\right), 35.7$ (C-3), 31.1 (C-3'), 26.9 (C-2'). 58 amp (more polar): $[\alpha]_{\mathrm{D}}$ +38.2 ($c 1.51, \mathrm{CHCl}_{3}$); IR (ATR): 3347, 2929, 1701, 1457, 1352, 1078, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}-$ $\mathrm{Ar}), 5.80\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=17.3 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.4 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-4'), 5.13 (s, 1H, H-5), 5.03 (d, $J_{4^{\prime}, 5^{\prime}}=17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime}$), 4.98 (d, $\left.J_{5^{\prime}, 4}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.08(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}), 3.97\left(\mathrm{dd}, J_{4,3}=6.4 \mathrm{~Hz}, J_{4,3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.50\left(\mathrm{dt}, J_{1^{\prime}, 1}\right.$ $\left.=13.6 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.16\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=13.8 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}\right.$ $\left.=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 2.78\left(\mathrm{dd}, J_{3,3}=17.6 \mathrm{~Hz}, J_{3,4}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3), $2.39\left(\mathrm{dd}, J_{3,3}=17.5 \mathrm{~Hz}, J_{3,4}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.07\left(\mathrm{q}, J_{3^{3}, 2^{\prime}}=\right.$ $\left.J_{3^{\prime}, 4^{\prime}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7$ (C-2), 137.6 (C-4'), 137.4 (C-Ar), 128.5 (C$\mathrm{Ar}), 127.9$ (C-Ar), 127.6 (C-Ar), 115.1 (C-5'), 87.5 (C-5), 78.8 (C4), $71.3\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 39.4\left(\mathrm{C}-1\right.$ '), $36.3(\mathrm{C}-3), 30.9\left(\mathrm{C}-3^{\prime}\right), 26.7(\mathrm{C}-$ 2').
4.45. (S)-5-Hydroxy-4-(4-methoxybenzyl)oxy-1-(4-pentenyl)-2pyrrolidinone (58b)

Following the general procedure, from $\mathbf{5 7 b}(71 \mathrm{mg}, 234 \mu \mathrm{~mol})$, after column chromatography (hexanes/EtOAc, from 3:1 to 1:3) of the crude product, two diastereoisomers of $\mathbf{5 8 b}$ were isolated as a brown oil ($43 \mathrm{mg}, 143 \mu \mathrm{~mol}, 61 \%$): IR (ATR) 2927, 1689, 1613, 1514, 1461, 1249, 1174, $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 5.81\left(\mathrm{ddt}, J_{4}, 5^{5}=\right.$ $\left.16.8 \mathrm{~Hz}, J_{4,5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.12\left(\mathrm{~d}, J_{5,4}=\right.$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.03\left(\mathrm{~d}, J_{4^{\prime}, 5^{\prime}}=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) 4.98\left(\mathrm{~d}, J_{5^{\prime}, 4}\right.$ $\left.=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.57 (bs, 1H, OH), 3.43 (m, 1H, H-1'), 3.26 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 2.07\left(\mathrm{q}, J_{3^{\prime}, 2^{\prime}}=J_{3^{\prime}, 4^{\prime}}=6.9 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.6 and 171.3 (C-2), 159.7 and 159.3 (C-Ar), 137.6 and 137.6 (C-4'), 129.7 and 129.4 (C-Ar), 129.3 and 128.5 (C-Ar), 115.1 and 115.0 (C-5'), 114.0 and 113.9 (C-Ar), 87.6 and 82.2 (C-5), 78.5 and $71.4(\mathrm{C}-4), 71.8$ and $71.0(\mathrm{ArCH} 2 \mathrm{O}), 55.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 39.9$ and $39.4\left(\mathrm{C}-1{ }^{\prime}\right), 36.3$ and 35.8 (C-3), 31.1 and 30.9 (C-3'), 26.9 and 26.7 (C-2'); HRMS (EI) calcd for [$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}{ }^{+}$]: 305.1627, found: 305.1623.
4.46. (S)-2-Hydroxy-5-oxo-1-(4-penten-1-yl)pyrrolidin-3-yl pivalate (58c)

Following the general procedure, from $\mathbf{5 7 c}(215 \mathrm{mg}, 805$ $\mu \mathrm{mol}$), crystallization of the crude product in diethyl ether afforded 58c as a white solid ($156 \mathrm{mg}, 580 \mu \mathrm{~mol}, 72 \%$): $[\alpha]_{\mathrm{D}}+20.7$ (c 1.19, CHCl_{3}); IR (ATR) 2924, 1715, 1452, 1270, $1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.80\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=16,9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}\right.$, $\left.J_{4,3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.32\left(\mathrm{dd}, J_{3,2}=5.4 \mathrm{~Hz}, J_{2, \mathrm{OH}}=8.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 5.16$ (ddd, $J_{3,4}=8.1 \mathrm{~Hz}, J_{3,4}=6.6 \mathrm{~Hz}, J_{3,2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), $5.04\left(\mathrm{dq}, J_{4^{\prime}, 5^{\prime}}=17.1 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=J_{3^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 4.98 (dd, $\left.J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.48\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}\right.$ $\left.=14.0 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=8.8 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.23\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}\right.$ $\left.=14.0 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=8.7 \mathrm{~Hz}, J_{1^{\prime}, 2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.19\left(\mathrm{~d}, J_{\mathrm{OH}, 2}\right.$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.69\left(\mathrm{dd}, J_{4,4}=17.2 \mathrm{~Hz}, J_{3,4}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), 2.58 (dd, $\left.J_{4,4}=17.2 \mathrm{~Hz}, J_{3,4}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.07\left(\mathrm{q}, J_{3,4^{\prime}}=\right.$ $\left.J_{3^{\prime}, 2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 1.24(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9$ (${ }^{2} \mathrm{BuCO}$), $170.8(\mathrm{C}-$ 5), 137.4 (C-4'), 115.1 (C-5'), 81.8 (C-2), 67.4 (C-3), 39.9 (C-1'), $38.7\left(\mathrm{Me}_{3} \mathrm{C}\right)$, 34.7 (C-4), $31.0\left(\mathrm{C}-3\right.$ '), 27.0 ($\left.\mathrm{Me}_{3} \mathrm{C}\right), 26.8\left(\mathrm{C}-2{ }^{\prime}\right)$; HRMS (EI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}^{+}\right]$: 269.1627, found: 269.1628.
4.47. (S)-2-Hydroxy-5-oxo-1-(4-penten-1-yl)pyrrolidin-3-yl benzoate (58d).

Following the general procedure, from $57 \mathbf{d}$ ($300 \mathrm{mg}, 1.05$ mmol), after column chromatography (hexanes/EtOAc, from 3:1 to $1: 3$) of the crude product, $\mathbf{5 8 d}$ was isolated as a brown oil (236 $\mathrm{mg}, 815 \mu \mathrm{~mol}, 78 \%):[\alpha]_{\mathrm{D}}+38.5$ ($c 0.91, \mathrm{CHCl}_{3}$); IR (ATR) 3209, 2932, 1724, 1649, 1461, 1282, 1180, $1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06\left(\mathrm{~d}, J_{\text {ortho,meta }}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}\right), 7.62(\mathrm{t}$, $\left.J_{\text {meta, para }}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.48\left(\mathrm{t}, J_{\text {ortho,meta }}=J_{\text {meta,para }}=7.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 5.82\left(\mathrm{ddt}, J_{4,5} 5^{\prime}=16.9 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 5.06\left(\mathrm{~d}, J_{4}, 5^{\prime}=17.1 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.00\left(\mathrm{~d}, J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 3.26 (m, 1H, H-1'), 2.78 (m, 2H, 2H-4), 2.09 (m, 2H, 2H-3'), 1.71 (m, 2H, 2H-2'); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.7 (C-5), 165.9 (ArCO), 137.4 (C-4'), 133.6 (C-Ar), 129.7 (C-Ar), 128.9 (C-Ar), 128.5 (C-Ar), 115.2 (C-5'), 82.0 (C-2), 68.3 (C-3), 40.0 (C-1'), 34.7 (C-4), 31.0 (C-3'), 26.9 (C-2'); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 312.1212$, found: 312.1206.
4.48. (S)-4-(tert-Butyldimethylsilyl)oxy-5-hydroxy-1-(4-penten-1-yl)-2-pyrrolidinone (58e)

Following the general procedure, from 57e ($200 \mathrm{mg}, 672$ $\mu \mathrm{mol}$), after column chromatography (hexanes/EtOAc, from 3:1 to 1:3) of the crude product, $\mathbf{5 8 e}$ was isolated as a yellow oil (123 mg , $410 \mu \mathrm{~mol}, 61 \%):[\alpha]_{\mathrm{D}}+51.4$ (c 1.23, CHCl_{3}); IR (ATR) 3345, 2929, 2857, 1684, 1465, 1256, 1154, $1094 \mathrm{~cm}^{-1} ;{ }^{1} H$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=16.8 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=\right.$ $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.04-4.92$ (m, 3H, H-5, 2H-5'), 4.33 (m, 1H, $\mathrm{H}-4), 3.61\left(\mathrm{~d}, J_{5, \mathrm{OH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 3.40\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=8.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.25\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.5 \mathrm{~Hz}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=8.8 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.55\left(\mathrm{dd}, J_{3,3}=17.0 \mathrm{~Hz}\right.$, $J_{3,4}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $2.36\left(\mathrm{dd}, J_{3,3}=17.0 \mathrm{~Hz}, J_{3,4}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3), 2.05\left(\mathrm{q}, J_{3^{3}, 4^{\prime}}=J_{3^{\prime}, 2^{\prime}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.65(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-$ 2^{\prime}), 0.90 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}$), 0.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$ (C-2), 137.7 (C-4'), 115.0 (C-5'), 82.7 (C-5), 66.3 (C-4), 39.9 (C-1'), 39.0 (C-3), 31.1 (C-3'), 26.9 (C-2'), $25.6\left(\mathrm{Me}_{3} \mathrm{C}\right), 18.0\left(\mathrm{Me}_{3} \mathrm{C}\right),-4.7\left(\mathrm{CH}_{3} \mathrm{Si}\right),-5.1$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]$: 322.1809, found: 322.1807 .
4.49. (S)-4-(tert-Butyldiphenylsilyl)oxy-5-hydroxy-1-(4-penten-1-yl)-2-pyrrolidin-2-one (58f)

Following the general procedure, from $\mathbf{5 7 f}(2.93 \mathrm{~g}, 6.96 \mathrm{mmol})$, after column chromatography (hexanes/EtOAc, from 5:1 to 1:3) of the crude product, two diastereoisomers of $\mathbf{5 8 f}(1.97 \mathrm{~g}, 4.66 \mathrm{mmol}$, 67%) were isolated as a yellow oil and one regioisomer $\mathbf{5 8 f}$ regio ($326 \mathrm{mg}, 0.77 \mathrm{mmol}, 11 \%$) as a brown oil. Analytical samples of each diastereoisomer of $\mathbf{5 8 f}$ were isolated by repeated chromatography. 58 f (mixture): HRMS (ESI+) calcd for [$\left.\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]: 446.2122$, found 446.2113. 58flp (less polar): $[\alpha]_{\mathrm{D}}+15.2$ (c 1.08, CHCl_{3}); IR (ATR) 3342, 2933, 2860, 1683, $1430,1366,1264,1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ - 7.64 (m, 4H, 4H-Ar), $7.53-7.39$ (m, 6H, 6H-Ar), 5.80 (ddt, $J_{4,5}{ }^{\prime}$, $\left.=17.0 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.02\left(\mathrm{dq}, J_{4^{\prime}, 5^{\prime}}\right.$ $\left.=17.0 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=J_{5^{\prime}, 3^{\prime}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.99-4.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.5^{\prime}, \mathrm{H}-2\right), 4.36$ (dt, $\left.J_{4,3}=7.3 \mathrm{~Hz}, J_{4,5}=J_{4,3}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.78$ (d, $J_{2, \text { OH }}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.40\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{2}}=8.9\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.30\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.9 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=8.8 \mathrm{~Hz}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.39\left(\mathrm{dd}, J_{3,3}=17.0 \mathrm{~Hz}, J_{3,4}=5.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 2.28\left(\mathrm{dd}, J_{3,3}=17.0 \mathrm{~Hz}, J_{3,4}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.06(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-3$ '), 1.67 (m, 2H, 2H-2'), 1.12 (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5$ (C-2), 137.6 (C-4'), 135.5 (C-Ar), 135.5 (C-Ar), 132.2 (C-Ar), 132.0 (C-Ar), 130.3 (C-Ar), 130.3 (CAr), 128.0 (C-Ar), 128.0 (C-Ar), 115.0 (C-5'), 82.9 (C-5), 67.1 (C4), 40.2 ($\mathrm{C}-1$ '), 38.2 (C-3), 31.1 (C-3'), 27.0 ($\left.\mathrm{C}-2^{\prime}\right), 26.8\left(\mathrm{Me}_{3} \mathrm{C}\right)$,
$19.1\left(\mathrm{Me}_{3} C\right) . \mathbf{5 8 f} \boldsymbol{m p}$ (more polar): $[\alpha]_{\mathrm{D}}+44.3\left(c\right.$ 1.01, $\left.\mathrm{CHCl}_{3}\right)$; IR (ATR): 3370, 2933, 2859, 1675, 1429, 1365, 1264, 1108, 914 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.59(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}-\mathrm{Ar})$, $7.53-7.36(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}-\mathrm{Ar}), 5.81\left(\mathrm{ddt}, J_{4,5^{\prime}}=17.0 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=10.2\right.$ $\left.\mathrm{Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.03\left(\mathrm{~d}, J_{4^{\prime}, 5^{\prime}}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 4.99 (d, $\left.J_{4^{\prime}, 5^{\prime}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.93$ (s, 1H; H-5), 4.15 (dd, $J_{4,3}$ $\left.=6.0 \mathrm{~Hz}, J_{4,3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.51\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=\right.$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}$), $3.08\left(\mathrm{dt}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.1^{\prime}\right), 2.59\left(\mathrm{dd}, J_{3,3}=17.0 \mathrm{~Hz}, J_{3,4}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.26\left(\mathrm{dd}, J_{3,3}\right.$ $\left.=17.0 \mathrm{~Hz}, J_{3,4}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.10\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.64(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-2$ '), 1.08 (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2 (C-2), 137.6 (C-4'), 135.6 (C-Ar), 135.5 (C-Ar), 133.1 (CAr), 132.9 (C-Ar), 130.0 (C-Ar), 127.8 (C-Ar), 115.1 (C-5'), 89.6 (C-5), 73.3 (C-4), 39.2/38.9 (C-3/C-1'), 30.8 (C-3'), 26.7 (C-2'), $26.7\left(\mathrm{Me}_{3} \mathrm{C}\right), 19.0\left(\mathrm{Me}_{3} \mathrm{C}\right)$. 58fregio: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.91-7.81 (m, 2H, 2H-Ar), 7.76-7.68 (m, 2H, 2H-Ar), 7.49$7.36(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}-\mathrm{Ar}), 5.80\left(\mathrm{ddt}, J_{4,5^{\prime}}=17.0 \mathrm{~Hz}, J_{4,5^{\prime}}=10.2 \mathrm{~Hz}\right.$, $J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.08-4.89$ (m, 3H, 2H-5', H-5), 4.15 (dd, $\left.J_{3,4}=7.3 \mathrm{~Hz}, J_{3,4}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.49\left(\mathrm{ddd}, J_{1,1}, 1^{\prime}=13.7\right.$ $\left.\mathrm{Hz}, J_{1^{\prime}, 2^{\prime}}=8.9 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.26\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.7\right.$ $\left.\mathrm{Hz}, J_{1^{\prime}, 2^{\prime}}=8.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.01$ (bs, OH), 2.32 (ddd, $\left.J_{4,4}=13.9 \mathrm{~Hz}, J_{3,4}=7.3 \mathrm{~Hz}, J_{4,5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.06(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-3$ '), 1.80 (ddd, $J_{4,4}=13.9 \mathrm{~Hz}, J_{3,4}=4.8 \mathrm{~Hz}, J_{4,5}=3.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 1.73-1.57$ (m, 2H, 2H-2'), 1.12 (s, 9H, Me3 C).
4.50. (S)-5-Ethoxy-4-hydroxy-1-(4-penten-1-yl)-2-pyrrolidinone (58g)
$\mathrm{NaBH}_{4}(93 \mathrm{mg}, 2.46 \mathrm{mmol})$ was added to a solution of imide $56(180 \mathrm{mg}, 982 \mu \mathrm{~mol})$ in EtOH $(7 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 1 h , the mixture was cooled to $-55^{\circ} \mathrm{C}$ and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (in $\mathrm{EtOH}, 4 \mathrm{~mL}$) was added very slowly. The mixture was allowed to warm to room temperature and stirring was continued overnight. Then, the mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (hexanes/EtOAc, from 3:1 to $1: 3$) affording $\mathbf{5 8 g}$ as a colourless oil ($185 \mathrm{mg}, 786$ $\mu \mathrm{mol}, 88 \%):[\alpha]_{\mathrm{D}}+29.9\left(c\right.$ 1.14, $\left.\mathrm{CHCl}_{3}\right)$; IR (ATR) 3366, 2927, 1674, 1461, 1069, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82$ (ddt, $J_{4,5^{\prime}}=17.0 \mathrm{~Hz}, J_{4,5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 5.05 $\left(\mathrm{dq}, J_{4^{\prime}, 5^{\prime}}=17.0 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=J_{3^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.99\left(\mathrm{~d}, J_{4^{\prime}, 5^{\prime}}\right.$ $\left.=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=1.7 \mathrm{~Hz}, J_{3^{\prime}, 5^{\prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.70(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-$ 5), $4.22\left(\mathrm{~d}, J_{4,3}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.64\left(\mathrm{dq}, J_{1}{ }^{\prime},,^{\prime \prime}=9.1 \mathrm{~Hz}, J_{1},{ }^{\prime},{ }^{\prime \prime}\right.$ $\left.=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}{ }^{\prime \prime}\right), 3.57\left(\mathrm{dq}, J_{1^{\prime}, 1^{\prime \prime}}=9.1 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime \prime}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-1''), 3.49 (ddd, $J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=8.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.15\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=8.7\right.$ $\mathrm{Hz}, J_{1^{\prime}, 2}{ }^{\prime}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $2.82\left(\mathrm{dd}, J_{3,3}=17.6 \mathrm{~Hz}, J_{3,4}=6.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.26\left(\mathrm{dd}, J_{3,3}=17.6 \mathrm{~Hz}, J_{3,4}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.09$ $\left(\mathrm{q}, J_{4^{\prime}, 3^{\prime}}=J_{3^{\prime}, 2^{\prime}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.68\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 1.24(\mathrm{t}$, $\left.J_{1^{\prime}, 2^{\prime \prime}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-2^{\prime}{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5$ (C-2), 137.6 (C-4'), 115.1 (C-5'), 96.0 (C-5), 68.8 (C-4), 63.3 (C1^{\prime} '), 40.2 (C-1'), 39.1 (C-3), 30.9 (C-3'), 26.7 (C-2'), 15.2 (C-2''); HRMS (ESI +) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 236.1257, found: 236.1260.
4.51. 2,2-Dimethyl-4-(4-penten-1-yl)tetrahydro-5H-[1,3]dioxolo[4,5-b]pyrrol-5-one (58h)
$\mathrm{NaBH}_{4}(35 \mathrm{mg}, 935 \mu \mathrm{~mol})$ was added to a solution of imide $\mathbf{5 6}$ $(69 \mathrm{mg}, 374 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. After stirring at the same temperature for 2 h , the mixture was allowed to warm to room temperature. The volatiles were evaporated quickly and the residue was solved in acetone (3.5 mL) and cooled down to $0^{\circ} \mathrm{C}$. Then, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(350 \mu \mathrm{l}, 6.4 \mathrm{mmol})$ was added very slowly. After stirring at $0^{\circ} \mathrm{C}$ for 15 min , the mixture was allowed to warm to room temperature and stirred for 45 min . Then, saturated
aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{~mL})$ was added, the volatiles were evaporated under vacuum and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (hexanes/EtOAc, from 3:1 to $1: 3$) affording $\mathbf{5 8 h}$ as a yellow oil ($43 \mathrm{mg}, 191 \mu \mathrm{~mol}$, 51%): $[\alpha]_{\mathrm{D}}+47.4$ (c 0.91, CHCl_{3}); IR (ATR) 2932, 1691, 1431, 1373, 1235, 1216, 1072, 1026, $913 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.79\left(\mathrm{ddt}, J_{4^{\prime}, 5^{\prime}}=17.0 \mathrm{~Hz}, J_{4,5^{\prime}}=10.2 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4$ '), 5.51 (d, $\left.J_{3 \mathrm{aa}, 6 \mathrm{a}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}\right), 5.01\left(\mathrm{dd}, J_{5^{\prime}, 4^{4}}=17.0\right.$ $\left.\mathrm{Hz}, J_{5^{\prime}, 5^{\prime}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.96\left(\mathrm{dd}, J_{5^{\prime}, 4^{\prime}}=10.2 \mathrm{~Hz}, J_{5^{\prime}, 5^{\prime}}=2.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.74 (td, $\left.J_{6 \mathrm{a}, 3 \mathrm{a}}=5.1 \mathrm{~Hz}, J_{6 \mathrm{a}, 6}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right)$, $3.42\left(\right.$ ddd, $\left.J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=9.2 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, $3.20\left(\mathrm{ddd}, J_{1^{\prime}, 1^{\prime}}=13.7 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=9.0 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, $2.57(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-6), 2.06\left(\mathrm{q}, J_{3^{\prime}, 4}=J_{3^{\prime}, 2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.68$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}$), $1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4$ (C-5), 137.4 (C-4'), 115.1 (C-5'), 111.9 (C-2), 90.2 (C-3a), 73.1 (C-6a), 40.1 (C-1'), 37.7 (C-6), 31.1 (C-3'), $27.8\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.5(\mathrm{C}-2$ '); HRMS (ESI+) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]: 248.1257$, found: 248.1260 .

4.52. General procedure for the cross metathesis reaction of alkenes 58a-h with crotonaldehyde

To a 0.3 M solution of alkene $\mathbf{5 8}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under nitrogen atmosphere was added crotonaldehyde (2 mol per mol of 58). A 0.06 M solution of G-II catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 mol per mol of $\mathbf{5 8}$) was added to the first solution in two portions within 1 h between the two additions. After stirring at room temperature for 1 additional hour, the reaction mixture was filtered through silica gel and the silica washed with EtOAc. The organic solvent was evaporated under vacuum and the remaining oil was purified by column chromatography on silica gel.

4.53. (E)-6-[(S)-3-Benzyloxy-2-hydroxy-5-oxopyrrolidin-1-yl]-2hexenal, (59a)

Following the general procedure, from $\mathbf{5 8 a}(88 \mathrm{mg}, 320 \mu \mathrm{~mol})$, after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, $\mathbf{5 9}$ a was isolated as a brown oil (84 $\mathrm{mg}, 278 \mu \mathrm{~mol}, 87 \%):[\alpha]_{\mathrm{D}}+41.7\left(c 0.97, \mathrm{CHCl}_{3}\right.$); IR (ATR) 3358, 2921, 2051, 1683, 1455, 1270, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 9.48\left(\mathrm{~d}, J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}-\mathrm{Ar})$, $6.84\left(\mathrm{dt}, J_{3,2}=15.6 \mathrm{~Hz}, J_{3,4}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.12\left(\mathrm{dd}, J_{2,3}=15.7\right.$ $\left.\mathrm{Hz}, J_{2,1}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.12\left(\mathrm{dd}, J_{2}\right.$, OH $=8.2 \mathrm{~Hz}, J_{2}, 3^{\prime}=5.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.14\left(\mathrm{dt}, J_{3^{\prime}, 4^{\prime}}=5.8 \mathrm{~Hz}, J_{3^{\prime}, 2}\right.$ $\left.=J_{3^{3}, 4^{\prime}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.76\left(\mathrm{~d}, J_{\mathrm{OH}, 2^{\prime}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 3.38$ $\left(\mathrm{t}, J_{6,5}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-6\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-4^{\prime}\right), 2.35\left(\mathrm{q}, J_{4,3}=7.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}-4), 1.80(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9$ (C-1), 171.5 (C-5'), 157.3 (C-3), 136.4 (C-Ar), 133.1 (C2), 128.6 (C-Ar), 128.3 (C-Ar), 128.0 (C-Ar), 82.5 (C-2'), 72.1 ($\mathrm{ArCH}_{2} \mathrm{O}$), 71.7 (C-3'), 39.9 (C-6), 35.7 (C-4'), $30.0(\mathrm{C}-4), 26.2$ (C-5); HRMS (ESI +) calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 326.1368$, found: 326.1363.

4.54. (E)-6-[(S)-2-Hydroxy-3-(4-methoxybenzyl)oxy-5-oxopyrrolidin-1-yl]-2-hexenal (59b)

Following the general procedure, from 58b $(330 \mathrm{mg}, 1.08$ mmol), after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of 59b was isolated as a brown oil ($320 \mathrm{mg}, 961 \mu \mathrm{~mol}, 89 \%$): IR (ATR) 3368, 2930, 1679, 1514, 1250, 1078, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51-9.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 7.30-7.15(\mathrm{~m}, 2 \mathrm{H}$, 2H-Ar), 6.94-6.77 (m, 3H, 2H-Ar, H-3), 6.16-6.05 (m, 1H, H4), 5.13-5.06 (m, 1H, H-2'), 4.62-4.44 (m, 2H, $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.12$ (dt, $J_{4,3}=6.3 \mathrm{~Hz}, J_{3^{3}, 2^{\prime}}=J_{3^{3}, 4^{\prime}}=5.6 \mathrm{~Hz}$) and $3.94\left(\mathrm{dd}, J_{3^{3}, 4^{4}}=6.2 \mathrm{~Hz}\right.$, $\left.J_{3^{\prime}, 4^{\prime}}=2.2 \mathrm{~Hz}\right)\left(1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.81(\mathrm{~s})$ and $3.79(\mathrm{~s})\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.47$
$\left(\mathrm{dt}, J_{6,6}=14.6 \mathrm{~Hz}, J_{6,5}=7.5 \mathrm{~Hz}\right), 3.36\left(\mathrm{t}, J_{6,5}=7.3 \mathrm{~Hz}\right)$ and 3.24 $\left(\mathrm{dt}, J_{6,6}=14.6 \mathrm{~Hz}, J_{6,5}=6.8 \mathrm{~Hz}\right)(2 \mathrm{H}, 2 \mathrm{H}-6), 2.76\left(\mathrm{dd}, J_{4,4^{\prime}}=17.5\right.$ $\mathrm{Hz}, J_{4,3^{\prime}}=6.2 \mathrm{~Hz}$), 2.57-2.45 (m), 2.39-2.29 (m) (4H, 2H-4', $2 \mathrm{H}-4), 1.88-1.71(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.1 and 194.0 (C-1), 173.0 and 171.6 (C-5'), 159.7 and 159.4 $\left(\mathrm{CH}_{3} \mathrm{OC}\right), 157.7$ and $157.5(\mathrm{C}-3), 133.1$ and $133.0(\mathrm{C}-2), 129.7$ and $129.3(\mathrm{C}-\mathrm{Ar}), 128.5$ and $128.5\left(\mathrm{OCH}_{2} \mathrm{C}\right), 114.0$ and $113.9(\mathrm{C}-\mathrm{Ar})$, 87.6 and 82.5 (C-2'), 78.5 and 71.3 (C-3'), 71.9 and 71.1 $\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 55.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 39.9$ and $39.2(\mathrm{C}-6), 36.2$ and $35.7(\mathrm{C}-$ 4^{\prime}), 30.0 and 29.9 (C-4), 26.2 and 25.8 (C-5); HRMS (EI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}^{+}\right]: 333.1576$, found: 333.1563.
4.55. (3S)-2-Hydroxy-5-oxo-1-[(E)-6-oxo-4-hexen-1-yllpyrrolidin-3-yl pivalate (59c)

Following the general procedure, from 58c ($78 \mathrm{mg}, 289 \mu \mathrm{~mol}$), after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, 59c was isolated as a brown oil (74 $\mathrm{mg}, 249 \mu \mathrm{~mol}, 86 \%):[\alpha]_{\mathrm{D}}+17.1$ (c 0.91, CHCl_{3}); IR (ATR) 3367, 2927, 1673, 1610, 1513, 1461, 1250, $1172 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49\left(\mathrm{~d}, J_{6,5},=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.87\left(\mathrm{dt}, J_{4^{4}, 5^{\prime}}=\right.$ $\left.15.5 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.14\left(\mathrm{dd}, J_{4^{4}, 5^{\prime}}=15.5 \mathrm{~Hz}, J_{6^{\prime}, 5^{\prime}}\right.$ $\left.=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.33\left(\mathrm{bd}, J_{2,3}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.16(\mathrm{~m}, 1 \mathrm{H}$, H-3), 3.78-3.27 (m, 3H, 2H-1', OH), 2.71 (dd, $J_{4,4}=17.2 \mathrm{~Hz}, J_{3,4}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.60\left(\mathrm{dd}, J_{4,4}=17.2 \mathrm{~Hz}, J_{3,4}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4), $2.38\left(\mathrm{q}, J_{3^{\prime}, 4^{\prime}}=J_{3^{\prime}, 2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 1.81\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right)$, 1.24 (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9$ (C-6'), 177.8 ('BuCO), 170.9 (C-5), 156.9 (C-4'), 133.3 (C-5'), 82.2 (C2), 67.4 (C-3), $40.0\left(\mathrm{C}-1\right.$ '), 38.8 ($\mathrm{Me}_{3} C$), 34.7 (C-4), 29.9 (C-3'), $27.0 \quad\left(\mathrm{Me}_{3} \mathrm{C}\right), \quad 26.2$ (C-2'); HRMS (ESI +) calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+}\right]: 320.1468$, found: 320.1476 .
4.56. (3S)-2-Hydroxy-5-oxo-1-[(E)-6-oxo-4-hexen-1-yl]pyrrolidin-3-yl benzoate (59d)

Following the general procedure, from 58d ($100 \mathrm{mg}, 346$ $\mu \mathrm{mol}$), after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of 59d was isolated as a brown oil ($91 \mathrm{mg}, 287 \mu \mathrm{~mol}, 83 \%$): IR (ATR) 3309, 2924, 1686, 1452, 1273, 1113, 1071, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51\left(\mathrm{~d}, J_{6,5},=7.8 \mathrm{~Hz}\right)$ and $9.48(\mathrm{~d}$, $\left.J_{6,5^{\prime}}=7.8 \mathrm{~Hz}\right)\left(1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 8.06\left(\mathrm{~d}, J_{\text {ortho,meta }}=7.5 \mathrm{~Hz}\right)$ and $8.01(\mathrm{~d}$, $\left.J_{\text {ortho,meta }}=7.5 \mathrm{~Hz}\right)(2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 7.62\left(\mathrm{t}, J_{\text {meta,para }}=7.7 \mathrm{~Hz}\right)$ and 7.48 $\left(\mathrm{t}, J_{\text {ortho,meta }}=J_{\text {meta, para }}=7.5 \mathrm{~Hz}\right)(2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 6.95-6.78(\mathrm{~m}, 1 \mathrm{H}$, H-4'), $6.09\left(\mathrm{dd}, J_{4^{\prime}, 5^{\prime}}=15.6 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=7.8 \mathrm{~Hz}\right)$ and $6.05\left(\mathrm{dd}, J_{4^{\prime}, 5^{\prime}}\right.$ $\left.=15.6 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=7.8 \mathrm{~Hz}\right)\left(1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.52-5.41(\mathrm{~m})$ and $5.28-$ 5.17 (m) ($2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3$), $3.60-3.29$ (m, 2H, 2H-1'), 3.08 (dd, $\mathrm{J}_{4,4}$ $\left.=18.0 \mathrm{~Hz}, J_{4,3}=7.2 \mathrm{~Hz}\right), 2.89-2.74(\mathrm{~m})$ and $2.58\left(\mathrm{dd}, J_{4,4}=18.0\right.$ $\left.\mathrm{Hz}, J_{4,3}=1.9 \mathrm{~Hz}\right)(2 \mathrm{H}, 2 \mathrm{H}-4), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3 \mathrm{~s}), 1.96-$ 1.74 (m, 2H, 2-H2'); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9$ and 193.9 (C-6'), 172.1 and 171.0 (C-5), 166.4 and 165.9 (ArCO), 157.1 and 157.0 (C-4'), 133.8 and 133.7 (C-5'), 133.2 and 133.2 (C-Ar), 129.7 and 129.6 (C-Ar), 128.8 (C-Ar), 128.6 and 128.5 (CAr), 87.3 and 82.2 (C-2), 74.7 and 68.3 (C-3), 40.1 and 39.8 (C1^{\prime}), 35.3 and 34.7 (C-4), 29.9 and 29.8 (C-3'), 26.2 and 26.0 (C2^{\prime}); HRMS (ESI +) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}^{+}\right]: 340.1161$, found: 340.1164.

4.57. (E)-6-[(S)-3-(tert-Butyldimethylsilyloxy)-2-hydroxy-5-oxopyrrolidin-1-yl]-2-hexenal (59e)

Following the general procedure, from $\mathbf{5 8 e}(93 \mathrm{mg}, 31 \mu \mathrm{~mol})$, after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, $\mathbf{5 9 e}$ was isolated as a brown oil (87 $\mathrm{mg}, 267 \mu \mathrm{~mol}, 86 \%$): $[\alpha]_{\mathrm{D}}+35.7$ (c 1.17, CHCl_{3}); IR (ATR) 3367, 2921, 2851, 1685, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.47$ (d, $\left.J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 6.84\left(\mathrm{dt}, J_{3,2}=15.6 \mathrm{~Hz}, J_{2,4}=6.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 6.10\left(\mathrm{dd}, J_{2,3}=15.6 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.00$
(dd, $\left.J_{2^{\prime}, \mathrm{OH}}=7.3 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.36\left(\mathrm{ddd}, J_{3^{\prime}, 4^{\prime}}=\right.$ $\left.6.8 \mathrm{~Hz}, J_{3^{\prime}, 2^{\prime}}=5.1 \mathrm{~Hz}, J_{3^{\prime}, 4^{\prime}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.66\left(\mathrm{~d}, J_{\mathrm{OH}, 2^{\prime}}=\right.$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.36(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-6), 2.56\left(\mathrm{dd}, J_{4,4^{4}}=17.1 \mathrm{~Hz}\right.$, $\left.J_{4^{\prime}, 3^{\prime}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.44-2.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{4}, 2 \mathrm{H}-4\right), 1.80(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{H}-5), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right), 0.12\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8$ (C-1), 171.4 (C-5'), 157.2 (C-3), 133.1 (C-2), 82.9 (C-2'), 66.2 (C-3'), 39.9 (C-6), 38.8 (C-4'), 30.0 (C4), 26.3 (C-5), $25.6\left(\mathrm{Me}_{3} \mathrm{C}\right), 17.9\left(\mathrm{Me}_{3} \mathrm{C}\right),-4.7\left(\mathrm{CH}_{3} \mathrm{Si}\right),-5.2$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right)$; HRMS (ESI +) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SiNa}^{+}\right]$: 350.1758 , found: 350.1760 .

4.58. (E)-6-[(S)-3-(tert-Butyldiphenylsilyloxy)-2-hydroxy-5-oxopyrrolidin-1-yl]-2-hexenal (59f)

Following the general procedure, from $\mathbf{5 8 f}(1.39 \mathrm{~g}, 3.28 \mathrm{mmol})$, after column chromatography (from hexanes/EtOAc, 5:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of 59e was isolated as a brown oil ($1.48 \mathrm{~g}, 3.28 \mathrm{mmol}$, quantitative): HRMS (ESI+) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}^{+}\right]$: 474.2071, found: 474.2075. Pure samples of each isomer were isolated by repeated chromatography. $\mathbf{5 9 f} \boldsymbol{l} \boldsymbol{p}$ (less polar): $[\alpha]_{\mathrm{D}}+4.7\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (ATR) 3370, 2931, 2857, 1684, 1427, 1263, 1110, $974 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49\left(\mathrm{~d}, J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.74-$ 7.55 (m, 4H-Ar), $7.54-7.33(\mathrm{~m}, 6 \mathrm{H}-\mathrm{Ar}), 6.83\left(\mathrm{dt}, J_{3,2}=15.5 \mathrm{~Hz}\right.$, $\left.J_{3,4}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.12\left(\mathrm{dd}, J_{2,3}=15.5 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 4.93\left(\mathrm{t}, J_{2}, 3^{\prime}=J_{2^{\prime}, \text { OH }}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.35\left(\mathrm{dt}, J_{3^{\prime}, 4^{\prime}}=7.3\right.$ $\left.\mathrm{Hz}, J_{3^{\prime}, 4^{\prime}}=J_{3^{\prime}, 2^{\prime}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.78\left(\mathrm{~d}, J_{\mathrm{OH}, 2^{\prime}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, OH), $3.45-3.28(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-6), 2.37\left(\mathrm{dd}, J_{4,4^{\prime}}=17.1 \mathrm{~Hz}, J_{4^{4}, 3^{\prime}}=\right.$ $\left.5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$) , 2.36-2.31 (m, 2H, 2H4), $2.26\left(\mathrm{dd}, J_{4,4^{4}}=17.1\right.$ $\left.\mathrm{Hz}, J_{4^{\prime}, 3^{\prime}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.88-1.70(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5), 1.10(\mathrm{~s}$, 9H, $\mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8(\mathrm{C}-1), 171.6$ (C5^{\prime}), 157.2 (C-3), 135.5 (C-Ar), 135.4 (C-Ar), 133.2 (C-2), 132.1 (C-Ar), 131.9 (C-Ar), 130.4 (C-Ar), 130.4 (C-Ar), 128.0 (C-Ar), 128.0 (C-Ar), 83.1 (C-2'), 67.0 (C-3'), 40.2 (C-6), 38.2 (C-4'), 30.0 (C-4), 26.8 ($\mathrm{Me}_{3} \mathrm{C}$), 26.4 (C-5), 19.1 ($\mathrm{Me}_{3} \mathrm{C}$). 59fmp (more polar): $[\alpha]_{\mathrm{D}}+35.9$ (c 1.92, CHCl_{3}); IR (ATR) 3370, 2931, 2857, 1683, 1427, 1263, 1111, $974 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.46 (d, $\left.J_{1,2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.73-7.58(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}-\mathrm{Ar}), 7.50$ - $7.33(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}-\mathrm{Ar}), 6.84\left(\mathrm{dt}, J_{3,2}=15.5 \mathrm{~Hz}, J_{3,4}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-3), 6.09\left(\mathrm{dd}, J_{2,3}=15.5 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.93(\mathrm{~s}, 1 \mathrm{H}$, H-2'), 4.18 (dd, $\left.J_{3^{\prime}, 4^{\prime}}=6.1 \mathrm{~Hz}, J_{3^{\prime}, 4^{\prime}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.71(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$), $3.46\left(\mathrm{dt}, J_{6,6}=14.3 \mathrm{~Hz}, J_{6,5}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.17(\mathrm{dt}$, $\left.J_{6,6}=14.3 \mathrm{~Hz}, J_{6,5}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.58\left(\mathrm{dd}, J_{4},{ }_{4}=17.3 \mathrm{~Hz}\right.$, $\left.J_{4,3^{\prime}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}\right), 2.35\left(\mathrm{q}, J_{4,3}=J_{4,5}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-4\right)$, $2.24\left(\mathrm{dd}, J_{4^{\prime}, 4^{\prime}}=17.3 \mathrm{~Hz}, J_{4^{\prime}, 3^{\prime}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.76(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{H}-5), 1.07$ (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0$ (C-1), 173.4 (C-5'), 157.5 (C-3), 135.5 (C-Ar), 133.1 (C-2), 132.8 (C-Ar), 130.1 (C-Ar), 127.8 (C-Ar), 89.7 (C-2'), 73.3 (C-3'), 39.1 (C-6), 38.9 (C-4'), 29.7 (C-4), 26.7 ($\mathrm{Me}_{3} \mathrm{C}$), 25.9 (C-5), 19.0 $\left(\mathrm{Me}_{3} \mathrm{C}\right)$.

4.59. (E)-6-[(S)-2-Ethoxy-3-hydroxy-5-oxopyrrolidin-1-yl]-2hexenal (59g)

Following the general procedure, from $\mathbf{5 8 g}(242 \mathrm{mg}, 1.13$ mmol), after column chromatography (from hexanes/EtOAc, 3:1, to EtOAc) of the crude product, $\mathbf{5 9 g}$ was isolated as a brown oil ($235 \mathrm{mg}, 1.03 \mathrm{mmol}, 91 \%$): $[\alpha]_{\mathrm{D}}+37.5$ (c $1.04, \mathrm{CHCl}_{3}$); IR (ATR) 3397, 2928, 1682, 1459, $1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45\left(\mathrm{~d}, J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 6.86\left(\mathrm{dt}, J_{3,2}=15.4 \mathrm{~Hz}, J_{3,4}=6.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.09\left(\mathrm{dd}, J_{2,3}=15.4 \mathrm{~Hz}, J_{2,1}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.65$ (s, 1H, H-2'), 4.19 (d, $\left.J_{3^{\prime}, 4^{\prime}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.60\left(\mathrm{dq}, J_{1^{\prime}, 1^{\prime}}=\right.$ $\left.9.1 \mathrm{~Hz}, J_{1^{\prime}, 2^{\prime \prime}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 3.53\left(\mathrm{dq}, J_{1^{\prime \prime}, 1^{\prime \prime}}=9.1 \mathrm{~Hz}, J_{1^{\prime \prime}, 2^{\prime \prime}}\right.$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 ’$ '), $3.44\left(\mathrm{dt}, J_{6,6}=14.6 \mathrm{~Hz}, J_{6,5}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 6), $3.21\left(\mathrm{dt}, J_{6,6}=14.6 \mathrm{~Hz}, J_{6,5}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 2.76\left(\mathrm{dd}, J_{4}, 4^{4}=\right.$ $\left.17.5 \mathrm{~Hz}, J_{3^{3}, 4^{\prime}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.35\left(\mathrm{q}, J_{4,3}=J_{4,5}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $2 \mathrm{H}-4), 2.22\left(\mathrm{~d}, J_{4,4^{\prime}}=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{4}^{\prime}\right), 1.68(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5), 1.19$ (t, $J_{1}{ }^{\prime}, 2^{\prime \prime}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}-2$ '); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
194.3 (C-1), 174.1 (C-5'), 157.9 (C-3), 133.0 (C-2), 96.1 (C2'), 68.3 (C-‘3), 63.2 (C-1’’), 40.0 (C-6), 38.9 (C-4'), 29.8 (C-4), 25.9 (C-5), 15.2 (C-2'); HRMS (ESI+): calcd for [$\left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]:$264.1212, found: 264.1205 .
4.60. (E)-6-(2,2-Dimethyl-5-oxotetrahydro-4H-[1,3]dioxolo[4,5-blpyrrol-4-yl)-2-hexenal (59h)

Following the general procedure, from $\mathbf{5 8 h}(10 \mathrm{mg}, 44 \mu \mathrm{~mol})$, after column chromatography (from hexanes $/$ EtOAc, 3:1, to EtOAc) of the crude product, $\mathbf{5 9 h}$ was isolated as a brown oil (9 $\mathrm{mg}, 36 \mu \mathrm{~mol}, 82 \%):[\alpha]_{\mathrm{D}}+50.1\left(c \quad 0.91, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2921, 2852, 1690, $1076 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51\left(\mathrm{~d}, J_{1,2}\right.$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.85\left(\mathrm{dt}, J_{3,2}=15.7 \mathrm{~Hz}, J_{3,4}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3), $6.13\left(\mathrm{dd}, J_{2,3}=15.7 \mathrm{~Hz}, J_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.51\left(\mathrm{~d}, J_{6 \mathrm{a}^{\mathrm{a}}, 3 \mathrm{a}^{\circ}}\right.$ $\left.=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{a}}\right), 4.77\left(\mathrm{td}, J_{3 \mathrm{a}^{\prime}, 6 \mathrm{a}^{\prime}}=5.2 \mathrm{~Hz}, J_{3 \mathrm{a}^{\prime} 4^{\prime}}=2.8 \mathrm{~Hz} 1 \mathrm{H}\right.$, $\mathrm{H}-3 \mathrm{a}$ '), 3.37 (m, 2H, 2H-6), $2.61\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-4^{\prime}\right), 2.37\left(\mathrm{q}, J_{4,5}=J_{4,3}\right.$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-4), 1.84(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-5), 1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39$ (s, 3H, CH H_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8(\mathrm{C}-1), 171.6$ (C-5'), 156.8 (C-3), 133.2 (C-2), 112.1 (C-2'), 90.4 (C-6a'), 73.1 (C-3a'), 40.1 (C-6), $37.6\left(\mathrm{C}-4\right.$ '), $30.0(\mathrm{C}-4), 27.8\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{3}\right), 25.9$ (C-5); HRMS (ESI +) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]$: 276.1212, found: 276.1201.

4.61. General procedure for the Morita-Baylis-Hillman Cyclization

To a 0.1 M solution of α, β-unsaturated aldehyde 59 in dry $\mathrm{CH}_{3} \mathrm{CN}$ at $-35{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, were added $\mathrm{Me}_{2} \mathrm{~S}$ (1.5 mol per mol of aldehyde) and TESOTf (2.5 mol per mol of aldehyde) in this strict order. The resulting mixture was allowed to warm to room temperature and stirred for 3 h . The reaction was quenched with saturated aqueous NaHCO_{3} solution (the same amount as $\mathrm{CH}_{3} \mathrm{CN}$). After evaporation of $\mathrm{CH}_{3} \mathrm{CN}$ under vacuum, the resulting residue was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (the same volume as $\mathrm{CH}_{3} \mathrm{CN}$), the organic extracts dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.
4.62. (1S,9aRS)-1-Benzyloxy-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepine-9-carbaldehyde (60a)

Following the general procedure, from 59a ($129 \mathrm{mg}, 425$ $\mu \mathrm{mol}$), after column chromatography (from hexanes/EtOAc, 2:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of $\mathbf{6 0 a}$ was isolated as a brown oil ($36 \mathrm{mg}, 128 \mu \mathrm{~mol}, 30 \%$): IR (ATR) 2925, 1674, 1454, 1216, $1071 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 9.42$ (bs, $1 \mathrm{H}, \mathrm{CHO}$), $7.44-7.11$ (m, $\left.5 \mathrm{H}, 5 \mathrm{H}-\mathrm{Ar}\right), 7.00$ (bt, $J_{8,7}=7.1 \mathrm{~Hz}$) and $6.95\left(\mathrm{bt}, J_{8,7}=7.1 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-8), 4.84-4.13$ (m, 5H, H-1, H-5, H 9a, $\mathrm{ArCH}_{2} \mathrm{O}$), 3.05-2.27 (m, 5H, H-5, 2H-7, 2H-2), 2.23-2.10(m, 1H, H-6), $1.85-1.73$ (m, 1H, H-6); HRMS (ESI +) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 308.1257 , found: 308.1253.
4.63. (1S,9aRS)-9-Formyl-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-1-yl pivalate (60c)

Following the general procedure, from $\mathbf{5 9 c}(38 \mathrm{mg}, 128 \mu \mathrm{~mol})$, after column chromatography (from hexanes/EtOAc, 2:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of $\mathbf{6 0 c}$ was isolated as a brown oil ($20 \mathrm{mg}, 72 \mu \mathrm{~mol}, 56 \%$): IR (ATR) 2925, 1709, 1400, 1281, $1146 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~s})$, and $9.38(\mathrm{~s})(1 \mathrm{H}, \mathrm{CHO}), 7.01\left(\mathrm{dd}, J_{8,7}=8.3 \mathrm{~Hz}, J_{8,7}=\right.$ $6.0 \mathrm{~Hz})$ and $6.97\left(\mathrm{ddd}, J_{8,7}=8.3 \mathrm{~Hz}, J_{8,7}=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}\right)(1 \mathrm{H}$, $\mathrm{H}-8), 5.51\left(\mathrm{dd}, J_{1,2}=5.7 \mathrm{~Hz}, J_{1,9 \mathrm{a}}=5.1 \mathrm{~Hz}\right)$ and $5.31\left(\mathrm{dt}, J_{1,2}=7.3\right.$ $\left.\mathrm{Hz}, J_{1,9 \mathrm{a}}=J_{1,2}=3.2 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-1), 4.92\left(\mathrm{bd}, J_{1,9 \mathrm{a}}=5.1 \mathrm{~Hz}\right)$ and 4.66 (bs) (1H, H-9a), 4.33 - 4.14 (m, 1H, H-5), 2.97 (dt, $J=14.3$ $\mathrm{Hz}, J=7.2 \mathrm{~Hz}), 2.90-2.74(\mathrm{~m})$ and $2.57-2.35(\mathrm{~m})(5 \mathrm{H}, 2 \mathrm{H}-2, \mathrm{H}-$ $5,2 \mathrm{H}-7), 2.18(\mathrm{~m})$ and $1.81(\mathrm{~m})(1 \mathrm{H}, \mathrm{H}-6), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right)$;

HRMS (ESI +) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]$: 302.1363, found: 302.1366.
4.64. (1S,9aRS)-9-Formyl-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-1-yl benzoate (60d)

Following the general procedure, from 59d ($45 \mathrm{mg}, 142 \mu \mathrm{~mol}$), after column chromatography (from hexanes/EtOAc, 2:1, to EtOAc) of the crude product, a mixture of two diastereoisomers of $\mathbf{6 0 d}$ was isolated as a brown oil ($27 \mathrm{mg}, 90 \mu \mathrm{~mol}, 63 \%$): IR (ATR) 2921, 2850, 1719, 1685, 1452, 1274, $1111 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s})$ and $9.36(\mathrm{~s})(1 \mathrm{H}, \mathrm{CHO}), 8.06\left(\mathrm{~d}, J_{\text {ortho,meta }}\right.$ $=7.5 \mathrm{~Hz})$ and $7.90\left(\mathrm{~d}, J_{\text {ortho,meta }}=7.5 \mathrm{~Hz}\right)(2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 7.61-7.54$ (m, 1H, H-Ar), 7.50-7.41 (m, 2H, 2H-Ar), 7.04-6.97 (m, 1H, H$8), 5.82\left(\mathrm{t}, J_{1,2}=J_{1,9 \mathrm{a}}=4.9 \mathrm{~Hz}\right)$ and $5.61\left(\mathrm{dt}, J_{1,2}=7.0 \mathrm{~Hz}, J_{1,9 \mathrm{a}}=\right.$ $\left.J_{1,2}=2.8 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-1), 5.03\left(\mathrm{bd}, J_{9 \mathrm{a}, 1}=4.9 \mathrm{~Hz}\right)$ and $4.84(\mathrm{bs})(1 \mathrm{H}$, H-9a), 4.34-4.19 (m, 1H, H-5), 3.07-2.82 (m) and 2.55-2.33 (m) $(5 \mathrm{H}, 2 \mathrm{H}-2, \mathrm{H}-5,2 \mathrm{H}-7), 2.65\left(\mathrm{~d}, J_{2,2}=17.7 \mathrm{~Hz}\right)$ and $2.59(\mathrm{dd}$, $\left.J_{2,2}=18.1 \mathrm{~Hz}, J_{2,1}=2.8 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-2), 2.20(\mathrm{~m})$ and $1.84(\mathrm{~m})(1 \mathrm{H}$, H-6); HRMS (ESI+) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 322.1050$, found: 322.1049 .
4.65. (1S,9aS)-1-(tert-Butyldiphenylsilyl)oxy-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepine-9-carbaldehyde (60f)

Following the general procedure, from $\mathbf{5 9 f}(1.23 \mathrm{~g}, 2.72 \mathrm{mmol})$, after column chromatography (from hexanes/EtOAc, 2:1, to EtOAc) of the crude product, $\mathbf{6 0 f}$ was isolated as a pale yellow solid ($800 \mathrm{mg}, 1.85 \mathrm{mmol}, 68 \%$): $\mathrm{Mp} 95-98{ }^{\circ} \mathrm{C}$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+63.2$ (c 1.08, CHCl_{3}); IR (ATR) 2931, 2857, 1679, 1427, 1220, 1179, 1105, 1065, $939 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.28 (s, 1H, CHO), 7.61-7.52 (m, 4H, 4H-Ar), 7.47-7.36 (m, 6H, $6 \mathrm{H}-\mathrm{Ar}), 7.01\left(\mathrm{dd}, J_{8,7}=8.4 \mathrm{~Hz}, J_{8,7}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.68(\mathrm{bd}$, $\left.J_{9 \mathrm{a}, 1}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}\right), 4.62\left(\mathrm{t}, J_{1,2}=J_{1,9 \mathrm{a}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $4.15\left(\mathrm{dd}, J_{5,5}=14.2 \mathrm{~Hz}, J_{5,6}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 7), 2.76 (ddd, $J_{5,5}=14.3 \mathrm{~Hz}, J_{5,6}=10.8 \mathrm{~Hz}, J_{5,6}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), $2.44-2.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.36\left(\mathrm{dd}, J_{2,2}=17.2 \mathrm{~Hz}, J_{2,1}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.27$ (d, $\left.J_{2,2}=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1.80$ (m, 1H, H-6), $0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 9.20 (s, 1H, CHO), $7.78-7.62$ (m, 4H, 4H-Ar), $7.36-7.29(\mathrm{~m}, 6 \mathrm{H}$, $6 \mathrm{H}-\mathrm{Ar}), 6.26\left(\mathrm{dd}, J_{8,7}=8.5 \mathrm{~Hz}, J_{8,7}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 4.60\left(\mathrm{t}, J_{1,2}\right.$ $\left.=J_{1,9 \mathrm{a}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.43\left(\mathrm{bd}, J_{9,1}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}\right), 4.12$ (dd, $\left.J_{5,5}=14.0 \mathrm{~Hz}, J_{5,6}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.32$ (d, $\left.J_{2,2}=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.24$ (ddd, $J_{5,5}=14.0 \mathrm{~Hz}, J_{5,6}=10.7$ $\left.\mathrm{Hz}, J_{5,6}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.93\left(\mathrm{dd}, J_{2,2}=16.9\right.$ $\left.\mathrm{Hz}, J_{2,1}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, 1.12 (s, $\left.9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9$ (CHO), 172.6 (C-3), 154.9 (C-8), 140.2 (C-9), 135.9 (C-Ar), 135.7 (C-Ar), 133.2 (C-Ar), 132.2 (C-Ar), 130.0 (C-Ar), 129.9 (C-Ar), 127.7 (CAr), 127.7 (C-Ar), 69.4 (C-1), 64.8 (C-9a), 41.0 (C-2), 37.9 (C-5), $26.8\left(\mathrm{Me}_{3} \mathrm{C}\right), 23.8 / 23.6(\mathrm{C}-6 / \mathrm{C}-7), 19.1\left(\mathrm{Me}_{3} \mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 192.2$ (CHO), 171.1 (C-3), 153.5 (C-8), 140.7 (C9), 136.0 (C-Ar), 135.8 (C-Ar), 133.7 (C-Ar), 132.5 (C-Ar), 129.9 (C-Ar), 129.9 (C-Ar), 127.8 (C-Ar), 127.8 (C-Ar), 69.7 (C-1), 64.3 (C-9a), 40.5 (C-2), 37.5 (C-5), 26.7 ($\mathrm{Me}_{3} \mathrm{C}$), 23.8/23.7 (C-6/C-7), $19.0\left(\mathrm{Me}_{3} C\right)$; HRMS (ESI +) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SiNa}^{+}\right]$: 456.1965, found: 456.1973 .

4.66. Methyl (E)-3-(3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9-yl)acrylate (66)

In a schlenk vessel, aldehyde $51(106 \mathrm{mg}, 0.59 \mathrm{mmol})$ was dissolved in dry THF (5 mL) under nitrogen atmosphere and cooled down to $0^{\circ} \mathrm{C}$. Sodium hydride (60% in wt, $24 \mathrm{mg}, 0.59$ mmol) and a solution of methyl 2-(dimethoxyphosphoryl)acetate ($95 \mu \mathrm{~L}, 0.59 \mathrm{mmol}$) in dry THF (4 mL) were added successively and the mixture was allowed to warm to room temperature and stirred overnight. Then, the reaction was quenched with saturated
aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the organic fractions were combined, washed with 5% aqueous NaOH (3×15 mL), dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Ester 66 was isolated as a pale yellow syrup (135 $\mathrm{mg}, 0.57 \mathrm{mmol}, 98 \%): \mathrm{R}_{\mathrm{f}} 0.18$ (EtOAc); IR (ATR) 3368, 2929, 2856, 1662, 1623, 1435, 1420, 1266, 1195, $1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19\left(\mathrm{~d}, J_{2,3}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.23(\mathrm{dd}$, $\left.J_{8^{\prime}, 7}=9.1 \mathrm{~Hz}, J_{8^{\prime}, 7}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.73\left(\mathrm{~d}, J_{2,1}=16.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 4.47$ (m, 1H, H-9a'), 4.11 (ddd, $J_{5^{\prime}, 5^{\prime}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=$ $\left.8.9 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.89\left(\mathrm{dt}, J_{\mathrm{gem}}\right.$ $\left.=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}^{\prime} 7^{\prime}, 2 \mathrm{H}-\right.$ $\left.2^{\prime}\right), 2.13$ (m, 2H, H-6', H-7'), 1.87 (m, 1H, H-6'), 1.71 (m, 1H, H$\left.1^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7$ (C-3'), 167.4 (C-1), 146.1 (C-3), 140.2 (C-8'), 139.2 (C-9'), 116.2 (C-2), 61.4 (C-9a'), $51.8\left(\mathrm{CH}_{3}\right), 38.9\left(\mathrm{C}-5^{\prime}\right), 30.3\left(\mathrm{C}-2^{\prime}\right), 26.4\left(\mathrm{C}-1^{\prime}\right), 24.4\left(\mathrm{C}-6^{\prime}\right), 23.2$ (C-7'); HRMS (ESI +) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]: 258.1101$, found: 258.1107.
4.67. (E)-9-(3-Hydroxyprop-1-en-1-yl)-5,6,7,9a-tetrahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one (67)

DIBAL-H (1 M in toluene, $470 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) was added to a solution of ester $\mathbf{6 6}(44 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and the mixture was stirred overnight at this temperature. Then, the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$, followed by the addition of a saturated aqueous solution of Rochelle's salt (4 mL). The resulting mixture was allowed to warm to room temperature and stirred until aluminium salts were dissolved. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The organic extracts were combined, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to furnish 67 as a yellowish syrup ($14.5 \mathrm{mg}, 0.70 \mathrm{mmol}, 37 \%$): $\mathrm{R}_{\mathrm{f}} 0.14$ (EtOAc/MeOH, 9:1); IR (ATR) 3368, 2929, 2856, 1662, 1623, 1435, 1420, 1266, 1195, 1163, $\mathrm{cm}^{-1} ;{ }^{1}{ }^{1} \mathrm{~N}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12\left(\mathrm{~d}, J_{1^{\prime}, 2}=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.81\left(\mathrm{dd}, J_{8,7}=9.1 \mathrm{~Hz}, J_{8,7}=\right.$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 5.65\left(\mathrm{dt}, J_{2^{2}, 1}=16.1 \mathrm{~Hz}, J_{2^{\prime}, 3}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 2^{\prime}), 4.47 (m, 1H, H-9a), 4.19 (bd, $\left.J_{3^{\prime}, 2}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 4.05$ (ddd, $J_{\mathrm{gem}}=13.8 \mathrm{~Hz}, J_{5,6}=8.9 \mathrm{~Hz}, J_{5,6}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.88 (dt, $\left.J_{\text {gem }}=13.8 \mathrm{~Hz}, J_{5,6}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.49-2.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-$ 7, 2H-2), 2.14 - 1.82 (m, 3H, H-1, H-6, H-7), 1.67 (m, 1H, H-6); ${ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9(\mathrm{C}-3), 139.4$ (C-9), 132.7 (C$\left.1^{\prime}\right), 131.0$ (C-8), 126.5 (C-2'), 63.7 (C-3'), 62.0 (C-9a), 38.9 (C5), 30.5 (C-2), 26.6 (C-1), 24.7 (C-6), 22.4 (C-7); HRMS (ESI+) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]: 230.1157$, found: 230.1139.
4.68. (E)-3-(3-Oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9-yl)-2-propenal (68)

Method A: A commercially available solution of DMPI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \% \mathrm{wt}, 250 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ was added via syringe to a solution of alcohol $67(20 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature under nitrogen atmosphere. After stirring for 1 h at room temperature, TLC analysis ($\mathrm{EtOAc} / \mathrm{MeOH}, 10: 1$) indicated the complete consumption of the starting material. The reaction was quenched with $500 \mu \mathrm{~L}$ of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to saturated aqueous $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$ and the mixture was stirred for 15 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Column chromatography (EtOAc) of the resulting oil provided aldehyde $\mathbf{6 8}$ as a white solid ($15.4 \mathrm{mg}, 0.08$ mmol, 78\%).

Method B: A solution of borane dimethylsulfide (10M in THF, $167 \mu \mathrm{~L}, 1.67 \mathrm{mmol})$ in dry THF (1.2 mL) was added dropwise to
a solution of ethoxyacetylene ($40 \% \mathrm{wt}$ in hexanes, $2 \mathrm{~mL}, 8.36$ $\mathrm{mmol})$ in dry THF $(1.2 \mathrm{~mL})$ under nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred overnight. Then, it was heated at $60^{\circ} \mathrm{C}$ for 1 h . After cooling down the reaction mixture to room temperature, the volatiles were removed under reduced pressure. The brown residue was dissolved in dry toluene $(5.8 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Then, $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $5.9 \mathrm{~mL}, 5.85 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 20 min at this temperature before the addition in one portion of aldehyde $\mathbf{5 1}(599 \mathrm{mg}, 3.34 \mathrm{mmol})$. The mixture was allowed to warm up to room temperature, very slowly, and stirred overnight. Then, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and carefully treated with brine $(6 \mathrm{~mL})$. After that, the mixture was vigorously stirred for 5 min before the dropwise addition of 2 M HCl until $\mathrm{pH}<4$. The mixture was stirred for another 10 min controlling their evolution by TLC (alumina, $\mathrm{EtOAc})$. Then, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ mL) and the combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography on neutral alumina (EtOAc) to furnish 68 as a white solid ($483 \mathrm{mg}, 2.35 \mathrm{mmol}, 70 \%$): $\mathrm{R}_{\mathrm{f}} 0.34$ (EtOAc/MeOH, 10:1); IR (ATR) 2949, 2927, 2866, 1667, 1621, 1454, 1425, 1413, 1131, $982 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.48 (d, $\left.J_{3,2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 6.96\left(\mathrm{~d}, J_{1,2}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $6.33\left(\mathrm{dd}, J_{8^{\prime}, 7^{\prime}}=9.2 \mathrm{~Hz}, J_{8^{\prime}, 7^{\prime}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.98\left(\mathrm{dd}, J_{2,1}=\right.$ $\left.16.2 \mathrm{~Hz}, J_{2,1}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.46\left(\mathrm{t}, J_{9 \mathrm{a}, 1}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}\right.$), $4.08\left(\mathrm{ddd}, J_{\mathrm{gem}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=8.9 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, $2.88\left(\mathrm{dt}, J_{\mathrm{gen}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 1', H-7', 2H-2'), 2.13 (m, 2H, H-6', H-7'), 1.84 (m, 1H, H-6'), 1.72 (m, 1H, H-1'); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.6$ (C-1), 174.5 (C-3'), 153.6 (C-3), 142.3 (C-8'), 139.6 (C-9'), 127.1 (C-2), 61.1 (C-9a'), 38.6 (C-5'), 30.0 (C-2'), 26.1 (C-1'), 24.1 (C-6'), 23.2 (C-7'); HRMS (ESI +) calcd for [$\left.\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]$: 228.0995, found: 228.0989.

4.69. Methyl (E)-3-(3-oxooctahydro-1H-pyrrolo[1,2-a]azepin-9yl)acrylate (69)

In a schlenk vessel, aldehyde $\mathbf{6 2}(300 \mathrm{mg}, 1.66 \mathrm{mmol})$ was dissolved in dry THF (25 mL) under nitrogen atmosphere and cooled down to $0^{\circ} \mathrm{C}$. Sodium hydride (60% in wt, $66 \mathrm{mg}, 1.66$ mmol) and methyl 2-(dimethoxyphosphoryl)acetate $(268 \mu \mathrm{~L}, 1.66$ mmol) were added successively and the mixture was allowed to warm to room temperature and stirred overnight. Then, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic fractions were combined and washed with 5% aqueous $\mathrm{NaOH}(3 \times 15 \mathrm{~mL})$, dried with anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by column chromatography (hexanes/EtOAc, 4:1) affording a 5:3 mixture of two E diastereoisomers of $\mathbf{6 9}(223 \mathrm{mg}, 0.94 \mathrm{mmol}, 57 \%)$ and a 5:1 mixture of two Z diastereoisomers ($134 \mathrm{mg}, 0.56 \mathrm{mmol}, 34 \%$) as pale yellow syrups. Repeated chromatography lead to the isolation of an analytical sample of the major isomer of 69: $\mathrm{R}_{\mathrm{f}} 0.38$ (EtOAc/MeOH, 9:1); IR (ATR) 2928, 2855, 2363, 1719, 1673, 1434, 1420, 1315, 1276, 1194, 1178, 1152, 1035, $987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84\left(\mathrm{dd}, J_{3,2}=15.7 \mathrm{~Hz}, J_{3,9^{\prime}}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3$), 5.90 (dd, $\left.J_{2,3}=15.7 \mathrm{~Hz}, J_{2,9}=1.1 \mathrm{~Hz} \mathrm{1H}, \mathrm{H}-2\right), 3.91$ (ddd, $J_{9 \mathrm{a}^{\prime}, 1^{\prime}}=8.5 \mathrm{~Hz}, J_{9 \mathrm{a}^{\prime}, 9^{\prime}}=6.9 \mathrm{~Hz}, J_{9^{\mathrm{a}}, 1^{\prime}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), $3.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{OCH}_{3}\right), 3.08\left(\mathrm{ddd}, J_{\mathrm{gem}}=13.9 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=8.3\right.$ $\left.\mathrm{Hz}, J_{5^{\prime}, 6^{\prime}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9^{\prime}\right), 2.34\left(\mathrm{~d}, J_{\mathrm{gem}}=\right.$ $\left.9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.33$ (dd, $J_{\mathrm{gem}}=9.9 \mathrm{~Hz}, J_{2^{\prime}, 1}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.2^{\prime}\right), 1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 1.65\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-1{ }^{\prime}, 2 \mathrm{H}-6^{\prime}, 2 \mathrm{H}-7^{\prime}, 2 \mathrm{H}-{ }^{\prime} 8\right)$; ${ }^{13} \mathrm{C}$ NMR ($90.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0$ (C-3'), 166.6 (C-1), 147.2 (C-3), 122.9 (C-2), $61.4\left(\mathrm{C}-9 \mathrm{a}^{\prime}\right), 51.8\left(\mathrm{CH}_{3}\right), 46.4(\mathrm{C}-9$ '), $42.5(\mathrm{C}-$ $\left.5^{\prime}\right), 30.7\left(\mathrm{C}^{\prime} 2^{\prime}\right), 29.8\left(\mathrm{C}^{\prime} 8^{\prime}\right), 28.2\left(\mathrm{C}^{\prime} 7^{\prime}\right), 27.8$ (C-6'), 23.1 (C-1');

HRMS (ESI +) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{H}^{+}\right]: 238.1438$, found: 238.1431 .
4.70. (E)-9-(3-Hydroxyprop-1-en-1-yl)hexahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one (70) and (E)-3-(Octahydro-1H-pyrrolo[1,2-a]azepin-9-yl)prop-2-en-1-ol (71)

In a schlenk vessel ester $69(165 \mathrm{mg}, 0.70 \mathrm{mmol})$ was solved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and the resulting solution was cooled down to $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. A solution of DIBAL-H (1M in toluene, $1.7 \mathrm{~mL}, 1.74 \mathrm{mmol}$) was added dropwise and the mixture was stirred overnight at the same temperature. Then, the reaction was quenched with MeOH followed by the addition of a saturated aqueous solution of Rochelle's salt. The mixture was allowed to warm to room temperature and stirred until the aluminium salts were dissolved. The layers were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The organic extracts were combined, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to recover ester 69 ($50 \mathrm{mg}, 0.21 \mathrm{mmol}, 30 \%$) and to furnish a mixture of two diastereoisomers of amine $71(28 \mathrm{mg}, 0.14 \mathrm{mmol}, 21 \%)$ and a mixture of two diastereoisomers of lactam $70(46 \mathrm{mg}, 0.22 \mathrm{mmol}$, 32%) as yellowish syrups.

70: $\mathrm{R}_{\mathrm{f}} 0.24$ ($\mathrm{EtOAc} / \mathrm{MeOH}, 9: 1$); IR (ATR) 3370, 2925, 2855, 1656, 1438, 1423, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 5.75\left(\mathrm{dt}, J_{2^{2}, 1^{\prime}}=15.4 \mathrm{~Hz}, J_{2^{2}, 3^{\prime}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.59$ (bdd, $J_{1^{\prime}, 2^{\prime}}=15.4 \mathrm{~Hz}, J_{1^{\prime}, 9}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $4.12\left(\mathrm{dd}, J_{3^{\prime}, 2^{\prime}}=5.6\right.$ $\mathrm{Hz}, J_{3,1}, 1=0.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3$ '), $3.85\left(\mathrm{td}, J_{9 \mathrm{a}, 9}=7.6 \mathrm{~Hz} \approx J_{9 \mathrm{a}, 1}, J_{9 \mathrm{a}, 1}=\right.$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.15$ (m, 1H, H-5), 2.53 (m, $1 \mathrm{H}, \mathrm{H}-9), 2.33\left(\mathrm{~d}, J_{2,2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.31\left(\mathrm{dd}, J_{\mathrm{gem}}=9.6 \mathrm{~Hz}\right.$, $\left.J_{2,1}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 1.64(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-1,2 \mathrm{H}-$ $6,2 \mathrm{H}-7,2 \mathrm{H}-8$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) δ 175.3 (C-3), 131.7 (C-2'), 130.6 (C-1'), 63.6 (C-3'), 62.1 (C-9a), 46.7 (C-9), 42.9 (C-5), 31.3/30.9/28.0/ 27.6/23.2 (C-1/C-2/C-6/C$7 / \mathrm{C}-8)$; HRMS (ESI +) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}\right]: 232.1308$, found: 232.1312.

71: $\mathrm{R}_{\mathrm{f}} 0.16$ (EtOAc:MeOH, $9: 1$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 5.90$ (bdd, $J_{2,3}=15.4 \mathrm{~Hz}, J_{2,1}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $5.66\left(\mathrm{dt}, J_{3,2}=15.4 \mathrm{~Hz}, J_{3,9}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.12\left(\mathrm{dd}, J_{1,2}=5.6\right.$ $\left.\mathrm{Hz}, J_{1,3}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-1\right), 3.19$ (m, 2H, H-5', H-9a'), 2.94 (m, 1H, H-9'), 2.60-1.40 (m, 13H, 2H-1', 2H-2', 2H-3', H-5', 2H-6', $2 \mathrm{H}-7$ ', 2H-8').
4.71. (E)-3-(3-Oxooctahydro-1H-pyrrolo[1,2-a]azepin-9-yl)prop-2-enal (72)

A commercially available solution of the DMPI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \% \mathrm{wt}, 250 \mu \mathrm{~L}, 120 \mu \mathrm{~mol})$ was added via syringe to a solution of alcohol $71(20 \mathrm{mg}, 100 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ under nitrogen atmosphere at room temperature. After stirring 1 h at room temperature, TLC analysis ($\mathrm{EtOAc} / \mathrm{MeOH}, 10: 1$) indicated the complete consumption of the starting material. The solution was quenched with $200 \mu \mathrm{~L}$ of a solution prepared by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to saturated aqueous $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$ and the mixture was stirred for 15 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$, and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. Column chromatography (EtOAc) of the resulting oil provided aldehyde 72 as a yellow syrup ($12 \mathrm{mg}, 60 \mu \mathrm{~mol}, 61 \%$): $\mathrm{R}_{\mathrm{f}} 0.20$ (EtOAc/MeOH, 10:1); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53$ (d, $J_{1,2}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.73\left(\mathrm{dd}, J_{3,2}=15.7 \mathrm{~Hz}, J_{3,9}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3), 6.20 (ddd, $\left.J_{2,3}=15.7 \mathrm{~Hz}, J_{2,1}=7.7 \mathrm{~Hz}, J_{2,9}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $3.98\left(\mathrm{ddd}, J_{9^{\mathrm{a}}, 1^{1}}=8.1 \mathrm{~Hz}, J_{9^{a}, 9}=7.4 \mathrm{~Hz}, J_{9^{\mathrm{a}}, 1^{\prime}}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $9 \mathrm{a}^{\prime}$), 3.72 (m, 1H, H-5'), 3.16 (m, 1H, H-5'), 2.85 (m, 1H, H-9'), $2.36\left(\mathrm{dd}, J_{\mathrm{gem}}=9.8 \mathrm{~Hz}, J_{2^{2}, 1}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2^{\prime}\right), 2.12-1.55(\mathrm{~m}$,
$8 \mathrm{H}, 2 \mathrm{H}-1^{\prime}, 2 \mathrm{H}-6$ ', $\left.2 \mathrm{H}-7^{\prime}, 2 \mathrm{H}-8^{\prime}\right)$. This product was very unstable and could not be fully characterized.
4.72. 3-(3-Oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9-yl)-3-(5-oxo-2,5-dihydrofuran-2-yl)propanal (73)

A solution of aldehyde $68(80 \mathrm{mg}, 390 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400$ $\mu \mathrm{L}$) was added to a solution of pyrrolidine ($6.5 \mu \mathrm{~L}, 78 \mu \mathrm{~mol}$), DNBA $(16.5 \mathrm{mg}, 78 \mu \mathrm{~mol})$ and $\mathrm{H}_{2} \mathrm{O}(14 \mu \mathrm{~L}, 780 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 5 min before the addition of furane $39(100 \mu \mathrm{~L}, 585 \mu \mathrm{~mol})$ and then overnight at $20^{\circ} \mathrm{C}$. After this time, the mixture was warmed gradually, during 24 h , to room temperature. When TLC analysis ($\mathrm{EtOAc} / \mathrm{MeOH}$, 10:1) showed the total consumption of $\mathbf{3 9}$, the solution was directly submitted to column cromatography (from EtOAc to EtOAc/MeOH, 10:1) to recover aldehyde 39 ($18.7 \mathrm{mg}, 91 \mu \mathrm{~mol}$, 23%) and furnish a diastereoisomeric mixture of 73 as a yellowish syrup ($79 \mathrm{mg}, 273 \mu \mathrm{~mol}, 70 \%$): $\mathrm{R}_{\mathrm{f}} 0.34$ (EtOAc/MeOH, 10:1); IR (ATR) 3349, 2920, 2851, 2362, 1742, 1656, 1459, 1263, 1162, 1097, $1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 9.75$ (m, 1H, H-1), 7.46 (m, 1H, H-3''), 6.23 (m, 1H, H-4''), 5.77 (m, $\left.1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ '') $, 4.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}^{\prime}\right), 4.04(\mathrm{~m}, 1 \mathrm{H}$, H-5'), 2.89 (m, 4H, H-3, H-5', 2H-2), 2.37 (m, 4H, H-1', H-7', $\left.2 \mathrm{H}-2^{\prime}\right), 1.97$ (m, 2H, H-6', H-7'), 1.66 (m, 2H, H-6', H-1'); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1$ - 198.7 (C-1), 174.4 (C-3'), 171.9 (C-5'"), $154.1-153.6$ (C-3'"), 139.0 (C-9'), 128.3-127.8 (C-8'), 123.3-123.0 (C-4’), $84.4-83.5$ (C-2'"), 65.2 - 64.6 (C9a'), 44.8-43.5 (C-2), 40.0-38.1 (C-3, C-5'), 30.6-21.7 (C-1', C-2', C-6', C-7'); HRMS (ESI+) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]$: 312.1206, found: 312.1199.
4.73. 9-[2-(1,3-Dithiolan-2-yl)-1-(5-oxo-2,5-dihydrofuran-2-yl)ethyl]-5,6,7,9a-tetrahydro-1H-pyrrolo[1,2-a]azepin-3(2H)one (74)

1,2-Ethanedithiol ($38 \mu \mathrm{~L}, 455 \mu \mathrm{~mol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(58 \mu \mathrm{~L}, 455$ $\mu \mathrm{mol}$) were added to a solution of aldehyde $73(110 \mathrm{mg}, 380 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . When TLC analysis (EtOAc/MeOH, 10:1) showed the total consumption of the aldehyde, the mixture was treated with $\mathrm{H}_{2} \mathrm{O}(8$ mL) and warmed to room temperature. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 12 \mathrm{~mL})$ and the combined organic extracts were washed with brine (12 mL), dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to furnish a diastereoisomeric mixture of 74 as a yellowish syrup (78 $\mathrm{mg}, 213 \mu \mathrm{~mol}, 56 \%): \mathrm{R}_{\mathrm{f}} 0.36$ (EtOAc/MeOH, 10:1); IR (ATR) 3426, 2926, 2360, 1748, 1668, 1418, 1366, 1323, 1264, 1162, $1098,1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 7.48$ (dd, $J_{3^{\prime}, 4^{\prime \prime}}=5.7 \mathrm{~Hz}, J_{3^{\prime \prime}, 2^{\prime \prime}}=1.3 \mathrm{~Hz} \mathrm{1H}, \mathrm{H-3"')} ,6.20\left(\mathrm{dd}, J_{4^{\prime \prime}, 3^{\prime \prime}}=\right.$ $\left.5.6 \mathrm{~Hz}, J_{4^{\prime}, 2^{\prime}}=2.2 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-4^{\prime}{ }^{\prime}\right), 5.74\left(\mathrm{dt}, J_{8,7}=12.1 \mathrm{~Hz}, J_{8,7}=4.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 5.01 (bdd, $\left.J_{2^{\prime י},,^{\prime}}=6.2 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=1.6 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-2^{\prime}{ }^{\prime}\right)$, 4.47 (m, 1H, H-9a), 4.10 (m, 2H, H5, H-2'"'), 3.24 (s, 4H, 2H-4'", $2 \mathrm{H}-5^{\prime}$ '), 2.92 (m, 1H, H-5), 2.36 (m, 6H, 2H-2, H-7, 2H-2', H$\left.1^{\prime}\right), 1.98$ (m, 4H, H-6, 2H-1, H-7), 1.65 (m, 1H, H-6); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) δ 174.3/172.2 (C-3/C-5'), 154.4 (C-3"), 138.3 (C-9), 128.6 (C-8), 123.2 (C-4"), 85.0 (C2''), 65.3 (C-2'"'), 50.7 (C-9a), 47.2 (C-1'), 41.5 (C-1), 38.9/38.8/38.7 (C-5/C-4'’/C-5'’), 30.9 (C-2), 27.5 (C-2'), 24.1 (C-6), 22.1 (C-7); HRMS (ESI+) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Na}^{+}\right]$: 388.1012, found: 388.1006.
4.74. 9-[1-(5-Oxotetrahydrofuran-2-yl)propyl]-5,6,7,9a-tetrahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one, (75)

A commercial suspension of Raney nickel in anhydrous EtOH (activated catalyst 50% slurry in water, 3.9 mL), was thoroughly washed with anhydrous EtOH and then a solution of dithiane 74
$(14 \mathrm{mg}, 38 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ was added. The mixture was heated at $40^{\circ} \mathrm{C}$ while stirring for 90 min . When TLC analysis (EtOAc/MeOH, 10:1) showed total consumption of 74, the mixture was warmed to room temperature and then filtered through a short pad of Celite ${ }^{\circledR}$ and concentrated under vacuum. The crude product was purified by column chromatography (EtOAc) to yield a 5:2 diastereoisomeric mixture of $\mathbf{7 5}$ as a yellowish syrup ($7 \mathrm{mg}, 25 \mu \mathrm{~mol}, 66 \%$): $\mathrm{R}_{\mathrm{f}} 0.34$ ($\mathrm{EtOAc} / \mathrm{MeOH}$, 9:1); IR (ATR) 3404, 2933, 2873, 2363, 1769, 1663, 1462, 1423, $1187 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66\left(\mathrm{dd}, J_{8,7}=8.9 \mathrm{~Hz}\right.$, $\left.J_{8,7}=5.9 \mathrm{~Hz}\right)$ and $5.60\left(\mathrm{dd}, J_{8,7}=8.9 \mathrm{~Hz}, J_{8,7}=6.0 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-8)$, 4.47 (m, 1H, H-2"), 4.10 (m, 2H, H-5, H-9a), 3.01 (dt, $J_{\text {gem }}=13.6$ $\left.\mathrm{Hz}, J_{5,6}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.56\left(\mathrm{td}, J_{\mathrm{gem}}=\right.$ $\left.10.2 \mathrm{~Hz}, J_{2,1}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-2\right), 2.47-1.80(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{H}-1,2 \mathrm{H}-$ 6, 2H-7, 2H-3", 2H-4", 2H-2'), 0.94 (m, 3H, 3H-3'); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) δ 176.6/174.5 (C-3/C5') , 140.4/126.3 (C-8/C-9), 82.7 (C-2"), 65.0 (C-9a), 51.6 (C-1'), 38.9 (C-5), 30.9/29.2/27.5/27.0/24.3/24.1/21.9 (C-1/C-2/C-6/C-7/C-3"/C-4"/C-2'), 11.7 (C-3'); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]: 300.1570$, found: 300.1574 .
4.75. 9-[1-(5-Oxotetrahydrofuran-2-yl)propyl]hexahydro-1H-pyrrolo[1,2-a]azepin-3(2H)-one (76)
$\mathrm{PtO}_{2}(10 \mathrm{mg}, 44 \mu \mathrm{~mol})$ was added to a solution of $75(10 \mathrm{mg}$, $36 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(600 \mu \mathrm{~L})$ and the suspension was stirred under 2.5 atm of H_{2} in a Parr vessel for 36 h . Then, the catalyst was filtered through a Celite ${ }^{\circledR}$ pad and the solution concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to furnish a diastereoisomeric mixture of $7 \mathbf{7 6}$ as a yellowish syrup ($10 \mathrm{mg}, 36 \mu \mathrm{~mol}$, quantitative): $\mathrm{R}_{\mathrm{f}} 0.30$ (EtOAc/MeOH, 9:1); IR (ATR) 3366, 2926, 2855, 1770, 1658, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of isomers) $\delta 4.65$ (m) and $4.48(\mathrm{~m})\left(1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.05\left(\mathrm{bd}, J_{\mathrm{gem}}=13.8 \mathrm{~Hz}\right)$ and 3.85 (m) ($1 \mathrm{H}, \mathrm{H}-5$), $3.91\left(\mathrm{dt}, J_{9 \mathrm{a}, 9}=17.9 \mathrm{~Hz}, J_{9 \mathrm{a}, 1}=5.3 \mathrm{~Hz}\right)$ and 3.52 (ddd, $\left.J_{9_{\mathrm{a}, 1}}=13.1 \mathrm{~Hz}, J_{9_{\mathrm{a}, 9}}=11.1 \mathrm{~Hz}, J_{9_{\mathrm{a}, 1}}=6.5 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}), 3.04$ (m) and $2.66\left(\mathrm{td}, J_{\mathrm{gem}}=12.6 \mathrm{~Hz}, J_{5,6}=4.9 \mathrm{~Hz}\right)(1 \mathrm{H}, \mathrm{H}-5), 2.59(\mathrm{~m}$, 2H, 2H-4''), 2.32 (m, 4H, 2H-2, H-9, H-3''), $2.13-1.15$ (m, 12H, $2 \mathrm{H}-1,2 \mathrm{H}-6,2 \mathrm{H}-7,2 \mathrm{H}-8,2 \mathrm{H}-2$ ', $\mathrm{H}-1$ ', H-3'), 1.03 (m, 3H, 3H3^{\prime}), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 176.5 / 174.3$ (C-3(C-5''), 82.1 (C-2''), 60.4 (C-9a), 47.2 (C-1'), 42.9 (C-9), 40.4 (C-5), 31.0/29.7/29.2/29.1/27.4/25.5/22.5 (C-1/C-2/C-6/C-7/C8/C3''/C4'), 21.0 (C-2'), 13.8 (C-3'); HRMS (ESI+) calcd for [$\left.\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]: 302.1727$, found: 302.1734 .
4.76. 9-[1-(4-Methyl-5-oxo-2,5-dihydrofuran-2-
yl)propyl]octahydro-3H-pyrrolo[1,2-a]azepin-3-one (78) and 9-[1-(4-Methylene-5-oxotetrahydrofuran-2-yl)propyl]octahydro-3H-pyrrolo[1,2-a]azepin-3-one (79)

LiHMDS (1 M in THF, $36 \mu \mathrm{~L}, 36 \mu \mathrm{~mol}$) was added dropwise to a solution of $76(10 \mathrm{mg}, 36 \mu \mathrm{~mol})$ in anhydrous THF $(200 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 1 h . After this time, a solution of $\mathrm{PhSeBr}(9.3 \mathrm{mg}, 39 \mu \mathrm{~mol})$ in anhydrous THF ($90 \mu \mathrm{~L}$) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 30 min . When TLC analysis (EtOAc) showed total consumption of 76, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and the mixture was warmed to room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (EtOAc) to yield a complex diastereoisomeric mixture of compounds (11.3 mg), which was solved in anhydrous THF ($400 \mu \mathrm{~L}$) and cooled to $-78^{\circ} \mathrm{C}$. LiHMDS (1 M in THF $26 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added dropwise to this solution and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, MeI $(2 \mu \mathrm{~L}, 30$ $\mu \mathrm{mol}$) was added and the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred overnight at this temperature. When the TLC analysis (EtOAc)
showed total consumption of the starting material, the mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mu \mathrm{~L})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mu \mathrm{~L})$. The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (EtOAc) to furnish a diastereoisomeric mixture of 77 as a yellowish syrup ($3 \mathrm{mg}, 7 \mu \mathrm{~mol}, 19 \%$ yield for the two steps): $\mathrm{R}_{\mathrm{f}} 0.34$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, significant signals) $\delta 7.80-7.30(\mathrm{Ph}), 4.58-3.58\left(\mathrm{H}-2{ }^{\prime \prime}, \mathrm{H}-5, \mathrm{H}-\right.$ $\left.9 \mathrm{a}), 2.58(\mathrm{H}-5), 1.69\left(\mathrm{br} \mathrm{s}, \mathrm{CH}_{3}\right), 1.06-0.793 \mathrm{H}-3^{\prime}\right) . \mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in $\mathrm{wt}, 4 \mu \mathrm{~L}, 36 \mu \mathrm{~mol})$ was then added to a solution of $77(3.0 \mathrm{mg}, 7$ $\mu \mathrm{mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mu \mathrm{~L})$ at $-10^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 40 min . After this time, $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ was added and the mixture was warmed to room temperature. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mu \mathrm{~L})$ and the combined organic extracts were dried and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to furnish a mixture of $\mathbf{7 8}$ and $\mathbf{7 9}$ as a yellowish syrup ($1.1 \mathrm{mg}, 3.8 \mu \mathrm{~mol}, 56 \%$): $\mathrm{R}_{\mathrm{f}} 0.16$ (EtOAc); HRMS (ESI +) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}^{+}\right]$: 314.1727, found: 314.1731; 78: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, significant signals) δ 7.15-7.13 (H-3''), 5.07-5.03 (H-2''), 4.10-4.01 (H-9a), 3.893.82 (H-5), $2.68-2.60(\mathrm{H}-5), 2.07\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.03-0.96$ (3H-3'). 79: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, significant signals) $\delta 6.22-6.19$ and 5.22-5.18 (terminal CH_{2}).
4.77. Methyl (E)-3-((1S,9aS)-1-\{[tert-butyl(diphenyl)silyl]oxy\}-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9-
yl)acrylate (80)
A solution of sodium hydride ($17 \mathrm{mg}, 425 \mu \mathrm{~mol}$) and methyl 2(dimethoxyphosphoryl)acetate ($60 \mu \mathrm{~L}, 371 \mu \mathrm{~mol}$) in dry THF (4 mL) was added to a solution of aldehyde $\mathbf{6 0 f}(123 \mathrm{mg}, 284 \mu \mathrm{~mol})$ in dry THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was allowed to warm to room temperature and stirred overnight. Then, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (7 $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$. The layers were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The organic fractions were combined and washed with 5% aqueous $\mathrm{NaOH}(3 \times 10 \mathrm{ml})$, dried over MgSO_{4} and concentrated under reduced pressure. The crude material was purified by column chromatography (hexanes/EtOAc, 4:1, to EtOAc) affording ester $\mathbf{8 0}$ as a yellow solid ($115 \mathrm{mg}, 235 \mu \mathrm{~mol}, 83 \%$): Mp $151-155^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+116.3$ (c 1.05, CHCl_{3}); IR (ATR) 2925, 2854, 1696, 1625, $1429,1220,1269,1179,1082,940 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}), 7.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \mathrm{H}-\mathrm{Ar}), 7.43-7.28$ (m, 6H, 6H-Ar), 7.25 (d, $J_{3,2}=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), $6.58\left(\mathrm{dd}, J_{8}, 7^{\prime}=8.9 \mathrm{~Hz}, J_{8}, 7^{\prime}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.56\left(\mathrm{~d}, J_{2,3}\right.$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.50\left(\mathrm{t}, J_{1^{\prime}, 2^{\prime}}=J_{1^{\prime}, 9 \mathrm{a}^{\prime}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.45$ (d, $\left.J_{\mathrm{ga}^{\prime}, 1}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}^{\prime}\right), 4.08\left(\mathrm{dd}, J_{\mathrm{gem}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=8.3\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.98\left(\mathrm{tt}, J_{\mathrm{gem}}=J_{7^{\prime}, 6^{\prime}}=13.4 \mathrm{~Hz}\right.$, $\left.J_{7^{\prime}, 8^{\prime}}=J_{7^{7}, 6^{\prime}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 2.83$ (ddd, $J_{\mathrm{gem}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=$ $\left.10.8 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.33\left(\mathrm{dd}, J_{\mathrm{gem}}=17.1 \mathrm{~Hz}, J_{2^{2}, 1^{\prime}}=\right.$ $\left.4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.26\left(\mathrm{~d}, J_{\mathrm{gem}}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.22-2.10$ (m, 2H, H-7', H-6'), 1.69 (tt, $\left.J=13.3 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$, 0.97 (s, 9H, Me 3_{3}) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4(\mathrm{C}-1)$, 167.1 (C-3'), 146.3 (C-3), 143.8 (C-8'), 136.1 (C-Ar), 135.9 (C$\mathrm{Ar}), 133.4$ (C-9'), 133.2 (C-Ar), 132.0 (C-Ar), 129.9 (C-Ar), 127.7 (C-Ar), 127.5 (C-Ar), 115.0 (C-2), 69.1 (C-1'), 67.0 (C-9a'), 51.5 $\left(\mathrm{CH}_{3} \mathrm{O}\right), 41.1\left(\mathrm{C}-2\right.$ '), 37.9 (C-5'), 26.7 ($\mathrm{Me}_{3} \mathrm{C}$), 23.6/23.0 (C-6/C7), 19.0 ($\mathrm{Me}_{3} \mathrm{C}$); HRMS (ESI +) calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}^{+}\right]$: 512.2228, found: 512.2227.
4.78. (1S,9aS)-1-\{[tert-Butyl(diphenyl)silyl]oxy\}-9-[(E)-3-hydroxyprop-1-en-1-yl]-1,2,5,6,7,9a-hexahydro-3H-pyrrolo[1,2-a]azepin-3-one (81)

In a schlenk vessel, ester $\mathbf{8 0}(115 \mathrm{mg}, 778 \mu \mathrm{~mol})$ was solved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ and the resulting solution was cooled down to $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. A solution of DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 940 \mu \mathrm{~L}, 940 \mu \mathrm{~mol}$) was added dropwise and the mixture was stirred 1.5 h at this temperature. Then, the reaction was quenched with a saturated aqueous solution of Rochelle's salt (2 mL) and the mixture was allowed to warm to room temperature and stirred for 15 min . The layers were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 3 \mathrm{~mL})$. The organic extracts were combined, dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude product was purified by column chromatography (hexanes/EtOAc, 2:1, to EtOAc) to yield alcohol 81 as a yellow oil $(92 \mathrm{mg}, 200 \mu \mathrm{~mol}, 85 \%)$: $[\alpha]_{\mathrm{D}}+89.9$ (c 1.65 , CHCl_{3}); IR (ATR) $3371,2930,2857,1672,1427,1110,940 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.52(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}-\mathrm{Ar}), 7.46-$ $7.30(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}-\mathrm{Ar}), 6.19\left(\mathrm{~d}, J_{1^{\prime}, 2^{\prime}}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.11(\mathrm{dd}$, $\left.J_{8,7}=9.0 \mathrm{~Hz}, J_{8,7}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right), 5.51\left(\mathrm{dt}, J_{2^{\prime}, 1}=16.2 \mathrm{~Hz}, J_{2^{\prime}, 3}\right.$, $\left.=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathbf{2}^{\prime}\right), 4.50\left(\mathrm{t}, J_{1,2}=J_{1,9 \mathrm{a}}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.49(\mathrm{~d}$, $\left.J_{9 \mathrm{a}, 1}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}\right), 4.11\left(\mathrm{~d}, J_{3^{\prime}, 2}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right), 4.06$. (dd, $\left.J_{\text {gem }}=14.0 \mathrm{~Hz}, J_{5,6}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.99-2.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 7, H-5), $2.30\left(\mathrm{dd}, J_{\mathrm{gem}}=17.0 \mathrm{~Hz}, J_{2,1}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.23(\mathrm{~d}$, $\left.J_{2,2}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7), 1.65(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-6), 0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.5 (C-3), 136.2 (C-Ar), 135.9 (C-Ar), 134.7 (C-8), 133.4 (CAr), 133.4 (C-1'), 132.5 (C-9), 129.8 (C-Ar), 127.7 (C-Ar), 127.4 (C-Ar), 125.3 (C-2'), 69.3 (C-1), 67.5 (C-9a), 63.6 (C-3'), 41.3 (C2), 38.1 (C-5), 26.7 ($\mathrm{Me}_{3} \mathrm{C}$), 24.0 (C-6), 22.4 (C-7), $19.0\left(\mathrm{Me}_{3} \mathrm{C}\right)$; HRMS (ESI +) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{SiH}^{+}\right]$: 462.2459 , found: 462.2448.

4.79. (E)-3-((1S,9aS)-1-\{[tert-Butyl(diphenyl)silyl]oxy\}-3-oxo-2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9yl)acrylaldehyde (82)

DMPI ($102 \mathrm{mg}, 239 \mu \mathrm{~mol}$) was added slowly to a solution of alcohol $\mathbf{8 1}(92 \mathrm{mg}, 199 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature under nitrogen atmosphere and the mixture was stirred for 1 h at the same temperature. Then, the reaction was quenched with 1 mL of a solution prepared by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ to a saturated aqueous solution of $\mathrm{NaHCO}_{3}(90 \mathrm{ml})$ and the mixture was stirred for 15 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous MgSO_{4} and concentrated under vacuum. Column chromatography (hexanes/EtOAc, 2:1, to EtOAc) of the residue provided aldehyde $\mathbf{8 2}$ as a yellow solid (81 $\mathrm{mg}, 177 \mu \mathrm{~mol}, 89 \%): \mathrm{Mp} 84-87^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+75.9\left(c \quad 0.70, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2931, 2858, 1678, 1427, 1361, 1110, $938 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44\left(\mathrm{~d}, J_{1,2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $7.66-7.56$ (m, 2H, 2H-Ar), 7.55-7.49 (m, 2H, 2H-Ar), 7.48-7.30 (m, 6H, $6 \mathrm{H}-\mathrm{Ar}), 6.94\left(\mathrm{~d}, J_{3,2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.11\left(\mathrm{dd}, J_{8^{\prime}, 7}=9.0 \mathrm{~Hz}\right.$, $\left.J_{8^{\prime}, 7}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.84\left(\mathrm{dd}, J_{2,1}=16.0 \mathrm{~Hz}, J_{2,3}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2$), 4.57 (bt, $J_{1^{\prime}, 2^{\prime}} \sim J_{1^{\prime}, 9^{9} \mathrm{a}} \sim 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.48 (bd, $J_{9 \mathrm{a}^{\prime}, 1}$, $\left.=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}^{\prime}\right), 4.12\left(\mathrm{dd}, J_{\mathrm{gem}}=14.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-5'), 3.03 (tt, $J=14.0 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ '), 2.86 (ddd, $J=$ $14.0 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.41\left(\mathrm{dd}, J_{\mathrm{gem}}=17.1\right.$ $\left.\mathrm{Hz}, J_{2^{\prime}, 1^{\prime}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.36\left(\mathrm{~d}, J_{\mathrm{gem}}=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $2.31-2.14$ (m, 2H, H-7', H-6'), $1.73(\mathrm{tt}, J=12.7 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}$, 1H, H-6'), 0.99 (s, 9H, Me e_{3} C); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.3 (C-1), 172.4 (C-3'), 153.7 (C-3), 145.9 (C-8'), 136.0 (C-Ar), 135.8 (C-Ar), 134.0 (C-9'), 133.0 (C-Ar), 131.9 (C-Ar), 130.1 (C$\mathrm{Ar}), 130.0$ (C-Ar), 127.8 (C-Ar), 127.7 (C-Ar), 126.0 (C-2), 69.1 (C-1'), 67.0 (C-9a'), 41.2 (C-2'), 37.9 (C-5'), 26.8 ($\mathrm{Me}_{3} \mathrm{C}$), 23.5/23.3 (C-6/C-7), $19.0\left(\mathrm{Me}_{3} \mathrm{C}\right)$; HRMS (ESI+) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SiNa}_{2}{ }^{+}\right]: 505.2014$, found: 505.2017.
4.80. 3-((1S,9aS)-1-\{[tert-Butyl(diphenyl)silyl]oxy\}-3-oxo-

2,3,5,6,7,9a-hexahydro-1H-pyrrolo[1,2-a]azepin-9-yl)-3-(5-oxo-2,5-dihydro-2-furan-2-yl)propanal (83)

Aldehyde $82(20 \mathrm{mg}, 103 \mu \mathrm{~mol})$ was added to a solution of pyrrolidine ($5 \mathrm{mg}, 20 \mu \mathrm{~mol}$) and DNBA ($4 \mathrm{mg}, 21 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Then, $\mathrm{H}_{2} \mathrm{O}(4 \mu \mathrm{~L}, 200 \mu \mathrm{~mol})$ was added and the mixture was stirred for 5 min before the addition of furane $39(25 \mu \mathrm{~L}, 151 \mu \mathrm{~mol})$. The resulting mixture was stirred overnight at $-20^{\circ} \mathrm{C}$ and then it was warmed to $-10^{\circ} \mathrm{C}$ and stirred at this temperature for 48 h . After this time, the mixture was quenched with silica gel, filtered, and the silica washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The crude product was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}, 10: 1$) to furnish aldehyde $\mathbf{8 3}$ as a yellowish syrup ($5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \%$): ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-1), 7.67-7.57(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}-\mathrm{Ar}), 7.49-7.36$ (m, 7H, 6H-Ar, H-3'), $6.17\left(\mathrm{dd}, J_{4^{\prime}, 3}, 3^{\prime \prime}=5.8 \mathrm{~Hz}, J_{4^{\prime}, 2 "}=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-4$ ''), $5.88\left(\mathrm{dd}, J_{8,7}=9.0 \mathrm{~Hz}, J_{8,7}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 5.05$ (dd, $J=3.5 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime}{ }^{\prime}$), 4.37 (bt, $J_{1^{\prime}, 2^{\prime}}=J_{1^{\prime}, 9 \mathrm{a}^{\mathrm{a}}}=3.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.20 (bd, $\left.J_{9 \mathrm{a}^{\prime}, 1^{\prime}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}^{\prime}\right), 4.14-3.99$
 2, H-3), 1.05 (s, 9H, Me ${ }_{3} \mathrm{C}$).

Acknowledgments

We acknowledge the Spanish Dirección General de Investigación for financial support (projects CTQ2010-15380 and CTQ2013-41161-R). We are grateful for grants from Universitat Autònoma de Barcelona (to C. B.), Generalitat de Catalunya (to E. C.) and Ministerio de Educación y Ciencia (to J. A.-F.). We also acknowledge Sergio Rodríguez-Ropero for his contribution to the study on the HWE homologation of compound 7.

References and notes

1. (a) Götz, M.; Edwards, O. E. The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1967; Vol 9, pp 545-551; (b) Götz, M.; Strunz, G. M. Alkaloids; Wiesner, K., Ed.; MTP International Review of Sciences, Organic Chemistry, Series One; Butterworth: London, 1973; Vol. 9, pp 143-160; (c) Greger, H. Planta Med. 2006, 72, 99-113.
2. Wang, F.-P.; Chen, Q.-H. Nat. Prod. Commun. 2014, 9, 1809-1822.
3. (a) Pilli, R. A.; de Oliveira, M. C. F. Nat. Prod. Rep. 2000, 17, 117127; (b) Pilli, R. A.; Rosso, G. B.; de Oliveira, M. C. F. The Alkaloids; Cordell, G. A., Ed.; Elsevier: New York, 2005; Vol. 62, pp 77-173; (c) Pilli, R. A.; Rosso, G. B.; de Oliveira, M. C. F. Nat. Prod. Rep. 2010, 27, 1908-1937.
4. (a) Alibés, R.; Figueredo, M. Eur. J. Org. Chem. 2009, 2421-2435; (b) Liu, X.-Y.; Wang, F.-P. Nat. Prod. Commun. 2015, 10, 10931102.
5. Alibés, R.; Blanco, P.; Casas, E.; Closa, M.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu, E.; Álvarez-Larena, A. J. Org. Chem. 2005, 70, 3157-3167.
6. (a) Sánchez-Izquierdo, F.; Blanco, P.; Busqué, F.; Alibés, R.; de March, P.; Figueredo, M.; Font, J.; Parella, T. Org. Lett. 2007, 9, 1769-1772; (b) Bardají, N.; Sánchez-Izquierdo, F.; Alibés, R.; Font, J.; Busqué, F.; Figueredo, M. Org. Lett. 2012, 14, 4854-4857.
7. Throughout this Section, the atom numbering of all compounds is according to stenine numbering.
8. (\pm)-Stenine: (a) Chen, C. Y.; Hart, D. J. J. Org. Chem. 1990, 55, 6236-6240; (b) Chen, C.Y.; Hart, D. J. J. Org. Chem. 1993, 58 , 3840-3849; (c) Ginn, J. D.; Padwa, A. Org. Lett. 2002, 4, 15151517; (d) Golden, J. E.; Aubé, J. Angew. Chem. Int. Ed. 2002, 41, 4316-4318; (e) Zeng, Y.; Aubé, J. J. Am. Chem. Soc. 2005, 127, 15712-15713; (f) Frankowski, K. J.; Golden, J. E.; Zeng, Y.; Lei, Y.; Aubé J. J. Am. Chem. Soc. 2008, 130, 6018-6024. (-)-Stenine: (g) Wipf, P.; Kim, Y.; Goldstein, D. M. J. Am. Chem. Soc. 1995, 117, 11106-11112; (h) Morimoto, Y.; Iwahashi, M.; Nishida, K.; Hayashi, Y.; Shirahama, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 904-906; (i) Morimoto, Y.; Iwahashi, M.; Kinoshita, T.; Nishida, K. Chem. Eur. J. 2001, 7, 4107-4116; (j) Chen, J.; Xie, Y.; Chen, J.; Zhang, H. Angew. Chem., Int. Ed. 2012, 51, 1024-1027; (k)

Fujioka, H.; Nakahara, K.; Kotoku, N.; Ohba, Y.; Nagatomi, Y.; Wang, T.-1.; Sawama, Y.; Murai, K.; Hirano, K.; Oki, T.; Wakamatsu, S.; Kita, Y. Chem. Eur. J. 2012, 18, 13861-13870; (1) Chen, J.; Xie, Y.; Chen, J.; Zhang, H. Tetrahedron 2015, 71, 37473755.
9. Hoye, A. T.; Wipf, P. Org. Lett. 2011, 13, 2634-2637.
10. Kakuta, D.; Hitotsuyanagi, Y.; Matsuura, N.; Fukaya, H.; Takeya. K. Tetrahedron 2003, 59, 7779-7786.
11. Bella, M.; Piancatelli, G.; Squarcia, A. Tetrahedron 2001, 57, 44294436.
12. Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929-1972.
13. (a) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251-263; (b) Rossi, R.; Penenory, A. B. Curr. Org. Synth. 2006, 3, 121-158.
14. Wagner, S. H.; Lundt, I. J. Chem. Soc., Perkin Trans. 1 2001, 780 788.
15. (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans l 1975, 1574-1585; (b) Hartwig, W. Tetrahedron 1983, 39, 26092646.
16. Narasaka, K.; Sakakura, T.; Uchimaru, T.; Guedin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954-2961.
17. Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 733-736.
18. Barton, D. H. R.; Jaszberenyi, J. Tetrahedron Lett. 1989, 30, 26192622.
19. (a) Kornet, M. J.; Thio, P. A.; Tan, S. I. J. Org. Chem. 1968, 33, 3637-3639; (b) Giraud, L.; Huber, V.; Jenny, T. Tetrahedron, 1998, 54, 11899-11906; (c) Dupont, C.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Bioorg. Med. Chem. 1999, 7, 2961-2969; (d) González-Gálvez, D.; García-García, E.; Alibés, R.; Bayón, P.; de March, P.; Figueredo, M.; Font, J.; J. Org. Chem. 2009, 34, 61996211.
20. Yamazaki, N.; Atobe, M.; Kibayashi, C. Tetrahedron Lett. 2001, 42, 5029-5032.
21. Zou, M.-F.; Cao, J.; Kopajtic, T.; Desai, R. I.; Katz, J. L.; Newman, A. H. J. Med. Chem. 2006, 49, 6391-6399.
22. Meltzer,P. C.; Wang, B.; Chen, Z.; Blundell, P.; Jayaraman, M.; Gonzalez, M. D.; George, C.; Madras, B. K. J. Med. Chem. 2001, 44, 2619-2635.
23. Koskinen, A. P.; Helaja, J.; Kumpulainem, E. T.; Koivisto, J.; Mansikkamäki, H.; Rissanen, K. J. Org. Chem. 2005, 70, $6447-$ 6453.
24. Chorki, F.; Grellepois, F.; Crousse, B.; Hoang, V. D. ; Hung, N. V. ; Bonnet-Delpon, D.; Bégué, J. P. Org. Lett. 2002, 4, 757-759.
25. Jas, G. Synthesis 1991, 11, 965-966
26. Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003 125, 1192-1194.
27. Kurasaki, H.; Okamoto, I.; Morita, N.; Tamura, O. Org. Lett. 2009, 11, 1179-81.
28. Gagné, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275-294.
29. (a) Tarling, C. A.; Holmes, A. B.; Markwell, R, E.; Pearson, N. D. J. Chem. Soc., Perkin Trans. 1 1999, 1695-1701; (b) Marsden, S. P.; McElhinney, A. D Beilstein J. Org. Chem. 2008, 4, No. 8.
30. (a) Huang, P. Q.; Wang, S. L.; Ye, J. L.; Ruan, Y. P.; Huang, Y. Q.; Zheng, H.; Gao, J. X. Tetrahedron 1998, 54, 12547-12560; (b) Yazici, A.; Pyne, S. G. Org. Lett. 2013, 15, 5878-5881.
31. The two regioisomers are easily distinguished by the coupling pattern of the ring methylene signals in their ${ }^{1} \mathrm{H}$ NMR spectra.

32. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891 and references therein.
33. (a) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Synlett, 1999, 1333-1350 ; (b) Slozeck, M.; Franck, X.; Figadère, B.; Clavé, A. J. Org. Chem. 1998, 63, 5169-5172; (c) Franck, X.; Vaz Araujo, M. E.; Jullian, J.-C.; Hocquemiller, R.; Figadère, B. Tetrahedron Lett. 2001, 42, 2801-2803; (d) Busqué, F.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu, E. Tetrahedron Lett. 2002, 43, 5583-5585.
34. Valenta, P.; Drucker, N. A.; Bode, J. W.; Walsh, P. J. Org. Lett. 2009, 11, 2117-2119.
35. Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 2000, 122, 4295-4303.
36. Ma, B.; Snyder, J. K. Tetrahedron Lett. 2005, 46, 703-706.

Supplementary Material

Experimental procedures for the synthetic sequences of Schemes 12 and $18 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds and 2D NMR spectra for compounds $9,15,17,22,23$, 26 and 30 . X-ray structure determination of compound 9.

