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LIOUVILLIAN INTEGRABILITY VERSUS DARBOUX
POLYNOMIALS

JAUME LLIBRE1, CLAUDIA VALLS2 AND XIANG ZHANG3

Abstract. In this note we establish some relations among Liou-
villian integrable polynomial differential systems, their degree and
the existence of Darboux polynomials. As an application of our
main results we prove that the Liénard polynomial differential sys-
tem ẋ = y, ẏ = −f(x)y−g(x) with deg f > deg g is not Liouvillian
integrable.

1. Introduction and statement of the main results

One of the classical problems in the dynamical systems is to deter-
mine when a system has first integrals. The existence of first inte-
grals together with other invariants like constants of motion, conserved
quantities, integrating factors, Jacobian multipliers and Lie symme-
tries, provide different techniques for studying the dynamics of differ-
ential equations coming from different topics such as celestial mechan-
ics, physics, engineering, biology and so on. But in this note we put
our attention on the Liouvillian integrability and its related invariants.

Consider polynomial differential systems

(1) ẋ = P (x), x ∈ Cn,

where the dot denotes derivative with respect to the independent vari-
able t, and P (x) = (P1(x), . . . , Pn(x)) is an n dimensional vector val-
ued polynomial. For polynomial differential systems (1) there are three
related notions: Darboux polynomial, Darboux integrability and Liou-
villian integrability. In this note we will present some relations among
these three notions.

A function H(x) is a first integral of system (1) if it is continuous and
defined in Cn except perhaps in a zero Lebesgue measure subset Ω1,
it is not locally constant on any positive Lebesgue measure subset of
Cn \Ω1, and H(x) is constant along each orbit of system (1) in Cn \Ω1.
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A function H(x) is a Darboux first integral of system (1) if it is a
first integral and is a function of Darboux type, i.e. it is of the form

(2) f r1
1 (x) . . . f rk

k (x)eh(x)/g(x),

where rj ∈ C, fj, g, h are polynomials for j = 1, . . . , k, and g and h are
coprime.

A function H(x) is a Liouvillian first integral of system (1) if it is a
first integral and belongs to a Liouvillian field extension of C(x). As
usual C(x) denotes the field of all rational functions in the variable x ∈
Cn. Let ∆ be a given set of commuting derivations in the differentiable
field C(x).

Recall that a differential field extension L of C(x) is Liouvillian if
this extension can be written as a tower of the form

K0 = C(x) ⊂ K1 ⊂ . . . ⊂ Kl = L,

such that each field extension satisfies one of the following three ones:

(a) Ki+1 is a finite algebraic extension of Ki; or

(b) Ki+1 = Ki(t), where t satisfies that for each δ ∈ ∆,
δt

t
∈ Ki; or

(c) Ki+1 = Ki(t), where t satisfies that for each δ ∈ ∆, δt ∈ Ki.

System (1) is Liouvillian integrable, if it has n − 1 functionally in-
dependent Liouvillian first integrals in Cn. Recall that k functions
H1(x), . . . , Hk(x) are functionally independent in Cn if their gradients
∇H1, . . . , ∇Hk have rank k in Cn except perhaps in a zero Lebesgue
measure subset. System (1) is Darboux integrable, if it has n − 1 func-
tionally independent Darboux first integrals in Cn.

Here C[x] denotes the ring of all polynomials in the variable x ∈ Cn.
A polynomial f(x) ∈ C[x]\C is a Darboux polynomial of the polynomial
differential system (1) if there exists a k(x) ∈ C[x] such that

X (f)(x) = k(x)f(x), x ∈ Cn,

where X is the vector field associated to system (1), i.e.

X = P1(x)
∂

∂x1

+ . . . + Pn(x)
∂

∂xn

.

A C1 non-zero function J is a Jacobian multiplier of system (1) if it
is defined in Cn except perhaps in a zero Lebesgue measure subset Ω1,
and satisfies

div(Jf) ≡ 0, i.e., X (J) = −JdivX , x ∈ Cn \ Ω1,

where divX denotes the divergence of the vector field X . A Jacobian
multiplier is Darboux if it is of Darboux type. As convention, if system
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(1) is two dimensional, a Jacobian multiplier is called an integrating
factor.

Darboux theory of integrability was started in 1878 by Darboux
[7, 8], who provided a method to construct first integral using Dar-
boux polynomials. This theory has been greatly developed in different
aspects, see for instance [2, 5, 6, 10, 11, 13, 22, 28, 25, 26, 27, 39] and
the references therein. The Darboux theory of integrability has also
been broadly applied to study dynamics of differential systems, for in-
stance the center problem, limit cycles and global dynamical analysis,
see for example [5, 9, 17, 18, 31, 35, 36, 37] and the references quoted
there.

Singer [30] in 1992 proved the equivalence between Liouvillian in-
tegrability and Darboux integrability of planar polynomial differential
systems, see also [4]. Zhang [38] proved that Liouvillian integrability
of higher dimensional polynomial differential systems implies the exis-
tence of Darboux Jacobian multipliers. In general Darboux integrabil-
ity depends on the existence of Darboux polynomials and exponential
factors. There are plenty of results studying the existence of Darboux
polynomials, see for example [1, 14, 23, 24, 32, 33, 34, 40] and the
references mentioned there.

Our next result shows that a Liouvillian integrable polynomial dif-
ferential system with conditions on the degree of the system implies
the existence of Darboux polynomials, but this will not be always the
case as we shall see in Proposition 3.

Theorem 1. Let kj be the degree of the polynomial Pj(x1, . . . , xn) with
respect to the variable xk for some k ∈ {1, . . . , n}. If the polynomial
differential system (1) has a Darboux Jacobian multiplier and kℓ >

max{k1, . . . , k̂ℓ, . . . , kn} + 1 for some ℓ ∈ {1, . . . , n}, then system (1)

has a Darboux polynomial, where k̂ℓ denotes the absence of kℓ.

Combining Theorem 1.2 of [38], we can get the next result.

Corollary 2. If the polynomial differential system (1) is Liouvillian

integrable and kℓ > max{k1, . . . , k̂ℓ, . . . , kn}+1 for some ℓ ∈ {1, . . . , n},
then system (1) has a Darboux polynomial, where we have used the
notation given in Theorem 1.

We remark that Theorem 1 and Corollary 2 are extension of Theorem
1 and Corollary 2 of [12] from two dimensional polynomial differential
systems to any finite dimensional polynomial differential systems.

Our next result shows that Theorem 1 and Corollary 2 in general do
not hold if kℓ ≤ max{k1, . . . , k̂ℓ, . . . , kn} + 1 for all ℓ ∈ {1, . . . , n}.
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Proposition 3. If kℓ > max{k1, . . . , k̂ℓ, . . . , kn} + 1 does not hold for
all ℓ = 1, . . . , n, then the following statements hold.

(a) There exist examples of system (1) which are Liouvillian inte-
grable and have no Darboux polynomials.

(b) There also exist examples of system (1) which are Liouvillian
integrable and have Darboux polynomials.

If systems (1) satisfy the degree condition kℓ > max{k1, . . . , k̂ℓ, . . . , kn}+
1, have a Darboux polynomial and are integrable, then they may not
be Liouvillian integrable as the following proposition shows.

Proposition 4. There exist integrable systems (1) such that kℓ >

max{k1, . . . , k̂ℓ, . . . , kn} + 1, having a Darboux polynomial and without
Liouvillian first integrals.

As an application of Theorem 1 and Corollary 2 to Liénard differen-
tial system, we get the following result.

Theorem 5. The polynomial Liénard differential systems

(3) ẋ = y, ẏ = −f(x)y − g(x),

with f and g polynomials in x, are not Liouvillian integrable provided
that deg f > deg g and g(x) ̸≡ 0.

About the Liouvillian integrability of Liénard polynomial differential
systems, Llibre and Valls [19] characterized the Liouvillian integrability
of the Liénard polynomial differential system ẋ = y, ẏ = −cx − f(x)y.
In [20] the authors characterized the Liouvillian integrability of the
Liénard differential system (3) with deg f ≥ deg g ≥ 2. Recently Lli-
bre and Valls [21] proved that system (3) is not Liouvillian integrable
provided that deg g = deg f + 1. We note that Theorem 5 can allow
deg g = 0, whereas deg g > 0 in [19] and [20]. Here we provide a dif-
ferent and easy proof than [19, 20] on non–Liouvillian integrability for
the class of Liénard differential systems studied in Theorem 5.

The rest of this paper is devoted to prove our main results.

2. Proof of the main results

For proving our theorems we need the following result, which is well
known for the mathematicians working in the Darboux theory of inte-
grability, but as far as we know there is not published a proof.

Proposition 6. If a Darboux function

F = f r1
1 . . . f rm

m exp

(
h

g

)
,
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with g and h coprime and the fj’s irreducible, is a Jacobian multiplier of
system (1), then all g and fj for j = 1, . . . , m are Darboux polynomials
of system (1).

Proof. Recall that X is the vector field associated to system (1). By
assumption F is a Jacobian multiplier, so we have X (F ) = −FdivX .
Writing this equality in components we obtain

g2

m∑

j=1

rjf
r1
1 . . . f

rj−1

j−1 f
rj−1
j f

rj+1

j+1 . . . f rm
m X (fj)

+ f r1
1 . . . f rm

m (X (h)g − hX (g)) = −f r1
1 . . . f rm

m g2divX .(4)

From this equality we get that for any j ∈ {1, . . . , m} the polynomial
fj divides g2X (fj). This implies that fj divides g or X (fj). If the latter
happens, there exists a kj(x) ∈ C[x] such that X (fj) = kj(x)fj(x), and
consequently fj is a Darboux polynomial. If the former happens, we
can write g(x) = g0(x)f l

j(x), where g0 is a polynomial relative prime
with fj, and l is a positive integer. Equating the power of fj in the
components of (4) we get that f l

j divides hX (g). Since g and h are

relatively prime and fj is a factor of g, we must have f l
j divides X (g).

In addition X (g) = X (g0)f
l
j + lg0f

l−1
j X (fj). This shows that fj divides

X (fj). So we have proved that all fj’s are Darboux polynomials of
system (1).

Since each fj is a Darboux polynomial, we can erase the factor
f r1

1 . . . f rm
m from equation (4). Then we get from this resulting equation

that g divides hX (g). Consequently g divides X (g) because g and h
are relatively prime. This shows that g is a Darboux polynomial. This
completes the proof of the proposition. �

Proof of Theorem 1. Without loss of generality we prove the theorem
for ℓ = n. Set x = (x1, . . . , xn−1), and write system (1) in the form

ẋj = p
(j)
0 (x) + p

(j)
1 (x)xn + . . . + p

(j)
kj

(x)xkj
n , j = 1, . . . , n(5)

where the p
(j)
i (x)’s are polynomials for j = 1, . . . , n and i = 0, 1, . . . , kj,

and p
(n)
kn

̸≡ 0.

By assumption system (1) has a Darboux Jacobian multiplier, de-
noted by J . Recall that a Darboux Jacobian multiplier is a Jaco-
bian multiplier of the form (2). From Proposition 6, if system (5)
has no Darboux polynomials then the Darboux Jacobian multiplier J
must be of the form J = eh(x) with h(x) a polynomial. Set h(x) =
h0(x) + h1(x)x1 + . . . + hr(x)xr

n with r ≥ 0 and hr(x) ̸≡ 0.
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By definition of Jacobian multiplier we get that

n−1∑

j=1




kj∑

s=0

p(j)
s (x)xs

n




r∑

i=0

∂hi(x)

∂xj

xi
n +

kn∑

s=0

p(n)
s (x)xs

n

r∑

i=0

ihi(x)xi−1
n

= −
(

r∑

i=0

hi(x)xi
n

)


n−1∑

j=1

kj∑

s=0

∂p
(j)
s (x)

∂xj

xs
n +

kn∑

s=0

sp(n)
s (x)xs−1

n


 .

(6)

By equating the coefficients of xkn+r−1, we get from assumption kn >

max{k1, . . . , kn−1} + 1 that (r + kn)p
(n)
kn

(x)hr(x) = 0. This is a contra-

diction because r ≥ 0, kn > 0, and p
(n)
kn

(x)hr(x) ̸= 0. This completes
the proof of the theorem. �

The next result was proved in [38].

Theorem 7. If system (1) is Liouvillian integrable, then it has a Dar-
boux Jacobian multiplier.

Proof of Corollary 2. Its proof follows immediately from Theorems 1
and 7. �
Proof of Proposition 3. We first prove statement (a). Consider the fol-
lowing polynomial differential system in R3

(7) ẋ = 2xz − zk, ẏ = 3yz − zℓ, ż = −1,

with k, ℓ > 1 even. Clearly this system satisfies the degree condition of
the proposition. We can check that system (7) has the first integrals

(8) H1(x, y, z) = xez2 −
∫

zkez2

dz, H2(x, y, z) = ye
3
2
z2 −

∫
zℓe

3
2
z2

dz.

Clearly they are functionally independent. Moreover H1 and H2 are
Liouvillian because they are obtained by taking exponential and inte-
grating from polynomial functions, and each of these steps belongs to
the tower elements in the Liouvillian field extension of C(x).

Next we prove that system (7) has no Darboux polynomials. We
should mention that we cannot directly use the two first integrals H1

and H2 to prove our arguments, even through any other first integral is
functionally dependent of H1 and H2, because we do not know if sys-
tem (7) has other first integrals, whose level surfaces contain invariant
algebraic surfaces.

Let Y be the vector field associated to system (7). If F (x, y, z) is
a Darboux polynomial, then there exists a polynomial K(x, y, z) such



LIOUVILLIAN INTEGRABILITY VS DARBOUX POLYNOMIALS 7

that Y(F ) = KF . Write F and K as polynomials in the variable x,
i.e.

F (x, y, z) = f0(y, z) + f1(y, z)x + . . . + fm(y, z)xm,

K(x, y, z) = k0(y, z) + k1(y, z)x + . . . + kr(y, z)xr,

with m, r ≥ 0 integers, and the coefficients polynomials in y and z.
Then we get from Y(F ) = KF that

(
2xz − zk

) m∑

j=0

jfj(y, z)xj−1 +
(
3yz − zℓ

) m∑

j=0

∂yfj(y, z)xj

−
m∑

j=0

∂zfj(y, z)xj =

(
r∑

j=0

kj(y, z)xj

)(
m∑

j=0

fj(y, z)xj

)
.

(9)

Without loss of generality we can assume that fm(y, z) ̸≡ 0. Equating
the coefficients of xk in (9) with k > m we get that k1(y, z) = . . . =
kr(y, z) ≡ 0. Equating the coefficients of xm in (9) gives

(
3yz − zℓ

)
∂yfm(y, z) − ∂zfm(y, z) = (k0(y, z) − 2mz)fm(y, z).(10)

For the coefficients of xs in (9), s = 0, 1, . . . , m − 1, we have
(
3yz − zℓ

)
∂yfs(y, z) − ∂zfs(y, z)

= (k0(y, z) − 2sz)fs(y, z) + (s + 1)zkfs+1(y, z).(11)

If fm ̸= constant we set

fm(y, z) = g0(z) + g1(z)y + . . . + gq(z)yq,

with q a nonnegative integer and the gj’s polynomials in z for j =
0, 1, . . . , q such that gq(z) ̸≡ 0. Substituting the expression of fm into
equation (10) and equating the coefficients of yj for j ≥ q, we get that
k0(y, z) = k0(z) and

g′
q(z) = −(k0(z) − 2mz − 3qz)gq(z).

Its general solution is

gq(z) = Ce
∫

(2mz+3qz−k0(z))dz,

where C is a constant. So this linear equation has a polynomial solution
only in the case k0(z) = (2m + 3q)z, and gq(z) = C is a constant.
Consequently q > 0 because by assumptions fm(y, z) is not a constant.
Equating the coefficient of yq−1 in equation (10) we get

g′
q−1(z) = −3zgq−1 − qCzℓ.
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This linear equation has the general solution

gq−1(z) = e− 3
2
z2

(
c − qC

∫
zℓe

3
2
z2

dz

)
,

where c is the integrating constant. Since ℓ is even, we set ℓ = 2m,
then we have

∫
z2me

3
2
z2

dz =
e

3
2
z2

3m

(
m−1∑

i=0

(−1)i3m−i−1 (2m − 1)!!

(2m − 2i − 1)!!
z2m−2i−1

+(−1)m(2m − 1)!!

∫
e

3
2
z2

dz

)
,

where (2m+1)!! = (2m+1)(2m−1) . . . 3 ·1. In order that gq−1(z) be a
polynomial, we must have c = 0 and qC = 0, a contradiction because
neither q nor C can be zero.

If fm(y, z) = K equal to a non-zero constant, then m > 0, otherwise
F (x, y, z) is a constant. We get from (10) that k0(z) = 2mz. Now
equation (11) for s = m − 1 is

(12) (3yz − zℓ)∂yfm−1(y, z) − ∂zfm−1(y, z) = 2zfm−1(y, z) + mKzk.

Since k > 1 the solution of this last equation cannot be a constant. Set

fm−1(y, z) = h0(z) + h1(z)y + . . . + hp(z)yp, p ≥ 0.

Then we get from equation (12) that

(13) h′
p(z) = (3p − 2)zhp(z).

The general solution of equation (13) is hp(z) = c exp
(

3p−2
2

z2
)

where
c is a constant. Since p is a nonnegative integer, it forces that hp must
be either zero or not a polynomial. This implies that fm−1(y, z) is not
a polynomial. This contradiction proves statement (a).

Now we shall prove statement (b). Consider the polynomial differ-
ential system in R3

(14) ẋ = 2xz − zk, ẏ = 2yz − zℓ, ż = −1.

For any positive integers k and l, system (14) has at least one Darboux
polynomial. Indeed, since system (14) has the functionally independent
Liouvillian first integrals

(15) H1(x, y, z) = xez2 −
∫

zkez2

dz, H2(x, y, z) = yez2 −
∫

zℓez2

dz.
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If one of k and ℓ is odd, for illustration we assume that k = 2m + 1.
Some calculations show that

H1(x, y, z) = ez2

(
x − 1

2

m∑

j=0

(−1)j m!

(m − j)!
z2(m−j)

)
.

Since H1(x, y, z) = 0 is an invariant set, so

F (x, y, z) := x − 1

2

m∑

j=0

(−1)j m!

(m − j)!
z2(m−j) = 0,

is an invariant surface. This proves that F (x, y, z) is a Darboux poly-
nomial of system (14).

If k and ℓ are both even, set k = 2p and ℓ = 2q. Since for m ∈ {p, q}
∫

z2mez2

dz =
1

2
ez2

(
m−1∑

i=0

(−1)i

2i

(2m − 1)!!

(2m − 2i − 1)!!
z2m−2i−1

+
(−1)m

2m−1
(2m − 1)!!

∫
ez2

dz

)
,

set

H3(x, y, z) =
(−1)q

2q−1
(2q − 1)!!H1(x, y, z) − (−1)p

2p−1
(2p − 1)!!H2(x, y, z).

Then H3 is also a first integral of system (14), and it is a product of ez2

by a polynomial in x, y, z. This shows that system (14) has a Darboux
polynomial. This completes the proof of the proposition. �

We remark that for polynomial differential systems in Rn

(16)
ẋj = kjxjxn − x

ℓj
n , j = 1, . . . , n − 1,

ẋn = −1,

where kj, ℓj’s are positive integers and no less than 2. Using similar
arguments to the ones of the proof of Proposition 3 we can prove that
system (16) is Liouvillian integrable, and has or may not have a Dar-
boux polynomial for suitable choices of the values of kj and ℓj. But we
need to discuss more cases, so we omit it.

Proof of Proposition 4. Consider the Abel polynomial differential equa-
tion of the form

(17) ẋ = 1, ẏ = −2xy2 + y3.

Clearly, this system satisfies the degree condition of the proposition
and has the Darboux polynomial F (x, y) = y. It was proved in [3] that
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system (17) has the non–Liouvillian first integral

H(x, y) =
xAi(x2 − 1

y
) + Ai(1, x2 − 1

y
)

xBi(x2 − 1
y
) + Bi(1, x2 − 1

y
)
.

To obtain such first integral we transform the Abel polynomial differ-
ential equation (17) into system

(18)
dy

dx
= −2xy2 + y3.

Note that the birational map

X = x2 − 1

y
, Y = x,

transforms system (18) into the Riccati equation dY
dX

= Y 2 −X. In this
case the Abel equation has a non–Liouvillian first integral, where the
transcendental functions in the first integral are in the variable x2 − 1

y
.

The change has been obtained by taking x2 − 1
y

as a new variable. �

Proof of Theorem 5. By contrary we assume that system (3) is Liou-
villian integrable. Let H(x, y) be a Liouvillian first integral of system
(3). Take the change of variables

(19) x1 = x, x2 = y + F (x), F (x) =

∫ x

0

f(s)ds.

System (3) is transformed to

(20) ẋ1 = x2 − F (x1), ẋ2 = −g(x1).

Set G(x1, x2) = H(x1, x2 − F (x1). Then G is Liouvillian and it is a
first integral of system (20). Indeed, direct calculations show that

(x2 − F (x1))∂x1G(x1, x2) − g(x1)∂x2G(x1, x2)

= (x2 − F (x1)) (∂xH − f(x1)∂yH) − g(x1)∂yH

= y∂xH − (f(x)y + g(x))∂yH ≡ 0,

where ∂x denotes the partial derivative with respect to x, and in the
last equality we have used the fact that H(x, y) is a first integral of
system (3).

By assumption deg f > deg g, we have deg F > deg g + 1. So we
get from Corollary 2 that system (20) has a Darboux polynomial. Let
M(x1, x2) be a Darboux polynomial of system (20) with the associated
cofactor K(x1, x2). Set

N(x, y) = M(x, y + F (x)), L(x, y) = K(x, y + F (x)).
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Then N and L are both polynomials. We claim that N(x, y) is a
Darboux polynomial of system (3) with the associated cofactor L(x, y).
Indeed, we get from the change (19) that

y∂xN − (f(x)y + g(x))∂yN

= y(∂x1M + f(x)∂x2M) − (f(x)y + g(x))∂x2M

= (x2 − F (x1))∂x1M − g(x1)∂x2M

= K(x1, x2)M(x1, x2)

= L(x, y)N(x, y),

where in the third equality we have used the fact that M(x1, x2) is
a Darboux polynomial of system (20) with cofactor K(x1, x2). This
proves that system (3) has the Darboux polynomial N(x, y).

In addition, Odani [29] proved that if f, g ̸≡ 0, deg f ≥ deg g and
g/f ̸≡ constant, then system (3) has no a Darboux polynomial. Since
our theorem is under the assumption of the Odani’s theorem, system
(3) cannot have a Darboux polynomial. This contradiction verifies that
system (3) is not Liouvillian integrable. This completes the proof of
the theorem. �
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[10] A. Gasull and V. Mañosa, A Darboux–type theory of integrability for discrete
dynamical systems, J. Difference Equ. Appl. 8 (2002), 1171–1191.
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