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BIRTH OF LIMIT CYCLES FOR A CLASS OF
CONTINUOUS AND DISCONTINUOUS

DIFFERENTIAL SYSTEMS IN (d + 2)–DIMENSION

JAUME LLIBRE1, MARCO A. TEIXEIRA2 AND IRIS O. ZELI2

Abstract. The orbits of the reversible differential system ẋ =
−y, ẏ = x, ż = 0, with x, y ∈ R and z ∈ Rd, are periodic with
the exception of the equilibrium points (0, 0, z1, . . . , zd). We com-
pute the maximum number of limit cycles which bifurcate from
the periodic orbits of the system ẋ = −y, ẏ = x, ż = 0, using the
averaging theory of first order, when this system is perturbed, first
inside the class of all polynomial differential systems of degree n,
and second inside the class of all discontinuous piecewise polyno-
mial differential systems of degree n with two pieces, one in y > 0
and the other in y < 0. In the first case this maximum number is
nd(n − 1)/2, and in the second is nd(n − 1).

1. Introduction and statements of the main results

Limit cycles have been used to model the behavior of many real pro-
cess and different modern devices. In general to prove the existence
of limit cycles is a very difficult problem. One way to produce limit
cycles is perturbing differential systems that have a linear center. In
this case, the limit cycles in a perturbed system bifurcate from the pe-
riodic orbits of the unperturbed center. The search for the maximum
number of limit cycles that polynomial differential systems of a given
degree can have is part of 16th Hilbert’s Problem and many contribu-
tions have been made in this direction, see for instance [11, 13, 16] and
the references quoted therein.

Recently the theory of limit cycles has also been studied in discon-
tinuous piecewise differential systems. The analysis of these systems
can be traced from Andronov et al. [1] and still continues to receive
attention by researchers. Discontinuous piecewise differential systems
is a subject that have been developed very fast due to its strong appli-
cations to other branches of science. Currently such systems are one of
the connections between mathematics, physics and engineering. These
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systems model several phenomena in control systems, impact in me-
chanical systems, nonlinear oscillations and economics see for instance
[2, 3, 4, 6, 14, 28]. Recently they have been shown to be also relevant as
idealized models for biology [15] and models of cell activity [7, 32, 33].
For more details see Teixeira [31] and all references therein.

As we have said it is not simple to determine the existence of limit
cycles in a differential system. The simplest case for determining limit
cycles is in planar continuous piecewise linear systems when they have
only two linear differential systems separated by a straight line. Even
in this simple case, only after a delicate analysis it was possible to show
the existence of at most of one limit cycle for such systems, see [8] or
an easier proof in [20].

Planar discontinuous piecewise linear differential systems with only
two linearity regions separated by a straight line have been studied re-
cently in [10, 12], among other papers. In [10] some results about the
existence of two limit cycles appeared, so that the authors conjectured
that the maximum number of limit cycles for this class of piecewise
linear differential systems is exactly two. However in [12] strong nu-
merical evidence about the existence of three limit cycles was obtained.
As far we know the example in [12] represents the first discontinuous
piecewise linear differential system with two zones with 3 limit cycles
surrounding a unique equilibrium. Recently in [22] it is proved that
such a system really has three limit cycles.

There are several papers studying the limit cycles of the continuous
piecewise linear differential systems in R3, see for instance [5, 21, 23, 24,
25]. Our goal is study the periodic solutions of discontinuous piecewise
polynomial differential systems in Rd+2. More precisely the objective
of this paper is to study the existence of limit cycles in continuous
and discontinuous piecewise polynomial differential systems in Rd+2,
where the discontinuous differential system has two zones of continuity
separated by a hyperplane. Without loss of generality we shall assume
that the set of discontinuity is the hyperplane y = 0 in Rd+2. So we
consider the linear differential system in Rd+2 given by




ẋ
ẏ
ż


 =




−y
x
0


 = X(x, y, z),

which is reversible with respect to ϕ(x, y, z) = (x, −y, z), where the ˙
denotes derivative with respect to the time t and x, y ∈ R, z ∈ Rd.
First we shall study the existence of limit cycles of the continuous
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polynomial differential system

(1)




ẋ
ẏ
ż


 = Xε(x, y, z),

and after of the discontinuous piecewise polynomial differential sys-
tem formed by two polynomial differential systems separated by the
hyperplane y = 0, namely

(2)




ẋ
ẏ
ż


 =

{
Xε(x, y, z) if y > 0,
Yε(x, y, z) if y < 0,

where

Xε(x, y, z) = X(x, y, z) + εP (x, y, z),

Yε(x, y, z) = X(x, y, z) + εQ(x, y, z),

with P and Q polynomials of degree n given by

P (x, y, z) = (P (x, y, z, a), P (x, y, z, b), P (x, y, z, c1), . . . , P (x, y, z, cd))
T ,

Q(x, y, z) = (Q(x, y, z, α), Q(x, y, z, β), Q(x, y, z, γ1), . . . , Q(x, y, z, γl))
T ,

with

P (x, y, z, a) =
n∑

i+j+k=0

aijkx
iyjzk, Q(x, y, z, α) =

n∑

i+j+k=0

αijkx
iyjzk.

In this work k is a multi-index and k denotes the expression k1 +
. . . + kd, zk denotes the product zk1

1 . . . zkd
d where z = (z1, . . . , zd) ∈ Rd,

and aijk denotes the coefficient aijk1...kd
of xiyjzk1

1 . . . zkd
d .

It is clear that systems (1) and (2) coincide for ε = 0 and they have
linear centers at every plane z = constant. In this paper we establish
for ε ̸= 0 sufficiently small the maximum number of limit cycle of these
systems that bifurcate from the periodic orbits of these linear centers
using the averaging theory of first order. The following result presents
the results for the continuous case.

Theorem 1. Using the averaging theory of first order for |ε| ̸= 0 suffi-
ciently small the maximum number of limit cycles of the polynomial dif-
ferential system (1) is at most nd(n−1)/2, and this number is reached.

In the next theorem we present results for the discontinuous piecewise
polynomial differential system (2).

Theorem 2. Using the averaging theory of first order for |ε| ̸= 0 suffi-
ciently small the maximum number of limit cycles of the discontinuous
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piecewise polynomial differential system (2) is at most nd(n − 1), and
this number is reached.

Corollary 3. Under the assumptions of Theorem 1 if additionally
a00k = b00k = 0 for all k, the limit cycles can be chosen as close to
the origin of Rd+2 as we want.

Corollary 4. Under the assumptions of Theorem 2 if additionally
a00k = b00k = α00k = β00k = 0 for all k, the limit cycles can be chosen
as close to the origin of Rd+2 as we want.

Corollaries 3 and 4 provides information of the Hopf bifurcation of
systems (1) and (2). More precisely, Corollaries 3 and 4 show that
at least nd(n − 1)/2 and nd(n − 1) limit cycles of systems (1) and
(2) can bifurcate from the origin of Rd+2, respectively. The results of
Corollary Corollaries in the particular case n = 2 coincides with the
result obtained in Theorem 1 of [26].

To prove these results we use the classical averaging theory, see for
instance [30, 34] for a general introduction to this subject. This theory
have been used for years to deal with continuous differential systems.
The principle of averaging has been extended in many directions and
recently in [19] the authors extend the averaging theory for detecting
limit cycles of certain discontinuous piecewise differential systems, via
the Brouwer degree and the regularization theory.

As far as we know this method is one of the best methods for deter-
mining limit cycles in discontinuous piecewise differential systems and
has already been used by some authors. In [17] the method is used
for determining the maximum number of limit cycles that bifurcate
from the periodic solutions of some family of isochronous cubic poly-
nomial centers perturbed by discontinuous piecewise cubic polynomial
differential systems with two zones separated by a straight line. In [18]
limit cycles for discontinuous piecewise quadratic differential systems
with two zones was studied using the averaging theory. Also in [29]
the averaging theory was applied to provide sufficient conditions for
the existence of limit cycles of discontinuous perturbed planar centers
when the discontinuity set is a union of regular curves.

We have organized this paper as follows. In section 2 we briefly
present notation and basic concepts of the averaging theory of first
order for continuous differential systems (see Theorem 5) and for dis-
continuous differential systems (see Theorem 6). In section 3 we present
the proof of Theorem 1, and in section 4 we prove Theorem 2. Finally
in section 5 we prove the Corollaries 3 and 4.
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2. Basic results in averaging theory

In this section we present the basic results from the averaging theory
of first order that we shall use for proving the results of this paper.
The following theorem provides a method for studying the existence
of periodic orbits of a differential system. For more details on the
averaging method see for instance [34].

Let D be an open subset of Rn. We denote the points of R × D as
(t, x), and we take the variable t as the time.

Theorem 5. Consider the differential system

(3) ẋ = εF (t, x) + ε2R(t, x, ε), x(0) = 0,

where F : R × D → Rn and R : R × U × (−ε, ε) → Rn are contin-
uous functions, T−periodic in the first variable. Define the averaging
function f : D → Rn as

(4) f(x) =

∫ T

0

F (s, x) ds,

and assume that

(i) the functions F, R, DxF,D2
xF and DxR are defined, continuous

and bounded by a constant M (independent of ε) in [0,∞) × D
and for ε ∈ (0, ε0],

(ii) for p ∈ D with f(p) = 0 we have |Jf (p)| ̸= 0, where |Jf (p)|
denotes the determinant of the Jacobian matrix of f evaluated
at p.

Then for |ε| > 0 sufficiently small there exists a T−periodic solution
x(t, ε) of (3) such that x(0, ε) → p as ε → 0.

Now let h : R×D → R be a C1 function with 0 ∈ R as a regular value,
and Σ = h−1(0). Let X,Y : R × D → Rn be two continuous vector
fields and assume that h,X and Y are T−periodic in the variable t.
We define a discontinuous piecewise differential system as

(5) ẋ = Z(t, x) =

{
X(t, x) if h(t, x) > 0,
Y (t, x) if h(t, x) < 0.

We rewrite the discontinuous differential system as follows. Consider
the sign function defined in R\ {0} as

sign(u) =

{
1 if u > 0,

−1 if u < 0.

Then system (5) can be written as

ẋ = Z(t, x) = F1(t, x) + sign (h(t, x)) F2(t, x),
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where

F1(t, x) =
1

2
(X(t, x) + Y (t, x)) and F2(t, x) =

1

2
(X(t, x) − Y (t, x)) .

The following theorem is a version of Theorem 5 for studying the peri-
odic solutions of discontinuous differential systems.

Theorem 6. Consider the discontinuous differential system

(6) ẋ = εF (t, x) + ε2R(t, x, ε),

with

F (t, x) = F1(t, x) + sign (h(t, x)) F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign (h(t, x)) R2(t, x, ε),

where F1, F2 : R × D → Rn, R1, R2 : R × D × (−ε, ε) → Rn and
h : R × D → R are continuous functions, T−periodic in the variable t.
We also suppose that h is a C1 function with 0 as a regular value and
we denote Σ = h−1(0). Define the averaged function f : D → Rn as

(7) f(x) =

∫ T

0

F (s, x) ds,

and assume that

(i) the functions F1, F2, R1, R2 and h are locally Lipschitz with re-
spect to x;

(ii)
∂h

∂t
(t, x) ̸= 0 for all (t, x) ∈ Σ;

(iii) for p ∈ C with f(p) = 0, there exist a neighborhood U ⊂ C of p
such that f(z) ̸= 0 for all z ∈ U\ {p} and dB(f, U, 0) ̸= 0 (dB

is the Brouwer degree of f in p).

Then for |ε| > 0 sufficiently small there exists a T−periodic solutions
x(t, x) of system (6) such that x(t, ε) → p as ε → 0.

For a proof of Theorem 6 see Theorem A and Proposition 2 in
[19]. Here we emphasize that if f in (7) is C1 then the hypotheses
dB(f, U, 0) ̸= 0 holds if |Jf (p)| ̸= 0, see for more details [27].

3. Proof of Theorem 1

Applying the change of variables

(8) (x, y, z) = (r cos θ, r sin θ, z),
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system (1) becomes

(9)

ṙ = ε
n∑

i+j+k=0

ri+jzk
(
aijk cosi+1 θ sinj θ + bijk cosi θ sinj+1 θ

)
,

θ̇ = 1 +
ε

r

n∑

i+j+k=0

ri+jzk
(
aijk cosi θ sinj+1 θ+

bijk cosi+1 θ sinj θ
)
,

żl = ε
n∑

i+j+k=0

clijk ri+jzk cosi θ sinj θ,

for l = 1, 2, . . . , d.
Essentially we study the limit cycles of system (9) with ε ̸= 0 suf-

ficiently small bifurcating from the periodic orbits of system (9) with
ε = 0 contained in the cylindrical annulus

(10) Ã = {(r, θ, z) : r0 ≤ r ≤ r1, θ ∈ S1, z ∈ Rd}.

So for ε small enough θ̇ > 0 for every (r, z) ∈ Ã.
Now taken as new independent variable θ instead of t so (1) in Ã

can be written as

(11)




r′

z′
1
...
z′

d


 = ε




F1(θ, r, z)
F2(θ, r, z)

...
Fd+1(θ, r, z)


 + O(ε2),

where the ′ denotes derivative with respect to the variable θ, and

F1(θ, r, z) =
n∑

i+j+k=0

ri+jzk
(
aijk cosi+1 θ sinj θ + bijk cosi θ sinj+1 θ

)
,

Fl+1(θ, r, z) =
n∑

i+j+k=0

ri+jzk clijk cosi θ sinj θ,

(12)

for l = 1, 2, . . . , d.
To apply Theorem 5 to system (11), we compute the averaged func-

tion f = (f1, f2, . . . , fd+1) given in (4) with T = 2π and we obtain
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f1(r, z) =

∫ 2π

0

F1(s, r, z) ds

=
n∑

i + j + k = 0
i odd, j even

ri+jzk aijk

∫ 2π

0

cosi+1 θ sinj θ dθ

+
n∑

i + j + k = 0
i even, j odd

ri+jzk bijk

∫ 2π

0

cosi θ sinj+1 θ dθ,

fl+1(r, z) =

∫ 2π

0

Fl+1(s, r, z) ds

=
n∑

i + j + k = 0
i, j even

ri+jzk clijk

∫ 2π

0

cosi θ sinj θ dθ,(13)

for l = 1, 2, . . . , d.
We split the proof in two parts. First assume n is odd, so

f1(r, z) = A1r + A3r
3 + . . . + Anrn

where

Ap =

n−p∑

k=0

∑

i + j = p
i odd, j even

zk aijk

∫ 2π

0

cosi+1 θ sinj θ dθ

+

n−p∑

k=0

∑

i + j = p
i even, j odd

zk bijk

∫ 2π

0

cosi θsinj+1 θ dθ.(14)

We write f1 = rf̄1 with

f̄1(r, z) = A1 + A3r
2 + . . . + Anr

n−1.

Since r > 0 it is sufficient to solve (f̄1, f2, . . . , fd+1) = (0, . . . , 0) to
determine the number of solutions of f ≡ 0. As f̄1 is a polynomial in
the variables r and z ∈ Rd of degree n − 1 and fl+1 are polynomials in
the variables r and z ∈ Rd of degree n for l = 1, 2, . . . , d, by Bézout’s
theorem (see [9]) (f̄1, f2, . . . , fd+1) has at most nd(n − 1) solutions.
However f̄1 is even on variable r then we consider only solutions with
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r > 0, in this case the maximum number of solutions of f ≡ 0 is
nd(n − 1)/2.

Now we prove that this number is reached. For this, we exhibit a
particular case for which this occurs. Let aij0, bij0 ̸= 0 and we take zero
all the other aijk, bijk, then f̄1(r, z) is a real polynomial that does not
depend of z ∈ Rd of degree n − 1, that is

f̄1 = A1 + A3r
2 + . . . + Anr

n−1

where Ap is

∑

i + j = p
i odd
j even

aij0

∫ 2π

0

cosi+1 θ sinj θ dθ +
∑

i + j = p
i even
j odd

bij0

∫ 2π

0

cosi θ sinj+1 θ dθ.

On the other hand, we take clijk = 0 if i, j, k1, kl−1, kl+1, . . . , kd ̸= 0
for each l = 1, 2, . . . , d so that

fl+1(r, z) =
n∑

kl=0

zl
kl (2π cl00kl

).

In this particular case, we can take aij0, bij0 and cl00kl
in order that all

coefficients of f̄1 and fl+1 are linearly independent for all l = 1, 2, . . . , d.
So we can choose these coefficients in such a way that f̄1 has (n − 1)/2
simple positive real roots and fl+1 has n simple real roots for each
l = 1, 2, . . . , d. Then (f̄1, f2, . . . , fd+1) has nd(n − 1)/2 solutions with
r > 0.

Now assume n is even. Then f = rf̄1 where

f̄1(r, z) = A1 + A3r
2 + . . . + An−1r

n−2.

with Ap given in (14).
Note that f̄1 has degree n − 1 as a polynomial in the variables r and

z and fl+1 given in (13) has degree n as polynomials in the variables r
and z for all l = 1, 2, . . . , d, so (f̄1, f2, . . . , fd+1) have at most nd(n−1)/2
solutions of type (r, z) with r > 0.

To prove that this number is reached we consider a10k1 , b01k1 ̸= 0 and
we take zero all the other aijk, bijk then

f̄1(r, z) = A1 =
n−1∑

k1=0

zk1
1

(
a10k1

∫ 2π

0

cos2 θ dθ + b01k1

∫ 2π

0

sin2 θ dθ

)

is a complete polynomial on variable z1 of degree n − 1. Now we take
c1ij0, cl00kl

̸= 0 for each l = 2, 3 . . . , d and we take zero all the other clijk
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so that

f2(r, z) =
n∑

i + j = 0
i, j even

ri+j

(
c1ij0

∫ 2π

0

cosi θ sinj θ dθ

)
,

fl+1(r, z) =
n∑

kl=0

zkl
l (2π cl00kl

).

Here we take a10k1 , b01k1 , c1ij0 and cl00kl
in such a way for that

all coefficients of f̄1 and fl+1 for l = 1, 2, . . . , d, are linearly indepen-
dent. Therefore we can choose these coefficients in order that f̄1 has
n − 1 simple real roots, f2 has n/2 simple positive real roots and
fl+1 has n simple real roots for each l = 2, 3, . . . , d . In this case
(f̄1, f2, . . . , fd+1) = (0, . . . , 0) has nd(n − 1)/2 solutions with r > 0.
Furthermore by independence of the coefficients these solutions can be
taken in a way that the Jacobian of f in all these solutions is nonzero.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We apply again the change of coordinates given in (8) for Yε(x, y, z).
For Xε(x, y, z) we use the calculations done in the previous section.
Analogously to what we did in the previous section we shall study the
periodic solutions of system (2) with ε = 0 contained in the cylindrical
annulus (10) which can be prolonged to limit cycles of system (2) with

ε ̸= 0 sufficiently small. In Ã we have for ε small enough θ̇ > 0 for all
(r, θ, z) ∈ Ã.

Taking θ as independent variable system (2) in Ã becomes

(15)




r′

z′
1
...
z′

d


 =





ε




F1(θ, r, z)
F2(θ, r, z)

...
Fd+1(θ, r, z)


 + O(ε2) if h(θ, r, z) > 0,

ε




G1(θ, r, z)
G2(θ, r, z)

...
Gd+1(θ, r, z)


 + O(ε2) if h(θ, r, z) < 0,
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with

G1(θ, r, z) =
n∑

i+j+k=0

ri+jzk
(
αijk cosi+1 θ sinj θ + βijk cosi θ sinj+1 θ

)
,

Gl+1(θ, r, z) =
n∑

i+j+k=0

ri+jzkγlijk cosi θ sinj θ,

for l = 1, 2, . . . , d, with F1 and F2 given in (12) and h(θ, r, z) = sin θ. So

for (θ, r, z) ∈ h−1(0) we have
∂h

∂θ
(θ, r, z) |θ∈{0,π}= cos θ |θ∈{0,π}= ±1 ̸=

0.
We must study the zeros of the averaged function f given in (7),

namely f = (f1, f2, . . . , fd+1) where

f1(r, z) =

∫ π

0

F1(s, r, z) ds +

∫ 2π

π

G1(s, r, z) ds

=
n∑

i + j + k = 0
i odd

ri+jzk
(
aijk + (−1)jαijk

) ∫ π

0

cosi+1 θ sinj θ dθ

+
n∑

i + j + k = 0
i even

ri+jzk
(
bijk − (−1)jβijk

) ∫ π

0

cosi θ sinj+1 θ dθ,

fl+1(r, z) =

∫ π

0

Fl+1(s, r, z) ds +

∫ 2π

π

Gl+1(s, r, z) ds

=
n∑

i + j + k = 0
i even

(clijk + (−1)jγlijk) ri+jzk

∫ π

0

cosi θ sinj θ dθ,

for l = 1, 2, . . . , d.
Therefore we can to write f1(r, z) as

(16) A1r + A2r
2 + . . . + Anrn
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with

Ap =

n−p∑

k=0

∑

i + j = p
i odd

zk
(
aijk + (−1)jαijk

) ∫ π

0

cosi+1 θ sinj θ dθ

+

n−p∑

k=0

∑

i + j = p
i even

zk
(
bijk − (−1)jβijk

) ∫ π

0

cosi θ sinj+1 θ dθ,

for l = 1, 2, . . . , d.
Note that f1 = rf̄1 with f̄1(r, z) = A1+A2r+ . . .+Anrn−1. As r > 0,

to know the solutions of (f1, f2, . . . , fd+1) = (0, . . . , 0) is equivalent to
solve (f̄1, f2, . . . , fd+1) = (0, . . . , 0). But, f̄1 is a polynomial on variables
r and z of degree n − 1 and fl+1 are polynomials on variables r and z
of degree n for each l = 1, 2, . . . , d. By Bézout’s theorem f has at most
nd(n − 1) solutions (with r > 0).

To prove that this number is reached we choose a particular ex-
ample. So let aij0, αij0, bij0, βij0 ̸= 0 and we take zero all the other
aijk, αijk, bijk, βijk, then f̄1 is a real polynomial of degree n − 1 that
does not depend of z, that is f̄1 = A1 + A2r + . . . + Anr

n−1 with

Ap =
∑

i + j = p
i odd

(aij0 + (−1)jαij0)

∫ π

0

cosi+1 θ sinj θ dθ

+
∑

i + j = p
i even

(bij0 − (−1)jβij0)

∫ π

0

cosi θ sinj+1 θ dθ,

for 1 ≤ p ≤ n − 1.
Analogously for each l = 1, 2, . . . , d we take clijk = γlijk = 0 if

i, j, k1,. . .,kl−1, kl+1, . . . , kd ̸= 0 so that

fl+1(r, z) =
n∑

kl=0

zkl
l (cl00k + γl00k)π

do not depends of r.
Under such conditions all coefficients of f̄1 and fl+1 for l = 1, 2, . . . , d

can be taken to be linearly independent from the appropriate choice
of aij0, αij0, bij0, βij0, cl00k and γl00k. Such values can be taken so
that f̄1 is a complete real polynomial on variable r of degree n − 1,
and therefore it can have n − 1 simple positive real roots, and each
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fl+1 is a complete real polynomial on variable zl with n simple real
roots for l = 1, 2, . . . , d. So for this particular case the number of
solutions of (f̄1, f2, . . . , fl+1) = (0, . . . , 0) is nd(n−1). By independence
of the coefficients such solutions can be taken so that the Jacobian of
f evaluated at them is nonzero.

By Theorem 6 this completes the proof of Theorem 2.

5. Proofs of Corollaries 3 and 4

Proof of Corollary 3. To prove Corollary 3 we follow the steps of the
proof presented in section 3, however we highlight some differences. We
consider the change of coordinates given in (8) applied to system (1)
taking a00k = b00k = 0 for all k and instead of (9) we obtain

ṙ = ε
n∑

i+j+k=0

ri+jzk
(
aijk cosi+1 θ sinj θ + bijk cosi θ sinj+1 θ

)
,

θ̇ = 1 + ε

n∑

i+j+k=0

ri+jzk
(
aijk cosi θ sinj+1 θ + bijk cosi+1 θ sinj θ

)
,

żl = ε
n∑

i+j+k=0

clijk ri+jzk cosi θ sinj θ,

for l = 1, 2, . . . , d.
As r does not appear in the denominator of θ̇, if ε is sufficiently small

θ̇ > 0 for every (r, θ, z) in a ball B of an arbitrary given radius around
the origin of Rd+2. Now in the ball B r can be approximated to the zero
as we want, this cannot occur working with the cylindrical annulus Ã
of section 3. From here the calculations are done analogously to section
3, and we obtain the same maximum number of zeros of the averaging
function for the new system (11) with a00k = b00k = 0. �

Proof of Corollary 4. The same above argument can be used for prov-
ing Corollary 4 and we follow the steps of the proof presented in section
4. More precisely, we apply the change of coordinates (8) to system
(2) considering a00k = α00k = b00k = β00k = 0 for all k in order to

obtain an expression for θ̇ in both systems y > 0 and y < 0 with de-
nominator that does not depend on r. So for ε sufficiently small θ̇ > 0
for every (r, θ, z) in the ball B of the proof of Corollary 3. The rest
of the proof is done as in section 4 for obtaining the maximum num-
ber of zeros of the averaging function for the new system (15) with
a00k = α00k = b00k = β00k = 0. Again in the ball B r can be approxi-
mated to zero as we want. �
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