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On the Darboux integrability of a cubic CRNT model in R5

Antoni Ferragut, Claudia Valls

Abstract

We study the Darboux integrability of a differential system with parameters coming from
a chemical reaction model in R5. We find all its Darboux polynomials and exponential factors
and we prove that it is not Darboux integrable.

Keywords. Darboux polynomial; exponential factor; Darboux integrability; chemical reaction
network

1 Introduction and statement of the main result

Consider an n-dimensional polynomial differential system of degree d ∈ N

ẋ = P (x), x ∈ Rn, (1.1)

where P (x) = (P1(x), . . . , Pn(x)), Pi ∈ C[x], and the dot denotes derivative with respect to the

independent variable t.

A function H(x) is a first integral of system (1.1) if it is continuous and defined in a full

Lebesgue measure subset Ω ⊆ Rn, is not locally constant on any positive Lebesgue measure

subset of Ω and moreover is constant along each orbit of system (1.1) in Ω. If H is C1 and we

name X the vector field associated to system (1.1), then we have

X (H) = P1
∂H

∂x1
+ · · ·+ Pn

∂H

∂xn
= 0.

System (1.1) is Ck-completely integrable in Ω if it has n− 1 functionally independent Ck first

integrals in Ω. Recall that k functions H1(x), . . . ,Hk(x) are functionally independent in Ω if the

matrix of gradients (∇H1, . . . ,∇Hk) has rank k in a full Lebesgue measure subset of Ω.

For an n-dimensional system of differential equations the existence of some first integrals

reduces the complexity of its dynamics and the existence of n − 1 functionally independent first
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integrals solves completely the problem (at least theoretically) of determining its phase portrait.

In general for a given differential system it is a difficult problem to determine the existence or

non-existence of first integrals.

During recent years the interest in the study of the integrability of differential equations has

attracted much attention from the mathematical community. Darboux theory of integrability plays

a central role in the integrability of the polynomial differential systems since it gives a sufficient

condition for the integrability inside a wide family of functions. We highlight that it works for real

or complex polynomial ordinary differential equations and that the study of complex algebraic

solutions is necessary for obtaining all the real first integrals of a real polynomial differential

equation.

A Darboux polynomial of (1.1) is a polynomial f ∈ C[x] such that

X (f) = P1
∂f

∂x1
+ · · ·+ Pn

∂f

∂xn
= kf,

where x = (x1, . . . , xn) and k ∈ C[x], which is called the cofactor of f , has degree at most d−1.

An exponential factor of (1.1) is a function F = exp(g/f), with f, g ∈ C[x], such that

X (F ) = P1
∂F

∂x1
+ · · ·+ Pn

∂F

∂xn
= LF,

where L ∈ C[x], which is called the cofactor of F , has degree at most d− 1. We note that in this

case f is a Darboux polynomial of (1.1) and that X (g) = kg + Lf , where k is the cofactor of f .

If H is a Darboux first integral then it has the form

H = fλ11 · · · f
λp
p Fµ11 · · ·F

µq
q ,

where f1, . . . , fp are Darboux polynomials, F1, . . . , Fq are exponential factors and λi, µj are com-

plex numbers, for i = 1, . . . , p and j = 1, . . . , q.

The Darboux theory of integrability relates the number of Darboux polynomials and exponen-

tials factors with the existence of a Darboux first integral, see for example [10]. We recall that a

Darboux first integral is a product of complex powers of Darboux polynomials and exponential

factors.

The main aim in this paper is to study the Darboux integrability of a cubic differential sys-

tem that belongs to R5 and has an important contribution in Chemical Reaction Network Theory

(CRNT). A reaction network N = (S, C,R) is defined as a set of species S , a set of complexes

C and a set of reactions R between complexes; each complex is a combination of species. It is

assumed that a reaction occurs according to mass-action kinetics, that is, at a rate proportional to

the product of the species concentrations in the reactant or source complex. The set of reactions

together with a rate vector give rise to a polynomial system of ordinary differential equations. We

refer the reader to [7, 8, 9] for more information about CRNT. For a concrete system of chemical

reactions the parameter and state spaces are typically high-dimensional and one uses numerical
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methods to analyze the solutions. Due to high computational complexity this can be done only for

a small set of values of system’s parameters. Thus instead of studying quantitative aspects of the

dynamics, recently there has been an increasing interest in studying qualitative properties of the

CRN. For example in [1, 2, 3, 4, 5, 6] the authors considered the question of existence of single

versus multiple steady states (also referred to as multistationary). The existence of first integrals

of a polynomial differential system describing a CRN often provides essential qualitative informa-

tion (the level sets are invariant under the flow) about the solution or can be used, to reduce the

dimension of the total state space. Since the computation of nonlinear conservation laws (i.e., first

integrals) is highly nontrivial, most of the known results related to the CRN dynamics provide only

trivial linear first integrals. Hence, in this paper, our purpose is to show, by following an example

(see system (1.2)), how to apply Darboux theory of integrability to obtain nontrivial and nonlinear

algebraic and Darboux first integrals.

We deal with the following differential system appearing in [9]:

ẋ1 = −c1x1x22 + c2x4 + c4x5,

ẋ2 = −2c1x1x
2
2 + c4x5,

ẋ3 = c2x4 − c3x3x4,
ẋ4 = c1x1x

2
2 − c2x4 − c3x3x4,

ẋ5 = c3x3x4 − c4x5,

(1.2)

where c1, c2, c3, c4 are positive constants. We shall study the Darboux integrability of this system

by characterizing its Darboux polynomials and exponential factors.

Next we provide the main result of the paper. We prove that there only exist two first integrals

(one polynomial and one Darboux), one irreducible Darboux polynomial of degree one and six

exponential factors. Indeed, we prove that the system is not Darboux integrable.

Theorem 1.1. The following results hold for system (1.2).

(a) The unique irreducible polynomial first integral isH1 = x1+x4+x5. Any other polynomial

first integral is a polynomial function of H1.

(b) The unique irreducible Darboux polynomial is F = c2 − c3x3. It has cofactor k = −c3x4.

(c) It has six exponential factors: F1 = ex3 , F2 = ex2−2x1 , F3 = ex1+x4 , F4 = e(x2−2x1)2 ,

F5 = e(2x1−x2)(x1−x3+x4) and F6 = e(x1−x3+x4)
2
. If eg/h is another exponential factor,

then h ∈ C[H1] and

g(x1, x2, x3, x4) = a1x3 + a2(x2 − 2x1) + a3(x1 + x4) + a4(x2 − 2x1)
2

+ a5(x2 − 2x1)(x1 − x3 + x4) + a6(x1 − x3 + x4)
2, (1.3)

with ai ∈ C, i = 1, . . . , 6.
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(d) It has the (non-rational) Darboux first integral

H2 = F 3c2/c3e−(x1+x4)e−(x2−2x1)ex3 .

(e) It is not Darboux completely integrable.

2 Proof of the main result

Statement (e) follows immediately from statements (a)-(d), since there is no way to construct two

Darboux first integrals functionally independent of H1, H2. In particular, it is clear that the system

has not rational first integrals. Hence, we need to prove only statements (a), (b), (c) and (d).

We prove the statements of Theorem 1.1 separately.

2.1 Proof of statement (a)

Straightforward computations show that H1 is a first integral of (1.2). The restriction of system

(1.2) to H1 = h is the differential system

ẋ1 = −c1x1x22 − c4x1 + (c2 − c4)x4 + c4h,

ẋ2 = −2c1x1x
2
2 − c4x1 − c4x4 + c4h,

ẋ3 = (c2 − c3x3)x4,
ẋ4 = c1x1x

2
2 − c2x4 − c3x3x4.

(2.1)

Let Y be the corresponding vector field. Next lemma shows that (2.1) has no polynomial first

integrals.

Lemma 2.1. System (2.1) has no polynomial first integrals.

Proof. Let g(x1, x2, x3, x4) be a polynomial first integral of degree m ∈ N of system (2.1). We

write g =
∑m

i=1 gi(x1, x2, x3, x4), where gi is a homogeneous polynomial of degree i. The equa-

tion corresponding to the terms of degree m+ 2 of Y(g) = 0 is

−c1x1x22
(
∂gm
∂x1

+ 2
∂gm
∂x2

− ∂gm
∂x4

)
= 0,

from which we obtain gm(x1, x2, x3, x4) = gm(x3, X1, X2), where we have introduced the vari-

ables (X1, X2) = (x2−2x1, x1+x4). Concerning the terms of degreem+1 we have the equation

−c1x1x22
(
∂gm−1

∂x1
+ 2

∂gm−1

∂x2
− ∂gm−1

∂x4

)
− c3x3x4

(
∂gm
∂x3

+
∂gm
∂x4

)
= 0,

from which we get

gm−1 =
c3x3

c1(x2 − 2x1)

(
∂gm
∂x3

(x3, X1, X2) +
∂gm
∂X2

(x3, X1, X2)

)(
x1 + x4
x2 − 2x1

log
x2
4x1

+
x2 + 2x4

2x2

)
+ ḡm−1(x3, x2 − 2x1, x1 + x4),
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where ḡm−1 is a polynomial. Since the logarithm must be removed, we have

gm = gm(X1, X3),

where we have introduced X3 = X2 − x3. Hence gm−1 = gm−1(x3, X1, X2). Next we deal with

the terms of degree m. We obtain

gm−2 =
X2

c1X2
1

(
(2c2 − c4)

∂gm
∂X1

+ (c2 + c4)
∂gm
∂X2

+ c3x3

(
∂gm−1

∂x3
+
∂gm−1

∂X2

))
log

x2
4x1

+Gm−2 + ḡm−2(x3, X1, X2),

whereGm−2 is a rational (maybe polynomial) function and ḡm−2 is a polynomial. We must remove

the logarithm, hence we must solve an ODE. We obtain

gm−1(x3, X1, X2) = −
(c2 + c4)

∂gm
∂X3

+ (2c2 − c4)∂gm∂X1

c3
log x3 + ḡm−1(X1, X3).

A new logarithm appears. To remove it we must take

gm(X1, X3) = ((c2 + c4)X1 + (c4 − 2c2)X3)
m,

and therefore gm−1(x3, X1, X2) = gm−1(X1, X3). Now back to the expression of gm−2 we have

gm−2 =
3c2c4m

2c1

((c2 + c4)X1 + (c4 − 2c2)X3)
m−1

x2
+ ḡm−2(x3, X1, X2).

Since gm−2 is to be a polynomial, x2 - ((c2 + c4)X1 + (c4 − 2c2)X3) and ci > 0 for all i, we

have m = 0. Then g is a constant and the lemma follows.

Remark 2.2. The sequence of resolution in the proof of Lemma 2.1 will be used later on for other

purposes.

After Lemma 2.1 we can prove statement (a) of Theorem 1.1. Let f be a polynomial first

integral of (1.2) which is not a function of H1. Write f = (H1 − h)jF , where j ∈ N ∪ {0} and

(H1 − h) - F . Since X(f) = 0, we have X(F ) = 0. Let g = F |H1=h 6≡ 0. Then Y(g) = 0.

By Lemma 2.1 we have g ≡ 0, which is a contradiction. Hence such f cannot exist and therefore

statement (a) of Theorem 1.1 follows.

2.2 Proof of statement (b)

We start the study of the Darboux polynomials of system (1.2) simplifying the general expression

of the cofactor of any Darboux polynomial.

Proposition 2.3. Let f be a Darboux polynomial of degree m ∈ N of system (1.2) with cofactor

k. Then k = k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x5 + k6x
2
2 + k7x1x2, where ki ∈ C. Moreover,

−k6/c1,−k7/(2c1) ∈ N ∪ {0}.



6 Antoni Ferragut, Claudia Valls

Proof. We write the cofactor k ∈ C[x1, x2, x3, x4, x5] as

k =k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x5 + k6x
2
1 + k7x1x2 + k8x1x3

+ k9x1x4 + k10x1x5 + k11x
2
2 + k12x2x3 + k13x2x4 + k14x2x5

+ k15x
2
3 + k16x3x4 + k17x3x5 + k18x

2
4 + k19x4x5 + k20x

2
5.

Taking the homogeneous part of degree m + 1 of the equation X (f) = kf and using the Euler

theorem of homogeneous functions for fm we get the equation

−
(
k6x

2
1 + k7x1x2 + k8x1x3 + k9x1x4 + k10x1x5 + (c1m+ k11)x

2
2 + k12x2x3 + k13x2x4

+ k14x2x5 + k15x
2
3 + k16x3x4 + k17x3x5 + k18x

2
4 + k19x4x5 + k20x

2
5

)
fm

+ c1x
2
2

(
(x2 − 2x1)

∂fm
∂x2

+ x3
∂fm
∂x3

+ (x1 + x4)
∂fm
∂x4

+ x5
∂fm
∂x5

)
= 0.

The general solution of this equation is

fm(x1, x2, x3, x4, x5) = e
x1P1

2c1x2(2x1−x2)
2 x

P2
4c1(2x1−x2)

2

2 (2x1 − x2)m+
P3
4c1

× Cm
(
x1,

x3
2x1 − x2

,
x1 + x4
2x1 − x2

,
x5

2x1 − x2

)
,

where

P1 = 4k20x
2
5 + 4k19x4x5 + 4k18x

2
4 + 4k17x3x5 + 4k16x3x4 + 4k15x

2
3

+ 2(k19 − k10)x2x5 + 2(2k18 − k9)x2x4 + 2(k16 − k8)x2x3
+ 4k10x1x5 + 4k9x1x4 + 4k8x1x3 + 2(k9 − 2k6)x1x2 + 4k6x

2
1 + (k18 − k9 + k6)x

2
2;

P2 = 4k20x
2
5 + 4k19x4x5 + 4k18x

2
4 + 4k17x3x5 + 4k16x3x4 + 4k15x

2
3 + 4k14x2x5

+ 4k13x2x4 + 4k12x2x3 + 4(k9 − 2k7 − k6)x21 + (−k18 + 2k13 + k9 − 2k7 − k6)x22
+ 4(k19 − 2k14)x1x5 + 8(k18 − k13)x1x4 + 4(k16 − 2k12)x1x3

+ 4(k18 − k13 − k9 + 2k7 + k6)x1x2;

P3 =k18 − 2k13 + 4k11 − k9 + 2k7 + k6;

and Cm is an arbitrary function. In order to get a polynomial the exponent of the exponential must

be a constant and the exponents of x2 and 2x1 − x2 must be non-negative integers. Therefore we

must take k11 = −c1n1 and k7 = −2c1n2, where n1, n2 ∈ N∪{0}, and k6 = k8 = k9 = k10 = 0,

k12 = · · · = k20 = 0. We get

fm(x1, x2, x3, x4, x5) = xn2
2 (x2 − 2x1)

m−n1−n2Cm

(
x1,

x3
x2 − 2x1

,
x1 + x4
x2 − 2x1

,
x5

x2 − 2x1

)
.

Since this is to be a polynomial of degree m, we take

fm(x1, x2, x3, x4, x5) = xn1
1 x

n2
2 (x2 − 2x1)

m−n1−n2−nPn(x3, x1 + x4, x5),

where Pn is a homogeneous polynomial of degree n ∈ N ∪ {0}. Renaming the coefficients of k,

the proposition follows.
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Lemma 2.4. The unique Darboux polynomial of degree one of system (1.2) is c2 − c3x3. Its

cofactor is k = −c3x4.

Proof. It follows after easy computations.

Next lemma shows that there are no more Darboux polynomials, and thus it finishes the proof

of statement (b) of Theorem 1.1.

Lemma 2.5. System (1.2) has no irreducible Darboux polynomials of degree greater than one.

Proof. Since H1 = x1 + x4 + x5 is a first integral and c2 − c3x3 = 0 is a Darboux polynomial,

both of (1.2), we can write system (1.2) restricted to x1 + x4 + x5 = h and c2 − c3x3 = 0:

ẋ1 =− c1x1x22 − c4x1 + (c2 − c4)x4 + c4h,

ẋ2 =− 2c1x1x
2
2 − c4x1 − c4x4 + c4h,

ẋ4 =c1x1x
2
2 − 2c2x4.

(2.2)

Let f be an irreducible Darboux polynomial of system (1.2). Let g be the Darboux polynomial

of (2.2) corresponding to f restricted to x1 + x4 + x5 = h and c2 − c3x3 = 0. Let m ∈ N be the

degree of g. Then

(−c1x1x22 − c4x1 + (c2 − c4)x4 + c4h)
∂g

∂x1

+ (−2c1x1x
2
2 − c4x1 − c4x4 + c4h)

∂g

∂x2
+ (c1x1x

2
2 − 2c2x4)

∂g

∂x4
− (k0 + k1x1 + k2x2 + k4x4 − c1n1x22 − 2c1n2x1x2)g = 0.

(2.3)

We note that the expression of the cofactor of g can be obtained from Proposition 2.3 after the

considered restrictions.

We write g =
∑m

i=0 gi(x, y), with gi a homogeneous polynomial of degree i. From (2.3), the

equation of degree m+ 2 becomes, after canceling a common factor c1x2,

−x1x2
(
∂gm
∂x1

+ 2
∂gm
∂x2

− ∂gm
∂x4

)
+ (n1x2 + 2n2x1)gm = 0.

Then gm = xn1
1 x

n2
2 ḡm(x2 − 2x1, x1 + x4), with ḡm a homogeneous polynomial of degree m −

n1 − n2.

The equation of degree m+ 1 of (2.3) is

− c1x1x22
(
∂gm−1

∂x1
+ 2

∂gm−1

∂x2
− ∂gm−1

∂x4

)
+ c1x2(n1x2 + 2n2x1)gm−1

− (k1x1 + k2x2 + k4x4)x
n1
1 x

n2
2 ḡm(x2 − 2x1, x1 + x4) = 0.

from which we obtain

gm−1 =− 2k1x1 − k1x2 + k4x2 + 2k4x4
2c1(x2 − 2x1)

xn1
1 x

n2−1
2 ḡm(x2 − 2x1, x1 + x4)

− 2k2x1 − k4x1 − k2x2 − k4x4
c1(x2 − 2x1)2

log
x2
4x1

xn1
1 x

n2
2 ḡm(x2 − 2x1, x1 + x4)

+ xn1
1 x

n2
2 ḡm−1(x2 − 2x1, x1 + x4),
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where ḡm−1 is a homogeneous polynomial of degree m− 1− n1 − n2. Since the logarithm must

be removed, we have k2 = k4 = 0. Hence

gm−1 =
k1
2c1

xn1
1 x

n2−1
2 ḡm(x2 − 2x1, x1 + x4) + xn1

1 x
n2
2 ḡm−1(x2 − 2x1, x1 + x4).

The equation of degree m of (2.3) is

− c1x1x22
(
∂gm−2

∂x1
+ 2

∂gm−2

∂x2
− ∂gm−2

∂x4

)
+ c1x2(n1x2 + 2n2x1)gm−2

+ ((c2 − c4)x4 − c4x1)
∂gm
∂x1

− c4(x1 + x4)
∂gm
∂x2

− 2c2x4
∂gm
∂x4

− k0gm − k1x1gm−1 = 0.

We obtain

gm−2 =
xn1
1 x

n2
2 Em−2(ḡm)

c1(x2 − 2x1)3
log

x2
x1

+
xn1−1
1 xn2−2

2 Pm−2

c21(x2 − 2x1)2
+ xn1

1 x
n2
2 ḡm−2(x2 − 2x1, x1 + x4),

where ḡm−2 is a homogeneous polynomial of degree m− 2− n1 − n2, Pm−2 is a homogeneous

polynomial and Em−2(ḡm) = 0 is an ODE with solution

ḡm = (x2 − 2x1)
n3(x1 + x4)

n4((4c2 + c4)x1 − (c2 + c4)x2 + (2c2 − c4)x4)m−n1−n2−n3−n4 ,

with ni ∈ N ∪ {0}, where we have fixed k0 = −c2n1 − (c2 + c4)n4 and c4n2 + 4(c2 − c4)n1 +

(2c2 − c4)n3 = 0 for ḡm to be a polynomial. The logarithm in the expression of gm−2 must be

removed, hence we have this expression for ḡm. Then

gm−2 =xn1−1
1 xn2−2

2 (x2 − 2x1)
n3−1(x1 + x4)

n4−1×
((4c2 + c4)x1 − (c2 + c4)x2 + (2c2 − c4)x4)m−1−n1−n2−n3−n4P4

+
k1
2c1

xn1
1 x

n2−1
2 ḡm−1 + xn1

1 x
n2
2 ḡm−2,

where P4 is a homogeneuos polynomial of degree 4.

The equation of degree m− 1 of (2.3) is

−c1x1x22
(
∂gm−3

∂x1
+ 2

∂gm−3

∂x2
− ∂gm−3

∂x4

)
+ c1x2(n1x2 + 2n2x1)gm−3

+ ((c2 − c4)x4 − c4x1)
∂gm−1

∂x1
− c4(x1 + x4)

∂gm−1

∂x2
− 2c2x4

∂gm−1

∂x4

+ (c2n1 + (c2 + c4)n4)gm−1 − k1x1gm−2 + c4h

(
∂gm
∂x1

+
∂gm
∂x2

)
= 0.

We do not write the expression of gm−3 because it is too long. In this expression there is

a logarithm that must be removed. Its coefficient provides an ODE with unknown ḡm−1 whose

solution is:

ḡm−1 =
−1

2c1(2c2 − c4)(c2 + c4)
Xn3−1

1 Xn4−1
2 (−c2(X1 − 2X2)− c4(X1 +X2))

m−2−∑4
i=1 ni×

(
− c4(2c1(2c2 − c4)hn4X1 + (c2 + c4)k1X2)(c2(X1 − 2X2) + c4(X1 +X2))

+ 2c1c2h(2c2 − c4)
[
2(c2 + c4)(2n1 + n3)X1X2 log(X1)

−
(
8c2(2n1 + n3) + c4(3m− 11n1 − 4n3 − 3n4)

)
X1X2 log((2c2 − c4)X2)

])

+ Cm−1X
n3
1 Xn4

2 (−c2X1 − c4X1 + 2c2X2 − c4X2)
m−1−∑4

i=1 ni ,
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where Cm−1 is a constant and where we have written X1 = x2 − 2x1 and X2 = x1 + x4 for

simplicity. To remove these new logarithms we have two possibilities: either c4 = 2c2, or

2n1 + n3 = 0 and 8c2(2n1 + n3) + c4(3m− 11n1 − 4n3 − 3n4) = 0.

We deal with the first case later on. The latter case implies n4 = m + n3/2 and n1 = −n3/2.

Since 0 ≤ ni ≤ m, we must take n1 = n3 = 0, and hence n4 = m. Thus we have n2 = 0.

After these new conditions we have gm = ḡm = Xm
2 and

gm−1 =
k1
2c1

Xm
2

x2
+ ḡm−1.

Thus k1 = 0. Moreover

gm−2 = −c2m
2c1

Xm−1
2

x2
+ ḡm−2.

Therefore we get m = 0.

The case c4 = 2c2 follows in a similar way as the previous one: solving the ODE’s as before,

we obtain the following polynomials:

gm =xn1
1 x

n2
2 ḡm(X1, X2);

gm−1 =
k1
2c1

xn1
1 x

n2−1
2 ḡm + xn1

1 x
n2
2 ḡm−1(X1, X2);

gm−2 =xn1−1
1 x2n1−2

2 Xn3−1
1 Xn4−1

2 P3 +
k1
2c1

xn1
1 x

2n1−1
2 ḡm−1 + xn1

1 x
2n1
2 ḡm−2(X1, X2),

where P3 is a polynomial; and the conditions k2 = k4 = 0, n2 = 2n1, k0 = −c2(n1 + 3n4) and

ḡm = Xn3
1 Xn4

2 , with
∑4

i=1 ni = m.

When solving the equation corresponding to gm−3, as before a logarithm must be removed,

and we obtain

ḡm−1 =− Xn3−2
1 Xn4−1

2 (2c1n4hX
2
1 − k1X2

2 )

3c1
+ Cm−1X

n3−1
1 Xn4

2

− 2

3
(2n1 + n3)hX

n3−1
1 Xn4

2 logX2,

where Cm−1 is a constant. Since ḡm−1 must be a polynomial and h does not need to be zero, we

must take 2n1 + n3 = 0. Hence n1 = n3 = 0, and therefore from above n2 = 0 and hence

n4 = m. So we have gm = ḡm = Xm
2 and

gm−1 =
k1
2c1

Xm
2

x2
+ ḡm−1.

Thus k1 = 0. Moreover

gm−2 = −c2m
2c1

Xm−1
2

x2
+ ḡm−2.

Therefore we get m = 0.

Since deg g = 0 in all cases, we have that (c2 − c3x3)|f . But f is irreducible, therefore

f = c2 − c3x3. Then the lemma follows.
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2.3 Proof of statement (c)

We consider system (1.2) restricted to H1 = h, i.e. we consider system (2.1). The following result

characterizes its exponential factors of the form exp(g), with g ∈ C[x1, x2, x3, x4].

Lemma 2.6. Let exp(g), with g ∈ C[x1, x2, x3, x4], be an exponential factor of system (2.1). Then

g is a linear combination of x3, x2 − 2x1, x1 + x4, (x2 − 2x1)
2, (x2 − 2x1)(x1 − x3 + x4) and

(x1 − x3 + x4)
2.

Proof. Since exp(g) is an exponential factor of system (2.1), g satisfies

Y(g) = k = k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x
2
1 + k6x1x2 + k7x1x3 + k8x1x4

+ k9x
2
2 + k10x2x3 + k11x2x4 + k12x

2
3 + k13x3x4 + k14x

2
4.

(2.4)

Assume that g is a polynomial of degree m ∈ N, with m ≥ 3. We write it as sum of its homoge-

neous parts g =
∑m

i=1 gi(x1, x2, x3, x4), where gi is a homogeneous polynomial of degree i and

gm 6≡ 0. Since the right hand side terms of (2.4) has degree two, its left hand side must also have

degree two. Since m ≥ 3, the computation of gm, gm−1 and gm−2 follow in the same way as the

proof of Lemma 2.1. Therefore we get m = 0, which is a contradiction. Hence g is a polynomial

of degree less than or equal to two in the variables x1, x2, x3, x4. Indeed easy computations show

that g is a linear combination of x3, x2 − 2x1, x1 + x4, (x2 − 2x1)
2, (x2 − 2x1)(x1 − x3 + x4)

and (x1 − x3 + x4)
2.

Remark 2.7. In particular, the functions appearing in statement (c) of Theorem 1.1 are exponential

factors.

In view of Lemma 2.6, if E = exp(g) is an exponential factor of system (2.1), then g writes

as (1.3) and the cofactor of E has the form

L = L0 + c4L1H1, (2.5)

where

L0 = (a2 − a3)c4x1 + ((a1 − 2a2)c2 + (a2 − a3)c4)x4 − (4a4 − 3a5 + 2a6)c4x
2
1

+ (2a4 − a5)c4x1x2 − (a5 − 2a6)c4x1x3 + 2((4a4 − a6)c2 − 2(a4 − a5 + a6)c4)x1x4

+ ((2a4 − a5)c4 − (4a4 + a5)c2)x2x4 + (2(a5 + a6)− (a1 + a3)c3 + (2a6 − a5)c4)x3x4
+ ((a5 − 2a6)c4 − 2(a5 + a6)c2)x

2
4

and

L1 = −(a2 − a3) + (4a4 − 3a5 + 2a6)x1 − (2a4 − a5)x2 + (a5 − 2a6)x3 − (a5 − 2a6)x4.

We shall use these expressions later on in the proof of Lemma 2.9.

We go back now to system (1.2). Since it has only one Darboux polynomial and one polynomial

first integral, if it has an exponential factor, then it must be of the form exp(f/(FnQ(H1))), with

n ∈ N ∪ {0} and Q ∈ C[H1]. Next we prove that the expression of an exponential factor of this

form cannot contain a power of F in the denominator of the exponent.
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Lemma 2.8. Suppose that system (1.2) has the exponential factor E = exp(f/(FnQ(H1)), with

f ∈ C[x1, x2, x3, x4, x5], n ∈ N ∪ {0}, F - f and Q a polynomial. Then n = 0.

Proof. Suppose that n > 0. Let L be the cofactor of E. Since X (Q(H1)) = 0, we have

LE = X (E) = E
X (f) · Fn − f · X (Fn)

F 2nQ(H1)
.

Hence

X (f)Fn + nc3x4fF
n = LF 2nQ(H1),

see Lemma 2.4. Therefore

X (f) + nc3x4f = LFnQ(H1). (2.6)

Since n > 0, equation (2.6) on H1 = h and F = 0 becomes

(−c1x1x22 − c4x1 + (c2 − c4)x4 + c4h)
∂f̄

∂x1
+ (−2c1x1x

2
2 − c4x1 − c4x4 + c4h)

∂f̄

∂x2

+ (c1x1x
2
2 − 2c2x4)

∂f̄

∂x4
= −nc3x4f̄ .

where f̄ is the restriction of f toH1 = h and F = 0. This means that f̄ is a Darboux polynomial of

system (2.2) with cofactor−nc3x4 6= 0. In view of the proof of Lemma 2.5 this is a contradiction,

which comes from the assumption n 6= 0. Therefore n = 0 and the lemma follows.

The following result completes the proof of statement (c).

Lemma 2.9. Let E = exp(f/Q(H1)) be an exponential factor of system (1.2), with Q ∈ C[H1]

and f ∈ C[x1, x2, x3, x4, x5]. Then f − gQ(H1), with g as in (1.3), is a polynomial function of

H1.

Proof. Set x5 = H1 − x1 − x4. We write the cofactor k of exp(f/Q(H1)) in the variables

x1, x2, x3, x4, H1 as follows:

k = k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x
2
1 + k6x1x2 + k7x1x3 + k8x1x4

+ k9x
2
2 + k10x2x3 + k11x2x4 + k12x

2
3 + k13x3x4 + k14x

2
4

+ (k15 + k16x1 + k17x2 + k18x3 + k19x4)H1 + k20H
2
1 .

We also write Q and f as polynomials in H1:

Q(H1) =
n∑

j=0

djH
j
1 and f =

n∑

j=0

fj(x1, x2, x3, x4)H
j
1 ,

where dj ∈ C and fj ∈ C[x1, x2, x3, x4]. Since E is an exponential factor, f satisfies

X (f) = kQ(H1). (2.7)

Evaluating (2.7) on H1 = 0, we have that exp(f0), with f0 = f |H1=0, is an exponential factor

of system (2.1) with h = 0 with the cofactor d0k̄ = d0k|H1=0. In view of Lemma 2.6, we have
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f0 = f00 + d0g, with g as in (1.3). Moreover, k̄ = L0. Now computing the coefficient of H1 in

(2.7) we get

c4
∂f0
∂x1

+ c4
∂f0
∂x2

+ (−c1x1x22 − c4x1 + (c2 − c4)x4)
∂f1
∂x1

+ (−2c1x1x
2
2 − c4x1 − c4x4)

∂f1
∂x2

+ (c2 − c3x3)x4
∂f1
∂x3

+ (c1x1x
2
2 − c2x4 − c3x3x4)

∂f1
∂x4

= d1L0 + d0(k15 + k16x1 + k17x2 + k18x3 + k19x4).

Proceeding as in the proof of Lemma 2.6, we obtain f1 = f01 +d1g and k15 +k16x1 +k17x2 +

k18x3 + k19x4 = c4L1. Now computing the coefficient of H2
1 in (2.7) we get

c4
∂f1
∂x1

+ c4
∂f1
∂x2

+ (−c1x1x22 − c4x1 + (c2 − c4)x4)
∂f2
∂x1

+ (−2c1x1x
2
2 − c4x1 − c4x4)

∂f2
∂x2

+ (c2 − c3x3)x4
∂f2
∂x3

+ (c1x1x
2
2 − c2x4 − c3x3x4)

∂f2
∂x4

=d2L0 + d1L1 + d0k20,

or equivalently

(−c1x1x22 − c4x1 + (c2 − c4)x4)
∂f2
∂x1

+ (−2c1x1x
2
2 − c4x1 − c4x4)

∂f2
∂x2

+ (c2 − c3x3)x4
∂f2
∂x3

+ (c1x1x
2
2 − c2x4 − c3x3x4)

∂f2
∂x4

= d2L0 + d0k20.

Proceeding again as in the proof of Lemma 2.6 we get f2 = f02 + d2g and k20 = 0. Therefore

k = L, see (2.5). Now proceeding inductively with k = L we get that fj = f0j + djg, for j ≥ 2.

In short,

f =

n∑

j=0

dj
(
f0j + g

)
Hj

1 = P (H1) + gQ(H1),

with P (H1) =
∑n

j=0 djf
0
jH

j
1 and g as in (1.3). Then the lemma follows.

After Lemma 2.9, if exp(f/Q(H1)) is an exponential factor, then

ef/Q(H1) = egeP (H1)/Q(H1),

with P a polynomial in H1. Then statement (c) follows.

2.4 Proof of statement (d)

Let H be a Darboux first integral of system (1.2). Then it must be of the form H = F λ1 exp(g)

where g is given in (1.3). The cofactor of H must be zero. That is,

0 = −λ1c3x4 + L

= ((a1 − 2a2)c2 − λ1c3)x4 + (a3 − a2)c4x5 + 2(4a4 − a6)c2x1x4
+ (4a4 + 3a5 + 2a6)c4x1x5 + (a5 − 4a4)c2x2x4 − (2a4 + a5)c4x2x5

+ (−2a5c2 + 2a6c2 − a1c3 − a3c3)x3x4 − (a5 + 2a6)c4x3x5

+ 2(a5 − a6)c2x24 + (a5 + 2a6)c4x4x5,

(2.8)
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where L is the cofactor of exp(g), see (2.5). Solving (2.8) we get λ = 3a1c2/c3, a2 = a3 = −a1
and a4 = a5 = a6 = 0. Therefore statement (d) follows.
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