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PERIODIC MOTION IN PERTURBED ELLIPTIC
OSCILLATORS REVISITED

MONTSERRAT CORBERA!, JAUME LLIBRE? AND CLAUDIA VALLS?

ABSTRACT. We analytically study the Hamiltonian system in R* with
Hamiltonian
H = 202+ 9) + 5 (@ie +udy) — e Vala,)

being (a) Vi(z,y) = —(zy® +az®) and (b) Vi(z,y) = —(2®y + az®) with
a € R, where ¢ is a small parameter and w; and wy are the unperturbed
frequencies of the oscillations along the x and y axis, respectively. For
the potential (a) using averaging theory of first order we analytically
find for each a € R eight families of periodic solutions in every positive
energy level of H when the frequencies are not equal. For the potential
(b) using averaging theory of first and second order we analytically find
seven families of periodic solutions in every positive energy level of H
when the frequencies are not equal. Four of these seven families are
defined for all @ € R whereas the other three are defined for all a # 0.
Moreover, we provide the shape of all these families of periodic solutions.
These Hamiltonians may represent the central parts of deformed galaxies
and thus have been extensively used and studied numerically in order
to describe local motion in galaxies near an equilibrium point.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

After equilibrium points the periodic solutions are the most simple non—
trivial solutions of a differential system. Their study is of special interest
because the motion in their neighborhood can be determined by their kind
of stability. The stable periodic orbits explain the dynamics of bounded
regular motion, while the unstable ones helps to understand the possible
chaotic motion of the system. So, periodic orbits play a very important role
in understanding the orbital structure of a dynamical system.

Over the last half century dynamical systems perturbing a harmonic os-
cillator have been used extensively to describe the local motion, i.e. motion
near an equilibrium point. The study of this motion have been made mainly
using several numerical techniques, see for instance [2, 4, 5, 6, 8, 10, 14, 15,
16, 17, 23, 24] to cite just a few.
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The general form of a potential for a two-dimensional dynamical system
composed of two harmonic oscillators with cubic perturbing terms is
1
V= i(wfmZ + wiy?) + eVi(m,y),

where wy and ws are the unperturbed frequencies of the oscillator along the
x and the y axes, respectively, € is the small perturbation parameter and
V1 is the cubic function containing the perturbed terms. We will use the
perturbation functions

(@)  Vilz,y) = —(zy® + aa®),
and
) Vi(z,y) = —(a%y + az?),

with a € R. These perturbed oscillators are important because they describe
the motion of a star under the gravity field of a galaxy, for more information
see for instance the paper of Caranicolas [5] and the references quoted there.

The Hamiltonian associated to the potential V is

1
(1) H = H(z,y,p,py) = 507 +py) + V(,9),

and the corresponding Hamiltonian system is

T = pg,

y = Dy,

. oV
(2) px:—w%x—eg—x,

. 2
=—wiy—€—.
py 2Y 8
As usual the dot denotes derivative with respect to the time ¢ € R. Due to

the physical meaning the frequencies w; and wo are both positive.

We note that system (2) for ¢ = 0 can be solved. It has the solutions on
the energy level H = h of the form
x(t) = Cy cos(twy) + Casin(twy),
y(t) = C5 cos(twz) + Cysin(tws),
(3) pz(t) = —Chws sin(twy) + Cown cos(twy),
py(t) = —Csws sin(tws) + Caws cos(twa),

where C1, Cy, Cs,Cy € R satisfy
1
h = 5(@H(CE + C3) + w3 (C5 + C)).

Note that the solutions of system (2) for ¢ = 0 given in (3) are periodic if
and only if we/w; = p/q with p,q € N and p, g coprime, where as usual N
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denotes the set of positive integers. The period of these periodic solutions
is

7o 2T _ 2w

wa wy

As far as we know there are no rigorous analytic studies of the existence
of periodic solutions for the Hamiltonian system (2) when V) is as in cases
(a) or (b) and w; # wy. For the particular case a = 0 potentials (a) and
(b) are the same interchanging the names of the variables z and y. Periodic
orbits of this particular case has been studied by several authors from both
an analytical and numerical point of view by using different techniques, see
for instance [11, 12, 13, 7] for w1 = w9, or [9] for a numerical study for some
values w1 # wy. Miller in [20] studies the potential (a) with w; = we =1
and a # 0 by means of a Lissajous transformation, in particular he found six
families of periodic orbits. The particular case w1 = wp =1 and a = —1/3
is the well know Hénon-Heiles potencial [16]. More global dynamics of the
perturbed potential (a) with w; = we and a # 0 where studied numerically
in [5]. The perturbed potential (b) with with we = w; has been studied
analytically in [14], where the authors found six families of periodic orbits
by using similar techniques than the ones in [20].

In this paper we will study the periodic orbits of the Hamiltonian system
(2) with perturbed potentials (a) and (b) by using averaging theory. More
precisely, for the perturbed potential (a) we will study the case wy = w;/2
with first order averaging, and for the perturbed potential (b) we will study
the cases wo = 2w; and we = 3w; with first and second order averaging,
respectively. These cases together with the case wy = w; are the unique cases
that we are able to study with these averaging techniques. More precisely, for
both systems (a) and (b), we will prove the existence of families of periodic
solutions parameterized by the energy in every energy level H = h > 0, and
these families will be given explicitly up to first order in the small parameter
€. The case a = 0 has been studied by several authors so it is not considered
in this work.

Our first main result deals with the periodic solutions of the Hamiltonian
system associated to the Hamiltonian system (2) with Vi (z,y) given in (a).

Theorem 1. Using averaging theory of first order for |e| # 0 sufficiently
small at every positive energy level H = h of the Hamiltonian H given in (1)
with Vi(x,y) given in (a) and with wy = w1 /2 > 0, we find for its associated
Hamiltonian system (2), eight periodic solutions (four linearly stable and
four unstable) bifurcating from the periodic solutions of (3) with a period
tending to 4w /wy as € — 0. We denote 7 = w;t.
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(a) The four lz’nearly stable periodic solutions can be written in the form
(Z(t), £y(t), Po (1), £py (£))+O(e) where (Z(t), §(t), pa(t), Py(t)) is, re-

spectively

V2h AWh T\ V2h 2vVh . T
<\/§w1 COS T, N COb( )’—WSIHT’—W&n(g))’
(2 cosr i ()~ s 2o (7)),

COS T, sin ———=sinT, —= cos

\/§w1 \/§w1 \/g \/§

(b) The four unstable periodic orbits have a stable and an unstable man-
ifold, and can be written in the form (Z(t) + eZ1(t), £ey(t), pa(t) +
epz1(t), £epy(t)) + O(g%) where

2

2

2

(@(t) + e21(t),€4(t), P (t) + €Pa,1 (t), Py () =
(Z0(t), 0, Pr0(2),0) + &(Z1(2), §1.(t), P2 (1), By (1))

18, respectively

(\:27 cos(7),0, —V2hsin(7), O) + E(Z};(?) — cos(27)),

V55ha ; 2ah V55ha
\/i%( n(7/2) 4 cos(1/2)), —- w1 sin(27), f%

(\{f?h cos(7),0, —V/2hsin(7), O) + 5(2}?(3 — cos(27)),
V55ha . 2ah . V55ha

V2w? (sin(7/2) = cosl7/2), w} et 2v/2w3}

The proof of Theorem 1 is given in section 3.

(cos(7/2) = sin(/2)) ).

(cos(7/2) +sin(r/2)) ).

Our second main result deals with the periodic solutions of the Hamil-
tonian system associated to the Hamiltonian system (2) with V;(z,y) given
in (b).

Theorem 2. The following statements hold for the Hamiltonian system (2)
with Hamiltonian H given in (1) and Vi(x,y) in (b).

(a) Using averaging theory of first order for |e| # 0 sufficiently small at
every positive energy level H = h and with wy = 2wy > 0, we find
for the Hamiltonian system (2), four periodic solutions (two linearly
stable and two unstable) bifurcating from the periodic solutions of
(3) with a period tending to 2w/wi as € — 0. The two unstable
periodic orbits have a stable and an unstable manifold, each one
formed by two cylinders. All these periodic solutions can be written

as (2(6), §(), 5o (), 5, (D)) + O(e) with (F(2), §(2), pu(t), 5, (1)) being
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respectively,

7
(0, L VR G 7,0,4+v2h cos(r)),

V2w,
(\2%)/51 cos (;),:I:\/\gzl COS T, —2\\//; sin <;>,:F\/?sin7>,

where T = 2wy t.

(b) Using averaging theory of second order for |e| # 0 sufficiently small
at every positive energy level H = h and with we = 3wy > 0, for
each a # 0 we find for the Hamiltonian system (2), three periodic
solutions (two linearly stable and one unstable) bifurcating from the
periodic solutions of (3) with a period tending to 2w/wy as € — 0.
The unstable periodic orbit has a stable and an unstable manifold,
each one formed by two cylinders. All these periodic solutions can be
written as (2(t),§(t), Pz (t), Dy (t)) + O(e) with (Z(t), §(t), Pa(t), Dy(t))
being respectively,

2h

2
. -
(6) <¢% cos <%>,:F37Ml COs T, —7; sin <%>,:|:\/2h—ri2 sin7'>

for i =1,2,3, where T = 3wyt and r1,72,73 as well as the stability
of the solutions for each r; are given in the proof of the theorem.
The proof of Theorem 2 is given in section 4.

In section 2 we present a summary of the results on the averaging theory
that we shall need for proving our results.

2. THE AVERAGING THEORY OF FIRST AND SECOND ORDER

In this section we summarize the averaging theory of second order, it
provides sufficient conditions for the existence of periodic solutions for a
periodic differential system depending on a small parameter. See [3] for
additional details and for the proofs of the results stated in this section.

Theorem 3. Consider the differential system
(7) i(t) = eFy(t,z) + 2Fy(t, z) + 3R(t, z,¢),

where Fy, Fo : R x D — R", R: R x D x (—ey¢,e5) = R" are continuous
and T-periodic functions in the first variable, and D is an open subset of
R™. Assume that the following hypotheses hold.

(i) Fi(t,) € CYD) for all t € R, Fy, Fy, R and D,F, are locally
Lipschitz with respect to x, and R is differentiable with respect to €.
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We define f1, fo: D — R"™ as

T
(8) fi(z) = /0 Fi(s, 2)ds,
T

9) fa(z) = /0 [D.Fi(s,z2) /08 Fi(t, z)dt + F»(s, z)]ds.

(ii) ForV C D an open and bounded set and for each e € (—ef,e£)\{0},
there exist a € V' such that
(111) Zf fl(z) 7_é 0, then fl(a) =0 and dB(fba) 7é 0, where dB(fba)
denotes the Brouwer degree of the function f1 :V — R" at the
fized point a; and

(ii.1) of fi(z) =0 and fa(z) #Z 0, then fo(a) =0 and dp(fa,a) # 0.

Then for |e| > 0 sufficiently small, there exists a T—periodic solution p(t,¢)
of the system such that ©(0,e) — a when € — 0. The kind of stability or
instability of the limit cycle p(t,e) is given by the eigenvalues of the Jacobian
matriz D,(f1(2) + ef2(2))]2=q-

Note that a sufficient condition for showing that the Brouwer degree of a
function f at a fixed point a is non—zero, is that the Jacobian of the function
f at a (when it is defined) is non-zero, see [19].

Under the assumption (ii.1) Theorem 3 provides the averaging theory
of first order, and it provides the averaging theory of second order when
assumption (ii.2) holds.

3. PROOF OF THEOREM 1

For proving Theorem 1 we shall use Theorem 3, so the first step is to
write system (2) in such a way that conditions of Theorem 3 be satisfied.

We observe that system (2) with Vi(z,y) given in (a) is invariant by the
symmetry (z,y, pz,py) — (¢, =Y, Pz, —py). This implies that if (x(t), y(t),
pz(t), py(t)) is a solution so is (x(t), —y(t), pz(t), —py(1)).

First we write system (2) and the Hamiltonian (1) in polar coordinates

r cos 0 .
T = , Pz =7 sin 6,
w1
p cos(a + waf /wr)
y =

w2

(10)

, py = p sin(a + wab /wi),
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and we get the system of equations

3ar? cos? 6 2 )
fzs(CWCQC)S+pCOSQ <a+m>>sin0,

2
wi ws w1

. 3 2 0
0= —w1+€<grcos39+ p—QCOSHCOS2 (a+w2>>,

(11) wi erwz w1
p= P cossin (2<a + —w2)>,
o) w1
3 222 9
d:—s( a§2r00839—|—7p " cos 6 cos? <a+WQ)>a
w1 rwiw2 w1

and the Hamiltonian
1 2 6
H=-= (r2 + p2) — 67“(30519(%7‘2 cos? 0 + p—Qcos2 (oz + wg)>
2 w1 wy wj w1
We note that system (11) is periodic in the variable 6 if and only if wy =
pwi/(2q) for some p,q € N coprime. Moreover its period is 2qm.

Note that in system (11), the equations of 7",9 and & depend in p? instead
of p. We thus introduce the new variable I' = p?. In this new variable
system (11) becomes

. 3ar? cos? 0 T 9 Ouwo .
r=e|l———5—+-—5cos (OH——) sin 6,

. 3 r 0
0= —uwp +€<ZTC0830+2COSHCOS2 (a+ m)),

(12) .- wy 07‘0.)2 w1
== COSHSiH(Q(Oé—I-ﬂ)),
) w1
3 I —2r? 0
d=—€< acgzrcos?’ﬁ—i— " cosfcos? (04+OJ2>),
w1 rWiw? w1

and the Hamiltonian becomes

1 r 0
(13) H:i(rz—i—l“)— 67’C089<CL27’2COS29+2(3032 <a+w2>>‘
w1

w7 wy w1

Now in system (12) we take as independent variable the angular variable
6 and it becomes

(14) T‘/ZT, I = -, o = —,

where the prime denotes derivative with respect to 6. We compute I' by
solving equation H = h, and we get

w3 (2ar®e cos® § + w? (2h — 7))

(15) TI'=
wi <w1w§ — 2re cos 0 cos? (a + %2))

=Ty +Tie+ O(e?),
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where
FO = 2h — 7"2,
2 0 0
r = % (arQa)% cos® 0 + (2h — r%)w? cos? (a + ﬂ))
wiws w1

We substitute the expression of I' into (12) and we develop the right-hand
side in power series of € up to second order. Therefore, at each energy level
H = h the equations of motion can be written as

(16) v =eFy +&2Fy + 0(53), of =eFg+&2Fp + 0(53),

where
-3 1 0
Fiy :—3ar2 cos® fsin @ + 5 (r% — 2h) cos? (a + ﬂ) sin 6,
wy wiws Wi
3 2h — 3r? 0
Fio = aofrcosg 0+ % cos f cos? <a + ﬂ),
wi rwiws w1
in(26
b = sm(ﬁ i ( — 9a%rtw] cost 6 + dar®w?w3 (r? — 3h) cos? 6
2rwiwy
0 0
cos? (oz + w2) + wi(rt — 4h?) cos? (a + 7(,02)))’
w1 w1
cos? 0 2,4 4 4 2,2 2 2 2
Fy :W(Qa r*wy cos™ 0 + 2ar‘wiw; (6h — 5r°) cos” 0
r2w{ws

cos? (a + @) + wi(r? — 2h)% cos? (a + @)>

w1 w1
In order that the differential system (16) be in the normal form (7) for
applying the averaging theory, this system must be periodic in the variable
6. System (14) is periodic in the variable § when wy = pw1/(2q) for p,q € N
and its period is 2¢mw. Then system (16) is in the normal form (7) for applying
the averaging theory with T' = 2¢g7, x = (r,a), t = 0, F1(0,x) = (Fi1, F12),
Fy(0,x) = (Fa1, Fas) and €2R(0,x,¢) is O(e3). We also observe that F and
R are C? in x and 2¢7m—periodic in 6. After some computations, from (8) we
get

2qm
fi(x) = /O Fy(0,x)d6 = (f11 (), fr2(x)).

with
2qr 0 p#q
fun(x) = /0 Fundf = Qif(gh —r?)sin(2a) P=4q
wi
and
2 0 p#4q
fi2(x) = /0 Fiadf = ng(2h — 3r%) cos(2a) p=gq.

Twy
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We shall always consider the case p # 2¢q (i.e. wi # ws), because the case

w1 = wg) was studied in [20].

Case 1: p = q. Since p and q are coprime, we take ¢ = 1; that is, wy = w1 /2.

The solutions of system f1(x) = (f11(x), fi2(x)) = 0 are (r( ), @1,5) =

(V2h, (1 +25)/4) and (r(2j), @2,5)) = (\/2h/3,75/2) with j =0,1,2,3.
Now we compute the Jacobian matrix of f; and we get

ofu Ofu
or  Oa
J = Dx =
=1 on o
or Oa
(17) _ dmrsin(2a) 47 (2h — 12) cos(2a)
_ Wy w?
B —7(2h + 3r?) cos(2a)  27(3r% — 2h) sin(2a)
r2w} rw?

By evaluating the determinant of J on the solutions (r(; ;), o j)) for i = 1,2
and j =0,1,2,3 we obtain
32m%h
det (j)(r,a):(r(l’j),a“’j)) == U)? # Oa

3272h
det (j)(r,a)=(T(2,j)va(2J)) - T? 7

If follows from Theorem 3 that for any given h > 0 and for |¢| sufficiently
small, system (16) has eight 27periodic solutions. They are (r®7)(6,¢),
a#9)(0,¢)) for i = 1,2 and j = 0,1,2,3, and (r#9)(0, ), a9 (8, ¢)) tends
to (T(i,j)a oz(m)) when ¢ — 0.

The eigenvalues of the matrix J evaluated at (r,«) = (r(1 ), o(1,5)) for

7 =0,1,2,3 are
47/ 2h

3 bl
w1

)\1,2 =+

and the eigenvalues of the matrix J evaluated at (r,a) = (r(2), a(2,;)) for

7=0,1,2,3 are
47V 2h
Ao = iV

w1
where i = v/—1. So we have that the periodic solutions (r14) (6, £), a1 (6, €))
for j =0,1,2,3 are linearly unstable, and the periodic solutions (T(Q’j)(Q, £),
alZi )(9, g)) for j = 0,1,2,3 are linearly stable. Since the eigenvalues of the
matrix (17) evaluated at (r>7)(6,¢), a7 (8, ¢)) provide the stability of the
fixed point corresponding to the Poincaré map defined in a neighborhood of
the periodic solution associated to (r(?7)(8, ), a7)(0, ¢)) (see for instance
the proof of Theorem 11.6 of [22]), and this fixed point is locally a saddle, we
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obtain that the four unstable orbits have a stable and an unstable manifolds
formed by two cylinders.

Now we shall go back through the changes of variables in order to see
how the 27periodic solutions (r7) (6, &), a9 (0, ¢)), with i = 1,2 and j =
0,1,2,3 of the differential system (16) are written in the original variables
(%,9, Pz, py). By substituting (@) (6, ), ™) (8, ¢)) into equation H = h
with H given in (13) we get I'7) (6, ). Then

(r9)(6,2), D0 (6,2), al)(8, ),

is a 2m—periodic solution for the differential system (14). This solution pro-
vides the 27 /wi—periodic solution for the differential system (12)

(10 (009 1, 2),€), 009 (1,), LE (9091 ), ), a9 (60 1 ), )) =
(r(m) +0(e), ~wit + O(e), 2h — 1%, + O(), o) + 0(5)).

Now, we introduce the variable p(»9)(009) (¢, ), ) = /TED (9@ (t,¢),€).
Going back to the change of variables (10) we get the 27 /wq periodic solu-
tions of system (2) with V; = —(xy? + az?).

For the case ¢ = 2, we get the four 27 /w; periodic solutions of system (2)
with Vi = —(zy? + a2?) given in (4). We note that these four solutions are
different because changing the independent variable 7 = w;t we cannot pass
from one of them to the others. This completes the proof of statement (a)
of Theorem 1.

For the case i = 1, note that rg ; = 2h and so p 1) (99 (,0),0) =
VTN (0L (,0),0) = 0 (see (15)). Going back to the change of variables
(10) for the case i = 1, the terms of order 0 of the solutions of system (2) with
Vi = —(xy®+aa®) are the same for the four solutions (r17) (8, ¢), a19) (6, €))
with 7 =0,1,2,3. They are

@), §(t), Pa(t), By (1)) = (‘/W,o, —\/ﬁsm(twl),o> .

w1

So the four solutions (r(17) (6, ), al19) (0, €)) with j = 0,1,2,3 could give the
same periodic orbit of the initial system (2). Next we will see that this is
not the case by computing the first tems in power series of ¢ of the solutions.
In particular we will see that each solution () (6, ¢),a(17) (6, ¢)) provides
a different periodic solution of system (2).
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By abuse of notation let

r(l’j)(t, g) = r(l’j)(ﬁ(l’j)(t, g),e) =ro+ Z Tk(t)é‘k,
k=1

00D (te) = —wit+ Y O(t)e",
(18) k=1

P (4 e) = \/F(Lj)(@(lvj)(t,g),s),
a(t,e) = a1 (O (te),6) = ag + Y an(t)e".
k=1

Going back to the change of variables (10) we get
r(L9) (¢, €) cos(0H9) (¢, €))

(L7) —
x I (t,€) o 7
y 9 (t,2) = rM(t, ) sin(81) (1, ),
(19) . (1,5) , (1,5)
P9 (1,0 = LD o (alt g, - 20,
w2 w1
. 4 . (L.5)
P9 (5e) = p19(t, ) sim (019 1,) + 200D,
w1

We substitute the power series (18) into the solution (19), and then the
solution (19) into system (2) with V; = —(2y? + az?). Let

o
Gi=d—p. = Gue,
k=1
G2 = y._pya

oo
G3 =py +wiz —¢ (3az® +y°) = Z Gape®,
k=1

Gy =py + way — 2xye.

We develop both sides of equations G; = 0 with i = 1,...,4 in power series
of € and we compute the first terms in € of (18). In particular, we compute
the terms up to order four for (r,0) and the terms up to order two for a.
Notice that if = 2h then T'1:7) = O(e), and consequently p7) = O(\/€).
Thus in the expansion of G and Gy for each solution (1) (8, ¢), 19 (6, ¢))
with 7 = 0,1,2,3 it appears terms in /¢ which do not disappear until we
substitute the solution (r,6) up to order three in €. On the other hand, as
we will see later on, the first term in power series in ¢ which is different on
both solutions (x(l’l)(t),pg’l)(t)) and (z(1?) (t),pg(ﬁl’Q) (t)) is the term of order
3. To compute this term we need terms in € up to order four of (r,6) and
up to order two of a in (18). These terms are computed following the next
procedure.
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The terms G711 and G3; only depend on 71 (¢) and 6, (t), then by solving
the system of equations G1; = 0 and G3; = 0 we get 71(t) and 6, (t), and
integrating we get r1(t) and 6;(t). Now we substitute r1, 71, 6; and 6,
into G12 and Gs2. As above, G2 and G3z only depend on 75(t) and ég(t).
Solving the system of equations G2 = 0, Gs2 = 0 we get 72(t) and ég(t),
and integrating we get ro(t) and 65(t). We substitute these solutions into
G13 = 0 and G33 = 0 proceeding as above and we get 73(t), 03(t), r3(t) and
05(t). Now we substitute rg, 7, 0 and 0y for k = 1,2,3 into G2 and we
develop in power series of €, we see that the terms of order 0 and 1 of Go
are equal to zero and the term of order 2 only depends on &1 (t). Equating
to zero the second ordre term of the development of Ga we get &1 (t), and
integrating we get «a1(t). By substituting rx, 7, 0 and 6 for k = 1,2,3,
&1 (t) and o (t) into G14 = 0 and Gy = 0 we obtain 74(t), 04(t), 74(t) and
04(t). Then substituting rg, 71, 6 and 6y for k = 1,2,3,4, ¢ (t) and a(t)
into Gy we obtain &s(t) and ag(t). We could compute higher order terms
by following this pattern.

Once we have the coefficients of the power series (18) we substitute them
into (19), and then we develop again the solution (19) into power series of
e. Due to the invariance by the symmetry (z,y, pz, py) = (T, =Y, Pz, —Dy)
we have

x(L]) (t’ 6) e ':L‘(Lj_g) (t’ E), y(Lj) (t, 5) = _y(L]_Q) (t7 6)7
p () = pi D (te), ptI(t,e) = —pli D (t,¢),

for j = 3,4. Moreover, these are the results that we have obtained

2Dt e) = o () + 21 (e + 2 (0 + 23 (1) + O(e),
g0 () = 41 (0= + 35" () + 45 (D0 + O,

PVt e) = pus? (1) + pal” (e + pas (B2 + 12 (D) + O,
PVt ) =yt (0= + py (0" + 5" (0 + O(eY),
202(t,2) = 2 (1) + 2l (D + 2 (0" + 2l (O + O(e*),
yU2 (1 e) =317 (e + 457 (0 + 457 (0 + O,

PPt 2) = (1) + pal (B2 + pat (0)2 + paf” (1) + O,
P2 () = pyi” (0= + pys” (0 + 97 (0 + O,
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where

V(@) :‘f?h cos(twr),

h
) :%(3 — cos(2twr)),
1

(k) gy /2002 bt twl
no 0=y w‘f(sm< 2 ) = cos 2 ):
P (t) = — V2hsin(twy),

2ah
PV ()

—3 sin(2twy),
w1
() gy — [5202 DO £ (B2
P (0 =\ 75 2w§><cos< 2 ) sin ( 2 )):
k k k k L
and 73, 257, 957 (0), 587 (1), 257 (0), 228 (1), 2,87 (£), 9,7 (1) are given in the
appendix. In the expressions y§k) (t) and py(lk) (t) the upper sign corresponds

to k£ =1 and the lower sign to k = 2.

In short, we get four 27 /w; periodic solutions of system (2) with V; =
—(2y? + az?®) which completes the proof of statement (b) of Theorem 1.

Case 2: p # q (we recall that we are also under the assumptions that
p # 2q). Since f11(x) = 0 and fi2(x) = 0, we need to consider averaging
of second order. We compute for our system the integral [ Fi(t,z)dt of
(9), and after tedious computations we compute (9), and we get fa(x) =
(fo1(r, &), foa(r, ) where fa1(r, ) = 0 and

™
1 —

— 48¢5)48ahpq® — 48ahp?q* — 32hp?¢* + 96hq6).

Note that there are no values of a € R and p,q € N such that fao(r, a) is
identically zero, so we cannot go to higher order in the averaging theory for
trying to obtain information about the periodic solutions. Moreover, since
the function fs; is identically 0, the averaging theory of second order cannot
be applied and we do not get any information on the periodic solutions of
(16) in this case. This completes the proof of Theorem 1 because we have
shown that there are no other periodic solutions which can be found with
the averaging theory.

4. PROOF OF THEOREM 2

For proving Theorem 2 we shall use Theorem 3. The first step is to
write system (2) with Vi = —(2%y + ax®) in such a way that conditions
of Theorem 3 be satisfied. As in Section 3 we write system (2) and the
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Hamiltonian (1) in polar coordinates (10) and we get the system of equations

in(26 0
r = &2() <3arw2 cos 6 + 2pwy cos (a + w2)>,
2wiws w1
. 29 0
0 =—w; + < C;)S <3arw2 cos 6 + 2pwy cos (a + w2>) ,
wWiw2 w1
(20) 9 o
. er‘cos‘0 . Owo
= ——5—sin (a + 7),
wl w1
20 0
& = ECOS?’ < — 3aprwa cos O + wy (1"2 — 2p2) cos (a + M)),
Py w1

and the Hamiltonian

21) H=

6 0
(7‘2—1-02)_627“260829<WCOS +£cos <a+w2)>.
wl w1 w9 w1

N =

We note that system (20) is periodic in the variable 6 if and only if wy =
pwi/q for some p,q € N coprime. Moreover its period is 2gm. We write
system (20) by taking as the new independent variable the angular variable
6 and we obtain

(22) r =

where the prime denotes derivative with respect to 8. We compute p =
po + p1e + O(e?) by solving equation H = h and we get

po = V2h_r2a

(23) _T‘QCOSQQ( arcos —I—wlcos(oH—ewz))
L= w3 V2h —12 w2 w1 /)

We substitute the expression of p into (22) and we develop the resulting
equations in power series of € up to second order. In the energy level H =
h > 0 the equations of motion become

(24) 7= el + e2Fo + 0(53), o =eFyp+e%Foy + 0(83),
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Fii=— M(Sarwg cos 6 + 2wi v/ 2h — r2 cos (a + Hﬂ»,

2wws w1

cos? 6 Owo
F :7<3arw V/2h — 12 cos 0 + wy (4h — 312 cos(a—i——)),
L= ivar g e (=3 o

rsin 6 cos® 0

Fo _w?u)%\/W( — 9a*r2w?v/2h — 12 cos? 0 + 2arwiwy (5% — 12h)
cos 6 cos (Oé + 0:)12) + QW%\/W(TZ — 4h) cos? (a + 0{:?)),
n, cost 0 <9a2r2w2(2h — 22 0526
- wlws(2h — 12)3/2 2

0
+ 2arw1w2(24h2 — 25hr? + 77“4) cos 0 cos (a + &>

w1
0
+ w%\/ 2h — 7“2(16h2 — 16hr? + 5r4) cos® (a + %))
1

In order that the differential system (24) be in the normal form (7) for
applying the averaging theory we need that this system be periodic in the
variable 6. This implies that we/w; be rational. So from now on we assume
that wy = pwi/q with p,q € N. We note that system (22) is 2¢m—periodic
in the variable #. Then system (24) is in the normal form (7) for applying
the averaging theory with 7' = 2qm, x = (r,«a), t = 0, F1(0,x) = (F11, F12),
Fy(0,x) = (Fa1, Fag) and e2R(0,x,¢) is O(3). We also observe that F' and
R are C? in x and 2¢gm—periodic in # in an open set not containing r = v/2h.
After some computations, from (8) we get

2qm
fi(%) = / F1(6,%)d8 = (f11(x), f12(x)).

with
2qr 0 P # 2q,
fll(X) = / F11 d9 = ﬂqr\/msina
0 3 p=2q,
2wy
2qm 0 p 7& 2Q>
fi2(x) = / Fiodf = mq (4h — 37“2) Ccos Qv
0 93 5 p=2q.
wivV2h —r

Case 1: p = 2q. Since p and ¢ are coprime, we take ¢ = 1. The solutions
of system f1(x) = (f11(x), fi2(x)) =0 are (7”(1,]'),(1(1,3')) = (0,7/2+ jm) and
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(T(Q,j)’ 0‘(2,;)) = (2\/ h/3,j7’f) Wlth ] = 0, 1.

ofin 0fn
or oo
= DX =
T= D=1 on, o
or oo
7 (h—1r?)sina 7rvV2h — r2 cos a
2h — r2w? 2w?

r (3r2 — 8h) Cos o T (4h — 3r2) sin «v
2 (2h — r2)3/2 w} 2v2h — r2w}

By evaluating the determinant of 7 on the solutions (r(i,j), a(i,j)) fori=1,2
and j = 0,1 we get

2
h
det (j)(r,a) = _L 7é 07

=(ragypaasn) w8
21%h
At (T ) (r.0)=(r(a, ), 02,07) = Wf 7o

If follows from Theorem 3 that for any given h > 0 and for |¢| sufficiently
small, system (24) has the four 27 periodic solutions that are (r®7)(6,¢),
a#9)(f,¢)) for i = 1,2 and j = 0,1 such that the solution (r(7)(8,e¢),
a(%9)(0, ¢)) tends to (7(i,5) @(i,)) when € — 0.

The eigenvalues of the matrix J evaluated at (r,a) = (r(1 ), @q,5) for
7=0,1 are

A= —(-1)

V2h - mVh
37r’ AQZ(_l)Ji,
w1 V2w3
and the eigenvalues of the matrix J evaluated at (r,a) = (r(,;), @(2,5)) for
j=0,1are
iV 2hm

)\1’2 =4 3

So we have that the periodic solutions (r(17)(, ), 1) (8, ¢)) for j = 0,1
are linearly unstable and the periodic solutions (r(27)(6,¢), a7 (6, ¢)) for
7 = 0,1 are linearly stable. Note that the unstable orbits have a stable and
an unstable manifolds formed by two cylinders.

Now we shall go back through the changes of variables in order to see how
the 27periodic solutions (%7 (6, €), a9 (8, ¢)), with i = 1,2 and j = 0, 1 of
the differential system (24) looks in the initial Hamiltonian system (2) with
Vi = —(2%y + az®). By substituting (9 (6,¢), a1 (8, ¢)) into equation
H = h with H given in (21) we get p{*/) (8, ). Then

(r(0,¢), p49 (0, ), a9 (0, )),
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is a 2m—periodic solution for the differential system (22). This solution pro-
vides the 27 /wi—periodic solution for the differential system (20)

(rEDO(t,2),),009 (8, 2), P4 (00D (8, €), ), (009 (8, ¢), )) =

(r(iJ) + O(e), —wit + O(e), y/2h — T(Ziyj) + O(e), Qi) T O(s)).

Going back to the change of variables (10) we get the four 27 /w; periodic
solutions of system (2) with V; = —(2%y+az?) given in (5), which clearly are
different solutions. This completes the proof of statement (a) of Theorem 3.

Case 2: p # 2q. Since f11(x) = 0 and fi12(x) = 0, we need to consider
averaging of second order. After tedious computations, from (9), we get

f2(x) = (fa1(r, @), faa(r, ) where

0 p#4q, p#3q, p#5q,
0 p = 5q,
Jor(r,a) = § go(r, ) p=gq,
ﬂaqTQWSina
- 9,8 p=3q,
Wi
and
gi(r,a)  p#q, p#3q, pF5q,
_ ) g(r,a)  p=5q,
fz(r, @) g3(r,a)  p=gq,
ga(r,a)  p=3q,
where
go(r,a) = %(&w 2h — 12 + cos a(8h — 41?)),
Wi
s (3p2r2 (5a2p2 — 20a%¢® + q2) - 8hq4)
91(7“, Oé) = 672 3 ,
2pw? (p? — 44?)
q 2 2
ga(r,a) = 210w§5(75(105a + 1)r“ — 8h),
7q (3(15a® — 1)r? 4+ 12 cos(2a)(h — r?) + 8h
o) = T8 (3050 =17+ 12cos(2a) =)
Wy 6
Sar cos a(3h — 27“2))
V2h —r? ’
mq 9 9 30ar (Sh - 27"2) Cos o
= — 8h — 27(25 1 .
9a(r, @) 30,8 < (250 + 1)r” + =t

Case 2.1: p # q, p # 3q and p # 5q. There are no a € R and p,q € N such
that foo(r, ) be identically 0. Since the function fy1 is identically 0 and fao
is not identically 0, the averaging theory does not provide any information
on the periodic solutions of (24) in this case.
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Case 2.2: p = 5q. As in the previous case the averaging theory does not
provide any information on the periodic solutions of (24).

Case 2.2: p = q. This case corresponds to the case wy = wy studied in [14].
So it is not considered in this work.

Case 2.3: p = 3q. Since p and ¢ are coprime, we take ¢ = 1. We seek
solutions of system fa(x) = 0 for which the Jacobian of fs evaluated at the
solution be non—zero. The solutions of equation fo;(r,a) =0 arer =0, r =
V2h and a = jr for j = 0,1. The solution 7 = 0 does not provide solutions
of fo(x) = 0, because fa2(0, ) = —(4hn)/(15w$) # 0. The solution r = v/2h
is not valid because in this case system fa(x) = 0 is not defined. Now we
analyze the solutions a = jw. For this, we need an auxiliary result.

Lemma 4. Assume h > 0 and let t1(a, h), t2(a,h), t3(a, h) be the three real
solutions of the polynomial

(455625a* + 4005002 + 729)t3 — (911250a*h + 94500a>h + 1890h)t>
+ (29700a?h? + 928h2)t — 128h° = 0,

ordered from big to small. Then the following statements hold for the equa-
tion foo(r,jm) = 0.

(a) For a > 0 it has a unique positive real solution r = +/ta(a,h)
when j = 0, and two positive real solutions r = +/ti(a,h) and
r = +/ts(a,h) when j =1.

(b) For a < 0 it has two positive real solutions r = \/ti(a,h) and r =
Vts(a, h) when j =0, and one positive real solution r = \/ta2(a, h)
when j = 1.

(¢) The Jacobian matriz of fo evaluated at (r,a) = (r(a, h),j7), where
r(a,h) is any solution of faa(r,jm) = 0 with a # 0 and j = 0,1, is
different from zero.

Proof. If r # v/2h, equation fas(r, jm) = 0 is equivalent to equation

(25) (8h — 27(25a® + 1)r?)\/2h — r2 = —30ar(3h — 2r%)(—1).
Squaring both sides of (25) we get the polynomial equation (independent of
7)
(455625a* + 4005042 + 729)r% — (911250a*h + 94500ah + 1890h)r*
+ (29700ah? + 928h%)r? — 128h3 = 0.
Equation (26) has the solutions of (25) and probably new ones.

By doing the change of variables ¢ = r? in (26) we obtain a new cubic
polynomial equation g(t) = 0 with positive discriminant

a? (40502 + 13)? (5843390625a° + 604158750a* + 1923142542 + 194672) h°,

unless a positive real constant. So the polynomial g(¢) = 0 has three real
positive roots, for more details about the discriminant of a cubic polynomial
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see [1]. Using the Descartes rule on the signs of a polynomial we can see
that these roots cannot be negative, and of course they are non-zero, so they
are positive and we denote them as ti(a,h) > t2(a,h) > t3(a,h) for a # 0
and h > 0.

Now we study which of these solutions provide solutions of equation
fo2(r,jm) = 0. Tt is not difficult to check that the factors K; = (3h — 21?)
and Ky = (8h —27(25a2 +1)7?) in fas(r, j7) do not change their sing on the
solutions r = ++/t;(a, h) for all i = 1,2, 3. In particular,

Ki,Ky <0 onr = ++/ti(a,h),

Ky >0,Ky <0 onr==y/ta(a,h),
Ki,Ky >0 on r = ++/ts(a, h).

Analyzing the signs of the two summands of fa(r, jm) we conclude that

fa2(r, i) = 0 has the following solutions: r = —\/t1(a, k), r = \/t2(a, h)
and r = —y/t3(a, h) when either j = 0 and a > 0 or j = 7 and a < 0; and

r = /ti(a,h), r = —y/ta(a,h) and r = \/t3(a,h) when either j = 1 and

a>0orj=0and a <0. This proves statements (a) and (b).

To prove statement (c) we seek for the solutions r» = r(a, h) of the equation
fa2(r, jm) = 0 such that the Jacobian of fo evaluated at (r, ) = (r(a, h), j7)
is equal to zero. The Jacobian of fy evaluated at o = j is

det(T) = m2a?r? (3h* — 6hr? + 2rt)  97%a (25a% + 1) (—1)7r3v/2h — r?
¢ - wiZ (r? — 2h) 10wi? '

We transform equation det(J) = 0 into a polynomial equation in the vari-
able t = r? as we have done with equation fos(r,jm) = 0 and we get

71(t) = ma?t?(—900a>h* 4 72(5625a" 4 50042 + 9)h3t
—12(50625a" 4 44504 + 81)h%t? + 6(50625a + 445042 + 81)ht?
+ (506250 — 445002 — 81)t4).

We compute the resultant between the polynomial g(¢) and g, (¢) with re-
spect to the variable ¢t and we obtain a polynomial P(a,h), in the variables
a and h, with the property that if the polynomials g(¢) and g,;(¢) have a
commun root, this occurs for values of (a, h) such that P(a,h) = 0, for more
information about the resultant of two polynomials see for instance [18, 21].
Since P(a, h) is zero if and only if a = 0 (recall that A > 0). Therefore there
are no solutions of system g(¢) = 0, g;(t) = 0 with a # 0, and consequently
there are no solutions of system fa(x) = 0 with a # 0 having Jacobian equal
to zero. On the other hand it is easy to check that the solution foo(r,jm) =0

fora=0,r= %\/g v/h has Jacobian equal to zero. This completes the proof
of the lemma. (]

Let 11 = \/ti(a,h), 72 = \/ta(a,h) and r3 = y/t3(a,h); and let x; =

(T270)7 X2 = (Tlaﬂ-)v X3 = (7"3,71'), X4 = (Tl,O), X5 = (T?))O)a and X6 = (7"2,7[').
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From Lemma 4 together with Theorem 3, for any given h > 0 and for |¢]
sufficiently small, system (24) when a > 0 has three 2r—periodic solutions
(r'(6,¢),ai(6,¢)) with i = 1,2,3, such that (ri(6,¢),a’(f,¢)) tends to x;
when ¢ — 0. When a < 0 system (24) has three 2m—periodic solutions
(r'(6,¢),ai(0,¢)) with i = 4,5,6, such that (ri(6,¢),a’(f,¢)) tends to x;
when € — 0.

Now we analyze the stability of these periodic solutions from the eigen-
values of the Jacobian matrix J of fa(x) evaluated at x; fori =1,...,6.

The eigenvalues of J evaluated at (r, j7) are
A2 = +£7/(V10w8)\/m(r, a, h)

where

10a®r? (3h* — 6hr? + 21%)
r2 —2h

—9a (25a® + 1) (—1)7r®\/2h — r2.

We are interested in the sign of m(r,a,h) on the solutions of fao(r, jm). By
proceeding as in Lemma 4 we see that there is no (a,h) with a # 0 and
h > 0 such that m(r,a,h) evaluated on the solutions of faa(r,jm) be 0.
Moreover we can see that if @ > 0 then m(r,a,h)|x, < 0, m(r,a,h)|x, <0
and m(r,a, h)|x, > 0, and if a < 0 then m(r,a,h)|x, < 0, m(r,a,h)|x; > 0
and m(r,a,h)|x, < 0. Therefore the periodic solutions (r¢(6,¢),a’(8,¢))
with ¢ = 3,5 are linearly unstable and the ones with ¢ = 1, 2,4, 6 are linearly
stable. Clearly, the unstable orbits have a stable and an unstable manifolds
formed by two cylinders.

m(r,a,h) = —

Now we shall go back through the changes of variables in order to see
how the 27—periodic solutions (r¢(6,¢),a’(d,¢)), with i = 1,...,6 of the
differential system (24) looks in the initial Hamiltonian system (2) with
Vi = —(2%y + az?). By substituting (r*(6,¢),a’(6,¢)) into equation H = h
with H given in (21) we get p'(0,¢). Then

(r'(0,¢), p'(0,¢), (6, €)),

is a 2m—periodic solution for the differential system (22). This solution pro-
vides the 27 /wi—periodic solution for the differential system (20)

(r(0'(t,€),€),0'(t, ), p'(0'(t,€),€), ' (B'(t,€),¢)) =
(r+0(e), —wit + O(e), V2h — 12 + O(e), a 4 O(¢)) | a) =x: -

Going back to the change of variables (10) we get 27 /w; periodic solutions

of system (2) with V; = —(2%y +ax3). Denoting R,, = 1/2h — r2, their first
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order in ¢ is: For a > 0,

(rg cos(twr) Rr, cos(3twr)

o , 31 , —T2sin(twy), =R, sin(3tw1)) ,

r1 cos(tw Ry, cos(3tw . .
(27) ( ! wi 1),— ! 3w(1 1),—7“1 sin(twy), Rr, sm(?)twl))7
t R 3t . .
(7"3 cos(ftw1) ,—— cos(3twn) , —r3sin(twy), Ry, sm(3tw1)),
w1 3w1

and for a < 0

(Tl cos(twi) Ry, cos(3twr) —rysin(twy), =R Sin(gtwl))
s ) T1 ’

w1 ’ 3w
t R, 3t
(28) (7"3 cos( wl)’ 5 cos(3twr) ,—rysin(twy), — Ry sin(Stwl)),
w1 3w
¢ Ry, cos(3t
(7“2 cos(tw:) ,— Tz cos(3tw1) , —rgsin(twy), Ry Sin(3twl))-
w1 3(4}1

21

The first two periodic solutions in (27) are stable and the third one is
unstable, whereas the first and the third periodic solutions in (28) are stable
and the second one is unstable. Clearly these three solutions are different,

so this completes the proof of statement (b) Theorem 2.

APPENDIX

a2h3/2

N Sﬂwf
(k) a2h2
xy (t) =300 <220 + 285a + 55 sin(tw; ) F 110tw cos(tw)

1

<120tw1 sin(twi) + 19 cos(twi) + 6 cos(3tw1)),

— 120atw; sin(2twy) — 137a cos(2tw;) — 2a cos(4tw1)>,
V55h3/2v/a?2 . /twy ./ 3tw
:77< —2(1 F twy) sin (—) — sin (—)
20] 2 2

t 3t
+ 2(1 + twy) cos (%) F cos (;1)),

Wy _ 1L Va2h? ot 2
W0 =\ T 7680T (381n< . )(10243a F 1280tw; £ 7680atw;

s ()

¢
+21120a + 1280¢%w? — 1600) + 3 cos (%) (1024342
+ 1280tw; T 7680atw; + 21120a + 1280t%w? — 1600)



22 M. CORBERA, J. LLIBRE AND C. VALLS
3tw 5t
~1920(a = 2tw; — 5)sin ( . 1) +640(a+ 1) sin (%)

3tw 5t
+1920(a F 2tw; — 5) cos ( : 1) +640(a + 1) cos (%))

D (1)(75) = ik (101 in(twy) — 18sin(3twy) + 120t (t ))
= sin(tw sin(3tw w1 cos(twr)),
2 S\f ? 1 1 1 1

Pzs (1) = 8w — (& 110wy sin(twy) F 55 cos(tw:)
1

+ 154a sin(2tw; ) — 240atw; cos(2twr) + 8asin(4tw)),
2p3/2 t t
py(Qk)(t) :M (2(1 + twy) cos (%) — 3cos <M>

4wy 2
twi
+ sin ( 5 ) (5 F 2twy + 6cos(tw1)))

() (1) 11 Va2h?
Pus A =\ 10 153607

( ¥ 3sin (t . ) (10243a T 3840tw; T 7680atuw,

3t

+ 57600+ 1280¢%w] +960) % 1920 sin (5 ) (11— 3a = 6twy)
tw

+3cos ( : )(10243a + 3840tw; =+ T680atw; + 5760a

5t
+1280¢%w? + 960) F 3200(a + 1) sin ( “’1>

2
+3200(a + 1) cos (5t2 ) +1920cos (3t2 )11 = 30 % 6te) ).

In the expressions the upper sign corresponds to £ = 1 and the lower sign
to k= 2.
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