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Abstract

We give an exhaustive characterization of singular weak solutions for ordinary differ-
ential equations of the form ü u+ 1

2 u̇
2 +F ′(u) = 0, where F is an analytic function. Our

motivation stems from the fact that in the context of hydrodynamics several prominent
equations are reducible to an equation of this form upon passing to a moving frame. We
construct peaked and cusped waves, fronts with finite-time decay and compact solitary
waves. We prove that one cannot obtain peaked and compactly supported traveling
waves for the same equation. In particular, a peaked traveling wave cannot have com-
pact support and vice versa. To exemplify the approach we apply our results to the
Camassa-Holm equation and the equation for surface waves of moderate amplitude, and
show how the different types of singular solutions can be obtained varying the energy
level of the corresponding planar Hamiltonian systems.
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1 Introduction

In the present paper we propose to study certain types of weak solutions for ordinary
differential equations (ODE) of the form

ü u+
1

2
u̇2 + F ′(u) = 0, (1)

where F is an analytic function. Our motivation stems from the fact that a variety of
model equations arising in the context of hydrodynamics, among them the well-known
Camassa–Holm equation (cf. [2, 3, 9]) and the related equation for surface waves of moderate
amplitude (cf. [4, 5, 6, 7, 10]), are reducible to an ODE of the form (1) upon passing to a
moving frame. Owing to the fact that every solution of equation (1) may be interpreted as
a traveling wave of a suitable underlying partial differential equation (PDE) we will call the
solutions of (1) traveling waves.

The singular nature of Equation (1) accounts for the non-uniqueness of certain solutions,
which we call singular solutions. These are in general weak solutions, but have stronger
regularity than one would expect a priori: the solutions are analytic except for a countable
number of points at which the equation is satisfied in the limit. Furthermore, equation (1)
admits an order reduction which allows us to see that under certain conditions on F , the
solutions are actually classical solutions of this reduced equation.

The main result of this paper consists in the exhaustive characterization of singular
solutions of (1) from qualitative properties of the function F (u). We show that equation (1)
admits solutions with peaks and cusps, fronts with finite-time decay and solitary solutions
with compact support. Furthermore, we find that one cannot obtain peaked and compactly
supported solutions for the same F . In particular, a peaked solution cannot have compact
support and vice versa. The characterization of classical solutions of (1) will be covered
only very briefly for the convenience of the reader, since our main focus lies in the analysis
of singular solutions.

We apply our results to the aforementioned nonlinear partial differential equations, and
show how the different types of singular solutions are obtained varying the energy levels of
the Hamiltonian planar differential system corresponding to (1). It lies beyond the scope of
this paper to prove in full generality that every weak solution of (1) is also a weak traveling
wave solution of an underlying PDE. For a discussion of this problem we refer the reader to
[8] and [14], where it is shown that in the special case of the Camassa-Holm equation every
weak solution of (1) is a weak traveling wave solution of the underlying PDE. Following
similar steps the same result can be shown for the equation of surface waves of moderate
amplitude.

The structure of the paper is as follows. In Section 2, we give the precise definitions
of weak and singular solutions and provide a preliminary result on the non-uniqueness of
solutions of (1). In Section 3 we introduce the notion of elementary forms, classical solutions
of (1) defined on a subset of R, from which we construct singular solutions. Furthermore, we
discuss how the qualitative features of any traveling wave solution can be obtained from the
properties of F . The main results of the paper, Propositions 6, 7, 11 and 12 are presented
in Section 4 which is devoted to the complete characterization of singular solutions. In
Section 5, we characterize the classical and singular traveling waves of the Camassa-Holm
equation and the equation for surface waves of moderate amplitude in shallow water.
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2 Weak and singular solutions

Our focus lies in the characterization of solutions which are not classical, so we require a
weak formulation of (1). Keeping in mind that any solution of (1) can be interpreted as a
traveling wave of an underlying PDE, we will consider only bounded solutions.

Definition 1. We say that a bounded function u ∈ H1
loc(R) is a traveling wave solution

(TWS) if it satisfies (1) in the sense of distributions, i.e. if u satisfies∫
R

(u2)tφt + (ut)
2φ− 2F ′(u)φdt = 0, (2)

for any test function φ ∈ C∞c (R). We say that u is a strong TWS if it satisfies (1) in the
classical sense.

It turns out that the concept of weak solutions is quite crude. Indeed, if no further
conditions are imposed it is possible to find a plethora of weak solutions of (1) giving rise to
TWS with very complex shapes. For instance it is known that the Camassa–Holm equation
can have TWS of the form u = ϕ(t) such that some of its level sets {ϕ(t) = k} are cantor
sets, cf. [14]. In the present paper, however, we are interested in those solutions which
fail to be strong TWS because of the singularity, but which still have a certain degree of
regularity, and in fact are strong solutions of (1) except for a finite or a countable set of
points (such solutions are, for instance, peaked or cusped waves, fronts with finite time
decay, compact solitary waves and composite waves, see Section 4 for precise definitions).
To see this, observe that equation (1) admits the order reduction

d

dt

(uu̇2

2
+ F (u)

)
= u̇

(
ü u+

1

2
u̇2 + F ′(u)

)
,

which is equivalent to the fact that the planar differential system associated to (1) has a
first integral. Therefore, any classical solution of (1) naturally satisfies

uu̇2

2
+ F (u) = h, for some constant h ∈ R. (3)

The singularity of (3) leads to the existence of non constant solutions u ∈ H1
loc(R) of (2)

which satisfy (3) except, perhaps, at a countable number of points where the derivative
is not defined but the equation is still satisfied in the limit. This motivates the following
definition:

Definition 2. Let u(t) ∈ H1
loc(R) be a non constant TWS of (1). Then u(t) is called a

(a) strong singular TWS of (1) if u is a classical solution of (3) on R.

(b) weak singular TWS of (1) if u is a classical solution of (3) on R \ S, where S is the set
of countably many points tk such that

lim
t→tk

u(t)u̇(t)2

2
+ F (u(t)) = h. (4)
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For the remainder of this paper we set h0 := F (0). The next result establishes the
non-uniqueness of solutions of (3) for h = h0. This will play a role in the construction of
singular TWS of (1), see Section 4.

Lemma 3. Consider equation (3) with F an analytic function such that u (h− F (u)) > 0
for u ∈ U \ {0} where U is a neighborhood of 0.

(a) If h 6= h0, then equation (3) is not defined at u = 0.

(b) If h = h0 then u ≡ 0 is a solution of equation (3). Furthermore if F ′(0) 6= 0 or
F ′(0) = 0 and F ′′(0) 6= 0 then equation (3) is not Lipschitz continuous in u = 0.

Proof. Notice that equation (3) may be written as

u̇ = ±
√

2
h− F (u)

u
=: v±h (u).

Observe that if h 6= h0 then lim
u→0

v±h (u) = ±∞, which proves statement (a). When h = h0,

u ≡ 0 is always a solution of (3). Note that

|v±h0
(u)|
|u|

=

√
−2

(
F ′(0)

u2
+
F ′′(0)

2!u
+
F (3)(0)

3!
+ o(u)

)
.

Hence, if F ′(0) 6= 0 or F ′(0) = 0 and F ′′(0) 6= 0 then lim
u→0
|v±h0

(u)|/|u| = +∞. Therefore it

is not possible to find a constant L > 0 such that |v±h0
(u)| ≤ L|u| for u ∈ U , and hence the

right-hand side of the differential equation fails to be Lipschitz continuous in u = 0.

Remark 4. Observe that v±h0
(u) is Lipschitz continuous in u = 0 only if F ′(0) = F ′′(0) = 0

and F (3)(0) 6= 0. However, as a consequence of Propositions 6, 7 and 11, such F do not
yield any singular solutions, and therefore they will not be considered in this paper.

3 Traveling wave solutions from qualitative properties of F

The planar system associated to equation (1) is given by{
u̇ = v

u v̇ = −F ′(u)− 1
2 v

2.
(5)

A straightforward computation shows that system (5) possesses the first integral

H(u, v) =
u v2

2
+ F (u), (6)

whose energy H(u, v) = h is therefore constant along solutions. We will study how the TWS
of (1) can be obtained from the orbits of the associated system (5), and how these orbits
depend on the qualitative properties of F . Our study resembles the study of conservative
systems of one degree of freedom [1, §12]. For such systems, the qualitative features of the
phase portrait are in correspondence with the ones of the potential function. Analogously,
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we find that the qualitative features of the function F characterize the phase portrait of
(5) and therefore the types of TWS that (1) may exhibit. In contrast to potential systems,
the Hamiltonian (6) has no purely kinetic term, which leads to the presence of a singular
line in the phase portrait and the existence of solutions defined on subsets of R. Without
loss of generality we consider the system only in the half-plane ({u > 0} ∪ {u = 0}) × R,
which is not restrictive since our analysis is of a qualitative nature. It is worth mentioning
however that in some applications it might be interesting to consider solutions in {u ≤ 0}.

The solutions of equation (1) are associated to the orbits of (5), which correspond to
the level sets of the energy H(u, v) = h, i.e. they lie on curves of the form γh = {H = h}
which are composed of two symmetric branches (u, v±h (u)), where

v±h (u) = ±
√

2
h− F (u)

u
. (7)

Therefore, solutions of equation (1) corresponding to energy h exist if there is a non-empty
set I ⊆ {u ≥ 0} such that F (u) − h < 0 for all u ∈ I. Recall that our interest lies
in the analysis of bounded solutions, which correspond to branches of the curves γh that
are bounded in the u-direction. These branches are defined if and only if either there exist
m1,m2 > 0 such that F (m1) = F (m2) = h and F (u) < h for all u ∈ (m1,m2), or there exists
m > 0 such that F (m) = h and F (u) < h for all u ∈ (0,m). The latter case corresponds to
a type of strong solutions of (1) whose maximal domain of definition is a (finite) subset of R.
We call these solutions elementary forms, which play an important role in our construction
of singular TWS. The former case corresponds to classical smooth solutions which are
uniquely defined on R. Observe that possible oscillations of F in (m1,m2) or (0,m) affect
the solutions of (1) only at the level of their convexity.

3.1 Smooth TWS on R

In this subsection we briefly summarize how smooth TWS are characterized in terms of
qualitative aspects of F . Assume that there exist m1,m2 > 0 such that F (m1) = F (m2) =
hm and F (u) < hm for all u ∈ (m1,m2). Then the two branches of γhm given by (u, v±hm

(u))
are defined for u ∈ [m1,m2] and coincide at the points p1 = (m1, 0) and p2 = (m2, 0).

Observe that the critical points of system (5) in {u > 0}×R are of the form (u, 0) where
F ′(u) = 0. Hence a point pi = (mi, 0) will be a critical point if F ′(mi) = 0 and a regular
point otherwise. We distinguish between the following cases (see Figure 1):

(A) If F ′(mi) 6= 0 for i = 1, 2, then the points p1 and p2 are regular, and the two branches
(u, v±hm

(u)) give rise to an isolated closed curve, which is a periodic orbit of (5). This
periodic orbit corresponds to a strong smooth periodic solution u(t) of equation (1).
Observe that since v+

hm
(u) and v−hm

(u) are not multivalued functions, the closed curve
has no lobes and therefore u(t) reaches a unique local minimum at m1 and a unique
local maximum at m2 in each period. Furthermore, this periodic solution is symmetric
with respect to its local minima and maxima.

(B) If F ′(m1) = 0 and F ′(m2) 6= 0 then p1 is a critical point and p2 is a regular one.
In this case, the branches (u, v±hm

(u)) yield a homoclinic loop giving rise to a smooth
solitary wave solution of (1) which has a unique maximum at m2 and which decays

5



u

u

v

t

F (u)
hm

m1 m2

u

m2

m1

(A)

u

u

v

t

F (u)
hm

m1 m2

u

m2

m1

(B)

u

u

v

t

F (u)
hm

m1 m2

u

m2

m1

(C)

Figure 1: Global strong TWS of (1). (A) Periodic wave; (B) Solitary wave or pulse; (C)
Smooth front.

exponentially on either side of the maximum such that limt→±∞ u(t) = m1 (recall
that since p1 is a critical point, the time that the orbit of (5) takes to leave from or
to reach this point is infinite). Furthermore, this solitary wave solution is symmetric
with respect to its maximum. If F ′(m1) 6= 0 and F ′(m2) = 0 then there appears a
solitary wave of (1) with a unique minimum at m1 and such that limt→±∞ u(t) = m2.

(C) If F ′(m1) = F ′(m2) = 0 then p1 and p2 are critical points, and the branches (u, v±hm
(u))

yield a heteroclinic loop connecting these points in an infinite time. This pair of
connecting orbits gives rise to a smooth front decaying from m2 to m1 such that
limt→−∞ u(t) = m2 and limt→+∞ u(t) = m1, and another smooth front increasing
from m1 to m2 such that limt→−∞ u(t) = m1 and limt→+∞ u(t) = m2.

3.2 Elementary forms: smooth TWS on a subset of R.

In this subsection we discuss two types of elementary forms. The first type, studied in cases
(a) and (b) below, are the ones associated to the curves γh0 which correspond to the energy
level h0 = F (0) and which intersect the singular line {u = 0} × R at a finite point. The
second type are the ones associated to curves γh that are unbounded in the component v
and are arbitrarily close to the singular line {u = 0}×R at infinity. They are studied in the
case (c). In both cases, it will be a key step to study whether the orbits of (5) approach
the singular line u = 0 in finite time. To this end we prove the following auxiliary result.
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Lemma 5. Let F be an analytic function. Suppose that there exist ε > 0 and m > 0 such
that F (m) = F (0) and F (u) < F (0) for u ∈ (0, ε) ∪ (m− ε,m).

(i) Let n ∈ N be the lowest order such that F (n)(0) 6= 0. If n ≤ 2 then∫ ε

0

√
u

F (0)− F (u)
du (8)

is convergent. Otherwise the integral diverges.

(ii) If F ′(m) > 0, then ∫ m

m−ε

√
u

F (0)− F (u)
du (9)

is convergent. Otherwise the integral diverges.

Proof. In both cases we will apply the following criterium: let f(x) be an unbounded
function at x = c such that f(x) ≥ 0 and limx→c f(x)|x − c|k = A, where A 6= ∞ and
A 6= 0. Then, for k < 1 the integral

∫ c
a f(x)dx is convergent, whereas for k ≥ 1 it is

divergent. To prove (i), set

f(u) :=

√
u

F (0)− F (u)
,

and n ∈ N such that F (n)(0) < 0 and F (k)(0) = 0 for k < n. Hence

f(u) =

√
−n!

F (n)(0)un−1 + o(un)
,

and

lim
u→0+

f(u)|u|
n−1
2 =

√
−n!

F (n)(0)
=: K, where 0 6= K 6=∞.

Therefore, using the criterium stated above, for n ≤ 2 the integral (8) converges and
otherwise it diverges. To prove (ii) let

f(u) :=

√
u

F (m)− F (u)
,

and n ≥ 1 such that F (n)(m) < 0 and F (k)(m) = 0 for k < n. Then

f(u) =

√
−n!u

F (n)(m)(u−m)n + o((u−m)n+1)
,

and therefore

lim
u→0+

f(u)|u−m|
n
2 =

√
−n!m

F (n)(m)
=: K, where 0 6= K 6=∞.

Hence for n = 1 the integral (9) converges and otherwise it diverges.
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Figure 2: Strong solutions of (1) defined in a subset of R with energy h = h0 when F ′(0) 6= 0.
These provide the elementary forms to construct peaked periodic and solitary TWS.

We start with a discussion of solutions associated to the energy level h = h0. Suppose
that there exists m > 0 such that F (m) = h0 and F (u) < h0 for all u ∈ (0,m). In this
case, the curves γh0 intersect the singular line {u = 0} at a finite point, and the branches
(u, v±h0

(u)) are defined for u ∈ [0,m], and coincide at the point p = (m, 0). As in the
discussion for smooth solutions in Section 3.1 we consider the following cases:

(a) Suppose that F ′(0) 6= 0. Then,

lim
u→0+

v±h0
(u) = lim

u→0+
±
√

2
F (0)− F (u)

u
= ±

√
−2F ′(0) =: ±a 6= ±∞.

and therefore the branches (u, v±h0
(u)) intersect the singular line {u = 0} at two distinct

points (0,±a). Moreover, they reach the singular line in finite time, since Lemma 5
(i) guarantees that the orbit γh0 of system (5) connects the point (0,+a) with the
point (ū, v+

h0
(ū)) in finite time ∆T (ū). Indeed, by direct integration of system (5)

with v = v+
h0

(u), and recalling that F ′(0) < 0, we have

∆T (ū) =

∫ ū

0

du

v
=

∫ ū

0

√
u

2 (h0 − F (u))
du =

1√
2

∫ ū

0

√
u

F (0)− F (u)
du <∞. (10)

(a1) If F ′(m) 6= 0, then p is a regular point and there is an isolated orbit of (5)
connecting the points (0,+a) and (0,−a), see Figure 2 (a1). By the above ar-
guments, this orbit connects these points in a finite time, hence it gives rise to
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a strong solution u(t) of (1) defined for some finite interval (t1, t2). As in the
smooth cases, this isolated orbit defines a curve with no lobes and therefore u(t)
has a unique maximum m at t = (t1 + t2)/2. This solution is symmetric with
respect its maximum due to the symmetry of the curve γh0 .

(a2) If F ′(m) = 0, then p is a critical point and the branch (u, v+
h0

(u)) defines an
orbit leaving its α-limit (+a, 0) in finite time and reaching its ω-limit p in infinite
time. This orbit corresponds to a strong solution u+(t) of (1) defined for some
interval (t1,+∞), t1 ∈ R, such that limt→t+1

u+(t) = 0, limt→t+1
u̇+(t) = a and

limt→∞ u+(t) = m, Figure 2 (a2). Analogously, the branch (u, v−h0
(u)) gives an

orbit such that each point on the orbit connects with the point p in an infinite
time, and with (−a, 0) in a finite time. This gives a strong solution u−(t) of
(1) defined for some interval (−∞, t2), t2 ∈ R, such that limt→t−2

u−(t) = 0,

limt→t−2
u̇−(t) = −a and limt→−∞ u−(t) = m. Notice that u+(t1− t) = u−(t1− t)

when t1 = t2 due to the symmetry of system (5).

u

u

v

t

F (u)
h0

m

m

m

u

t1 t2

(b1)

u

u

v

t

F (u)
h0

m

m

m

u

t1 t2

(b2)

Figure 3: Strong solutions of (1) defined in a subset of R with energy h = h0 when F ′(0) = 0.
These provide elementary forms to construct TWS of class C1(R) (with compact support).

(b) Suppose that F ′(0) = 0. Then,

lim
u→0+

v±h0
(u) = ±

√
−2F ′(0) = 0.

Hence the branches (u, v±h0
(u)) are defined for u ∈ [0,m], and coincide in (0, 0) and

p = (m, 0).
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(b1) If F ′(m) 6= 0, then p is a regular point. Hence, there is an isolated orbit of
(5) in {u > 0} × R whose α and ω–limit is (0, 0), Figure 3 (b1). Lemma 5 (i)
and (ii) ensures that the orbit of (5) connects (0, 0) with (m, 0) in finite time if
F ′′(0) < 0 and F ′(m) > 0. Therefore, it corresponds to a strong solution u(t) of
(1) defined in a finite interval (t1, t2), such that limt→t+1

u(t) = limt→t−2
u(t) = 0

and limt→t+1
u̇(t) = limt→t−2

u̇(t) = 0. In addition, u(t) reaches a unique local

maximum m at t = (t1 + t2)/2 and is symmetric with respect to this maximum
due to the symmetry of system (5).

(b2) If F ′(m) = 0, then p is a critical point and there are two orbits with energy h0

connecting (0, 0) with p, cf. Figure 3 (b2). In view of Lemma 5, any point of this
orbit connects with (0, 0) in finite time, thus the heteroclinic orbit connecting
(0, 0) with p through the branch (u, v+

h0
(u)) corresponds to a strong solution u+(t)

of (1) defined in (t1,∞), t1 ∈ R, such that limt→t+1
u+(t) = limt→t+1

u̇+(t) = 0 and

limt→∞ u(t) = m. The branch (u, v−h0
(u)) corresponds to a strong solution u−(t)

defined in (−∞, t2) with t2 ∈ R such that limt→t−2
u−(t) = limt→t+1

u̇−(t) = 0 and

limt→−∞ u(t) = m. Notice that u+(t1 + t) = u−(t1 − t) when t1 = t2 due to the
symmetry of system (5).

The second type of solutions are the ones associated to curves γh which are defined for
u ∈ (0,m] but do not tend to a finite point on the singular line {u = 0} × R, hence they
satisfy

lim
u→0+

v±h = ±∞.

Such curves appear if and only if there exists m > 0 such that F (u) < hm = F (m) for all
u ∈ [0,m), see Figure 4. In addition, observe that for 0 < ū < m

∆T (ū) =

∫ ū

0

du

v
=

1√
2

∫ ū

0

√
u

F (m)− F (u)
du <∞, (11)

since F (m)− F (u) > 0 for u ∈ [0,m). Consequently, the orbits of (5) passing through the
points (ū, v±hm

(ū)) are unbounded in the component v but aproach the singular line u = 0
at infinity in finite time. Analogously to the previous cases, we distinguish between two
scenarios:

(c1) If F ′(m) 6= 0 then the branches (u, v±hm
(u)) coincide at the regular point p = (m, 0).

Thus there is an unbounded orbit of (5) tending to infinity in the v-direction in finite
time, Figure 4 (c1). It corresponds to a strong solution u(t) of (1) defined in a finite
interval (t1, t2) such that limt→t+1

u(t) = limt→t−2
u(t) = 0 and limt→t+1

u̇(t) = +∞,

limt→t−2
u̇(t) = −∞. This solution has a unique maximum m at t = (t1 + t2)/2 and it

is symmetric with respect this point.

(c2) If F ′(m) = 0 then the branches (u, v±hm
(u)) coincide at the critical point p = (m, 0)

and there are two unbounded orbits of (5) tending to infinity in the v-direction
in finite time, cf. Figure 4 (c2), but any point in the orbit takes an infinite time
to reach the singular point p. The orbit defined by the branch (u, v+

hm
(u)) corre-

sponds to a strong solution u+(t) of (1) defined for t ∈ (t1,∞), t1 ∈ R, such that
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limt→t+1
u+(t) = 0, limt→t+1

u̇+(t) = +∞, and limt→∞ u+(t) = m. Similarly, the orbit

defined by the branch (u, v−hm
(u)) corresponds to a strong solution u−(t) of (1) de-

fined for t ∈ (−∞, t2), t2 ∈ R, such that limt→−∞ u−(t) = m and limt→t−2
u−(t) = 0,

limt→t−2
u̇−(t) = −∞. Notice that as before, u+(t1 + t) = u−(t1− t) when t1 = t2 due

to the symmetry of system (5).

u

u

v

t

F (u)
hm

m

m

m

u

t1 t2

(c1)

u

u

v

t

F (u)
hm

m

m

m

u

t2t1

(c2)

Figure 4: Strong solutions of (1) defined in a subset of R associated to curves γh with
unbounded component v near the singular line {u = 0} × R. They provide elementary
forms to construct TWS with cusps.

4 Singular traveling wave solutions

This section is devoted to the characterization of singular TWS of equation (1). We
are interested in singular TWS such that either v±h (0) is well-defined for h = h0, or
limu→0+ v

±
h (u) = ±∞ for h 6= h0.
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4.1 Peaked waves

A TWS of (1) given by a function u : R → R is called peaked if it is smooth except at a
finite or countable number of points (peaks) S = {tk ∈ R, k ∈ Z} where

0 6= lim
t→t+k

u′(t) = − lim
t→t−k

u′(t) 6= ±∞,

The main result of this section is the following characterization:

Proposition 6. The equation (1) has peaked TWS if and only if

• F ′(0) < 0 and

• there exists m > 0 such that F (m) = F (0) and F (u) < F (0) for u ∈ (0,m).

These solutions are either

(i) peaked periodic, with period T =
2√
2

∫ m

0

√
u

F (0)− F (u)
du, if and only if in addition

F ′(m) 6= 0, or

(ii) peaked solitary if and only if in addition F ′(m) = 0.

These solutions are weak singular TWS and they are analytic except for a discontinuity in
the first derivative at the peaks. Furthermore, the peaked solitary waves are symmetric with
respect to their unique maximum and decay exponentially to zero at infinity. Peaked periodic
solutions have a unique maximum and minimum per period and are symmetric with respect
to these local extrema.

Proof. Peaked TWS are compositions of the elementary forms studied in the case (a) of
Section 3.2. They appear as a consequence of the existence of values t ∈ R such that the
solutions of (1) reach u = 0 with non-vanishing one-sided derivative. These solutions are
associated to the integral curves of (5) with energy h = h0. The branches (u, v±h0

(u)) must
be defined and bounded, intersecting the singular line {u = 0} at finite points (0,+a) and
(0,−a) different from (0, 0), so that the corresponding solutions reach 0 with non-vanishing
derivative. Therefore, there must exist m > 0 such that F (u) < F (0) for u ∈ (0,m) and
F (m) = F (0), and additionally F ′(0) < 0. These two necessary conditions are also sufficient
for the existence of peaks, as we will see in the construction of solutions in the proofs of (i)
and (ii).

Suppose that F ′(m) 6= 0, so (m, 0) is a regular point and therefore, by the symmetry
of system (5) and by equation (10), there is an orbit of system (5) connecting (0,+a) with
(0,−a) in finite time. This means that there exist t1, t2 <∞ such that the first component
of the solution of system (5), u(t), is a strong solution of equation (1) (and equation (3)
with h = h0) with maximal interval of definition given by t ∈ (t1, t2). This solution is
the elementary form studied in the case (a1) in Section 3.2, hence limt→t+1

u(t) = 0 and

limt→t+1
u̇(t) = a. By symmetry, limt→t−2

u(t) = 0, limt→t−2
u̇(t) = −a and u

(
t1+t2

2

)
= m.

Lemma 3 allows us to extend the above solution continuously to R by gluing together copies
of it defined in the intervals (tk, tk+1) with k ∈ Z, where tk = t1 + k(t2 − t1). This leads to
the function

ũ(t) =

{
u (t− (k − 1)(t2 − t1)) for t ∈ (tk, tk+1),
0 for t = tk,

(12)
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which is periodic with period

T = t2 − t1 =
2√
2

∫ m

0

√
u

F (0)− F (u)
du.

By Lemma 5 (ii) the above integral is well defined, since F ′(m) 6= 0. Notice also that
limt→tk ũ(t) = 0 and limt→t±k

˙̃u(t) = ±a, so ũ(t) is peaked periodic. Furthermore, the

solution attains a unique maximum m at t = (tk + tk+1)/2 and is symmetric with respect
to it on each period. Observe that ũ ∈ H1

loc(R). Indeed, the function ũ is bounded and
analytic in R \S where S = {tk, k ∈ Z}, and since limt→tk( ˙̃u(t))2 = a2, also | ˙̃u|2 is bounded
in R\S. Recalling in addition that ũ(t) is a strong solution of (1) on each interval (tk, tk+1),
cf. (a1) in Section 3.2, we get that it is a TWS in the sense of Definition 1. By construction
ũ(t) satisfies equation (3) with h = h0 except at the points in S where the equation holds
in the limit (4). So according to Definition 2, it is a weak singular TWS of (1). Finally,
observe that the solution ũ constructed above is the only possible continuous continuation
of u(t) on R.

Suppose now that F ′(m) = 0, so (m, 0) is a critical point of (5). In this case there exist
two orbits connecting (m, 0) with (0,+a) and (0,−a), respectively, cf. the elementary forms
of (a2) in Section 3.2. Again, Lemma 5 (i) guarantees that any point on these orbits reaches
(0,±a) in finite time, but it takes an infinite time to reach (m, 0). So there exist strong
solutions u±(t) of (1) defined on (t1,∞) and (−∞, t2), respectively. The non-uniqueness of
solutions then allows us to choose t2 = t1 to construct the function

u(t) =

{
u−(t) for t ∈ (−∞, t1],
u+(t) for t ∈ (t1,+∞),

which is a peaked solitary wave defined on R. The same arguments as before show that u
is in H1

loc(R), it is a weak solution of (1), and in particular a weak singular TWS of (1).
Again, u is the only possible continuous continuation of u− and u+ onto R .

4.2 Solitary waves with compact support and associated composite waves

A TWS of (1) given by a function u : R→ R has compact support if there exist −∞ < t1 <
t2 <∞ such that u is constant on R\ [t1, t2] and u is non constant on [t1, t2]. We call [t1, t2]
the support of u. A solitary wave with compact support, or simply compact solitary wave,
is a continuous TWS which has compact support and a unique extremum. We say that
a TWS ũ(t) is a composite wave associated to a compact solitary wave u(t) with support
[t1, t2], or simply a composite wave of u(t), if it is obtained by gluing together copies of
one compact solitary wave in such a way that the supports of each copy do not overlap.
More precisely, ũ(t) is a composite wave of a solitary wave u(t) if there exists a collection
of intervals Ik = (t1 − ak(t2 − t1), t2 − ak(t2 − t1)) for ak ∈ R and k ∈ K, where K is either
Z or a finite collection of indices, with Ik ∩ Ij 6= ∅ for all k 6= j, such that

ũ(t) =

{
u(t+ ak(t2 − t1)) if t ∈ Ik for some k ∈ K,
0 if t ∈ R \ ∪k∈KIk.

The following result characterizes the compact solitary waves and composite waves.
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Proposition 7. The equation (1) has compact solitary TWS and their associated composite
solutions if and only if

• F ′(0) = 0 and F ′′(0) < 0, and

• there exists m > 0 such that F (m) = F (0), F (u) < 0 for u ∈ (0,m) and F ′(m) 6= 0.

These solutions are either compact solitary waves, composite multi-bump solutions with
compact support or composite waves with non-compact support that can be either aperiodic
or periodic with arbitrary period. These solutions are strong singular TWS, they are C1(R)
and piecewise analytic. Furthermore, the compact solitary waves are symmetric with respect
to their unique maximum.

Proof. Compact solitary TWS appear when there exist values t ∈ R such that the solutions
of (1) reach u = 0 with vanishing one-sided derivative. These solutions are associated to
the integral curves of (5) with energy h = h0, and as before, the branches (u, v±h0

(u)) must
be defined and bounded such that they intersect the singular line {u = 0} × R at (0, 0) in
finite time. This last fact guarantees that the corresponding solution of (1) reaches u = 0
with vanishing derivative in finite time.

As studied in the case (b) of Section 3.2, the existence and boundedness of such curves
is guaranteed if there exists m > 0 such that F (u) < F (0) for u ∈ (0,m) and F (m) = F (0).
The intersection of the curves (u, v±h0

(u)) with the singular line {u = 0} × R at (0, 0) is
ensured if F ′(0) = 0, since in this case

lim
u→0+

v±h0
(u) = lim

u→0+
±
√
−2F ′′(u)u2 + o(u3)

u
= 0. (13)

By Lemma 5 (i) and (ii), the orbits of (5) connect (0, 0) with (m, 0) in finite time if F ′′(0) < 0
and F ′(m) > 0. Under these conditions there exist t1, t2 ∈ R such that the first component
of the solution of system (5), u(t), is a strong solution of (1) (and also (3) with h = h0) in
the maximal interval of definition t ∈ (t1, t2). Moreover, limt→t+1

u(t) = 0 and by symmetry

limt→t−2
u(t) = 0 and u

(
t1+t2

2

)
= m is the unique maximum. This solution u(t) is the

elementary form that appears in the case (b1) of Section 3.2.
In particular, the above conditions imply that equation (1) is not unique at u = 0, and

that u(t) ≡ 0 is also a solution. Therefore it is possible to obtain a continuous continuation
of u(t) with compact support in R. We define the function

ũ(t) =

{
u(t) for t ∈ (t1, t2),
0 for t ∈ R \ (t1, t2).

Observe that ũ(t) ∈ H1
loc(R) and it is analytic in R \ {t1, t2}. Furthermore, limt→t+1

u̇(t) = 0

and limt→t−2
u̇(t) = 0 in view of (13). Hence ũ(t) ∈ C1(R), and by construction it is a

strong singular TWS of (1). In a similar way as above, we can also construct the following
composite waves: multi-bump waves with compact support by gluing together a finite
number of copies of u(t), and waves with non-compact support that can be either aperiodic
or periodic with arbitrary period. All these solutions are strong singular TWS of (1), they
are piecewise analytic and at most C1(R), cf. Remark 9 below.

14



The sufficiency part of the proof follows from the fact that if F satisfies the stated
conditions, then it is possible to find the desired solutions following the above construction.

As a direct consequence of Propositions 6 and 7, we obtain that it is not possible to find
a peaked wave with compact support.

Corollary 8. The equation (1) cannot admit peaked and compactly supported TWS for the
same F . In particular, a peaked TWS can not have compact support, and conversely, a
TWS with compact support can not have peaks.

Remark 9. In view of Lemma 5, the conditions of Proposition 7 guarantee the existence of
a homoclinic orbit of system (5) where every point on the orbit is connected to (0, 0) in a
finite time. They also account for the fact that the compactly supported solutions are at
most C1. Indeed, notice that under the conditions of Proposition 7 we have that

u̇(t) = v±h0
= ±

√
−2F ′′(u)u+ o(u2)

and

ü(t) = ±−2F (3)(u)uu̇− 2F ′′(u)u̇+ o(u)u̇

2(±u̇)

= −F (3)(u)u− F ′′(u) + o(u).

Therefore,

lim
t→t−1

ü(t) = −F ′′(u) 6= 0 = lim
t→t+1

ü(t)

lim
t→t+2

ü(t) = −F ′′(u) 6= 0 = lim
t→t−1

ü(t), (14)

and hence the continuation to u(t) ≡ 0 is not C2 since F ′′(u) < 0. If we were to demand a
C2-continuation, this would necessarily require the second derivative of F to vanish. As a
consequence, the solutions would loose the compactness property, since in view of Lemma
5 the existence time of the loop would become infinite.

Remark 10. Observe that a different kind of composition of locally defined solutions may
also be obtained under conditions stated in Proposition 7 but with F ′(0) < 0. In this case

lim
u→0+

v±h0
(u) = lim

u→0+
±
√
−2F ′(u)u+ o(u2)

u
= ±

√
−2F ′(0) =: ±a 6= 0,

and hence limt→t+1
u̇(t) = a and limt→t−2

u̇(t) = −a. However, u(t) ≡ 0 is not a solution of

(1) under this assumption on F and therefore the only possible continuous continuation is
given by the periodic function (12). But this is not a composition of a compact solitary
wave, i.e not a composite wave as defined at the beginning of this section.
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4.3 Fronts with finite-time decay and plateau-shaped waves

Proposition 11. The equation (1) has fronts, solitary and plateau-shaped singular TWS
solutions if and only if

• F ′(0) = 0 and F ′′(0) < 0, and

• there exists m > 0 such that F (m) = F (0), F (u) < 0 for u ∈ (0,m) and F ′(m) = 0.

The solitary waves are strong solutions of (1) and therefore analytic. The fronts and plateau-
shaped waves are strong singular TWS which are at most C1 and piecewise analytic. More-
over, the fronts have finite-time decay on one side.

Proof. Under the present hypothesis, there exist orbits of system (5) corresponding to the
branches (u, v±h0

(u)), which connect (0, 0) with the critical point (m, 0). By Lemma 5, any
point on these orbits is connected to (0, 0) in finite time and to (m, 0) in infinite time. They
yield two strong solutions u±(t) with maximal interval of definition (t1,∞) and (−∞, t2),
respectively, which are given by the elementary forms of the case (b2) of Section 3.2. By
gluing them together with the solution u(t) ≡ 0 we get the following solutions: fronts given
by

ũ−(t) =

{
u−(t) for t ∈ (−∞, t1),
0 for t ∈ [t1,∞),

and ũ+(t) =

{
0 for t ∈ (−∞, t2],
u+(t) for t ∈ (t2,∞).

Setting t1 = t2 we get a solitary wave given by

u(t) =


u−(t) for t ∈ (−∞, t1),
0 for t = t1,
u+(t) for t ∈ (t1,∞),

which is symmetric with respect to its unique maximum. Choosing t1 < t2 we get a plateau-
shaped solitary wave given by

u(t) =


u−(t) for t ∈ (−∞, t2),
0 for t ∈ [t2, t1],
u+(t) for t ∈ (t1,∞),

The front and plateau-shaped solutions are analytic in R \ {ti} and satisfy equation (3) for
h = h0, hence they are strong singular TWS of (1). Furthermore, they are at most C1(R)
for the same reason explained in Remark 9. The solitary wave solutions, however, are in
fact strong solutions of (1) on R since ü(t) is defined everywhere, cf. (14), and therefore
they are analytic on R.

We emphasize that the fronts described above are not the classical smooth fronts with
exponential decay on both ends, but they decay in finite time on one end.

4.4 Cusped waves

A TWS of (1) given by a function u : R → R is called cusped if it is smooth except at a
finite or countable number of points (cusps) S = {tk ∈ R, k ∈ Z} where

lim
t→t+k

u′(t) = − lim
t→t−k

u′(t) = ±∞.
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Proposition 12. The equation (1) has cusped TWS if and only if there exists m > 0 such
that F (m)− F (u) > 0 for all u ∈ [0,m). These solutions are either

(i) cusped periodic with period T =
2√
2

∫ m

0

√
u

F (m)− F (u)
du if and only if in addition

F ′(m) 6= 0, or

(ii) cusped solitary if and only if in addition F ′(m) = 0.

These solutions are weak singular TWS and they are analytic except for a discontinuity
in the first derivative at the peaks. Furthermore, the cusped solitary waves are symmetric
with respect to their unique maximum and decay exponentially to zero at infinity. Cusped
periodic solutions have a unique maximum and minimum per period and are symmetric with
respect to these local extrema.

Proof. Cusped TWS correspond to orbits of (5) which are defined by the curves (u, v±h (u))
with h 6= h0 satisfying

lim
u→0+

v±h (u) = lim
u→0+

±
√

2
h− F (u)

u
= ±∞.

Therefore, a necessary condition for the appearance of cusps is that there exists m > 0 such
that F (m)−F (u) > 0 for u ∈ [0,m). In particular, this implies that hm := F (m) > F (0). As
shown in the case (c) of Section 3.2 the orbits of (5) passing through the points (ū, v±hm

(ū))
are unbounded in the component v but approach the singular line u = 0 at infinity in a
finite time. We will see in the construction of solutions in the proofs of (i) and (ii) below
that the necessary condition deduced above is also sufficient for the existence of cusped
TWS.

(i) If F ′(m) 6= 0 then the point (m, 0) connecting the two branches (u, v±hm
(u)) is regular,

so by equation (11) there exist t1, t2 < ∞ such that the first component of the solution of
system (5) u(t), is a strong solution of (1) (and also of (3) with h = hm), with maximal
interval of definition t ∈ (t1, t2), which is given by the elementary form that appears in
case (c1) of Section 3.2. Notice that u(t) ≡ 0 is not a solution of (3) for h = hm > 0.
Therefore, the only possible continuous continuation of u(t) preserving the energy is given
by the periodic function

ũ(t) =

{
u (t− (k − 1)(t2 − t1)) for t ∈ (tk, tk+1),
0 for t = tk,

where tk = t1 + k(t2 − t1) for k ∈ Z, which is periodic with period

T = t2 − t1 =
2√
2

∫ m

0

√
u

F (m)− F (u)
du.

Observe now that integrating system (5), and denoting uε := u(t1 + ε) we get,∫ t1+ε

t1

u̇2dt =

∫ uε

0
v2du

v
=

∫ uε

0

√
2(F (m)− F (u))

u
du.
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Since F (m) − F (u) > 0 for all u ∈ [0, uε] and recalling the criterion used in Lemma 5, we
find that limu→0+

√
(F (m)− F (u))/u ·

√
u = A with A 6= 0 and A 6=∞. Therefore,∫ uε

0

√
2(F (m)− F (u))

u
du <∞,

and hence
∫ t1+ε
t1

u̇2dt <∞. Analogously
∫ t2
t2−ε u̇

2dt <∞ and hence
∫ tk+ε
tk−ε ( ˙̃u)2dt is convergent

for every tk so that for each compact K ⊂ R we have∫
K

( ˙̃u)2dt <∞.

Since ũ(t) is bounded as well, this solution is in H1
loc(R), and analytic on R \ S where

S = {tk ∈ R, k ∈ Z}. Finally observe that ũ(t) is a weak singular TWS of (1), because

lim
t→tk

u(u̇)2

2
+ F (u) = u

F (m)− F (u)

u
+ F (u) = F (m) = hm.

(ii) If F ′(m) = 0 then the orbits corresponding to (u, v±hm
) approach the singular line

{u = 0} in finite time, but it takes an infinite time to reach (m, 0). So there exist two
strong solutions of (1) u±(t) given by the elementary forms of the case (c2) of Section 3.2,
defined on the maximal intervals (t1,+∞) and (−∞, t2), respectively. The only way to
construct a continuous continuation in R preserving the energy is by choosing t2 = t1 and
gluing together the corresponding solutions u±. These considerations lead us to define the
function

ũ(t) =


u−(t) for t ∈ (−∞, t1),
0 for t = t1
u+(t) for t ∈ (t1,+∞),

which is a cusped solitary TWS defined in R. The same arguments as in the proof of
statement (a) show that ũ is a weak singular TWS of (1).

4.5 Exhaustivity of the characterization

Observe that the elementary forms presented in Section 3.2 capture all the strong solutions
of equation (1) reaching or tending to {u = 0}, whose maximal interval of definition is not
R. In addition, the singular solutions described in the preceding Section 4 cover all possible
continuous extensions to R on the same energy level, using these elementary forms and the
constant function u(t) ≡ 0 whenever it is a solution. In consequence, our characterization
of singular TWS for equation (1) given in Propositions 6, 7, 11 and 12 is exhaustive.

5 Application to shallow water equations

The aim of this section is to demonstrate the applicability of the propositions developed
in the preceding sections. We exemplify our approach by studying the equation for surface
waves of moderate amplitude in shallow water and the Camassa-Holm equation. In partic-
ular, we show how the different types of singular TWS can be obtained varying the energy
of the corresponding Hamiltonian systems. This approach may be applied to study singular
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TWS of a variety of other equations, for example a class of nonlinear wave equations related
to the inviscid Burgers’ equation and Camassa-Holm equation studied in [15], the family
of equations analyzed in [16], and a generalization of the Camassa-Holm equation studied
in [17]. In the latter paper, the authors conclude with a conjecture on the non-existence of
peaked solitary solutions when a certain parameter becomes non-positive. In view of the
results in Section 4 we are able to give an affirmative answer.

5.1 Surface waves of moderate amplitude in shallow water

In this section we study singular TWS of the equation for surface waves of moderate am-
plitude in shallow water,

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt + 14uuxxx + 28uxuxx = 0, (15)

which was first derived by Johnson [12], whose considerations were extended by Constantin
and Lannes [4]. We refer to [11] for a first study of smooth solitary waves and to [10] for a
more extensive characterization of TWS of equation (15). We introduce the traveling wave
Ansatz u(x, t) = u(x− c t) and integrate once to obtain

u′′
(
u+

1 + c

14

)
+

1

2
(u′)2 +K + (1− c)u+ 3u2 − 2u3 + 3u4 = 0, (16)

for some constant K ∈ R. Notice that after the change of variables u 7→ u− 1+c
14 the above

equation is of the form (1), with F a suitable polynomial in u depending on the parameters
c and K. The relation between the parameters and the qualitative properties of F is studied
in detail in [10]. In particular, it is observed that F has either no extremum or there are
two extrema which we denote by p1 (the local maximum) and p2 (the local minimum of F )
such that p1 < p2. Let hi = F (pi) for i = 1, 2. We distinguish different cases depending
on the position of p1 and p2 with respect to u = 0, and the sign of h0 − h2. Taking into
account these cases and the characterization given in Propositions 6, 7 and 12 we obtain
the following types of bounded singular TWS for equation (15) varying the energy. We
point out that, as a consequence of Corollary 8, compact solitary waves and peaked waves
cannot coexist within a single case. To give an example, Figure 5 shows the different TWS
of equation (15) that appear for different energy levels when 0 < p1 < p2 and h2 > h0.

Energy/Case 0 < p1 < p2 and h2 > h0

h > h1 cusped periodic

h = h1 cusped & smooth solitary

h1 > h > h2 cusped & smooth periodic

h = h2 cusped periodic & constant

h2 > h > h0 cusped periodic

h ≤ h0

Energy/Case 0 < p1 < p2 and h2 < h0

h > h1 cusped periodic

h = h1 cusped & smooth solitary

h1 > h > h0 cusped & smooth periodic

h0 ≥ h > h2 smooth periodic

h = h2 constant

h ≤ h2
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Energy/Case 0 < p1 < p2 and h2 = h0

h > h1 cusped periodic

h = h1 cusped & smooth solitary

h1 > h > h0 = h2 cusped & smooth periodic

h = h0 constant

h < h0

Energy/Case 0 = p1 < p2

h > h1 cusped periodic

h = h1 = h0 compact solitary & composite

h1 > h > h2 smooth periodic

h = h2 constant

h < h2

Energy/Case p1 < 0 < p2 p1 < p2 = 0 p1 < p2 < 0

h > h0 cusped periodic cusped periodic cusped periodic

h = h0 peaked periodic constant

h0 > h > h2 smooth periodic

h = h2 constant

h < h2

h0

h2

h1

p1 p2 u

F (u)

p1 p2
u

v

u

t

(a)

u

t

(b)

u

t

(c)

u

t

(d)

u

t

(e)

Figure 5: Singular TWS of equation (15) varying the energy level h in the case 0 < p1 < p2

and h2 > h0. (a) cusped periodic waves for h > h1; (b) cusped and smooth solitary waves
for h = h1; (c) cusped and smooth periodic waves for h1 > h > h2; (d) cusped periodic
waves and constant solutions for h = h2; (e) cusped periodic waves for h2 > h > h0.
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5.2 The Camassa-Holm Equation

In the present section we will study singular TWS of the Camassa-Holm equation (CH)

ut + 2κux − utxx + 3uux = 2uxuxx + uuxxx, (17)

for x ∈ R, t > 0 and κ ∈ R, which was introduced in the context of water waves by Camassa
and Holm [2]. For a classification of weak traveling wave solutions of the Camassa–Holm
equation we refer to [13]. Proceeding as in the previous section we introduce the traveling
wave Ansatz u(x, t) = u(x− c t). Integrating once equation (17) takes the form

u′′(u− c) +
(u′)2

2
+ r + (c− 2κ)u− 3

2
u2 = 0,

where r is a constant of integration. The change of variables

w = u− c,

transforms the above equation to the form (1) with

F (w) = Aw +Bw2 − 1

2
w3, (18)

where A = r−2κc− 1
2c

2 and B = −(c+κ). F (w) is a third order polynomial which satisfies
F (0) = 0, it has at most three roots

w = 0 and w = B ±
√
B2 + 2A,

and at most two extrema

pi =
2B + (−1)i

√
4B2 + 6A

3
, i = 1, 2.

We may assume that B ≥ 0 since otherwise the change of variables (ŵ, v̂) = −(w, v) yields
this situation (this is equivalent to considering system (5) only for u ≥ 0). Note that F does
not have any extremum when 4B2 + 6A ≤ 0, and it has two distinct extrema otherwise. In
the latter case, p1 is the local minimum and p2 > 0 the local maximum (with F ′′(p2) < 0).
We denote h1 = F (p1) and h2 = F (p2), and distinguish between the following cases:

Case

(i) A > 0 p1 < 0 < p2 h1 < 0 < h2

(ii) A = 0, B > 0 p1 = 0 < p2 h1 = 0 < h2

(iii) A < 0, 4B2 + 6A > 0, B2 + 2A > 0 0 < p1 < p2 h1 < 0 < h2

(iv) A < 0, 4B2 + 6A > 0, B2 + 2A = 0 0 < p1 < p2 h1 < h2 = 0

(v) A < 0, 4B2 + 6A > 0, B2 + 2A < 0 0 < p1 < p2 h1 < h2 < 0

(vi) A < 0, 4B2 + 6A ≤ 0

Taking into account the cases described above and the classification given in Propositions
6 and 12 we obtain the following types of singular TWS varying the energy level h:
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Energy/Case (i) (ii) (iii) (iv)

h < h1

h = h1 constant constant

h1 < h < 0 smooth periodic smooth periodic

h = 0 constant peaked periodic peaked solitary

0 < h < h2 cusped periodic cusped periodic cusped periodic

h = h2 cusped solitary cusped solitary cusped solitary

h > h2

Energy/Case (v)

h < h1

h = h1 constant

h1 < h < h2 < 0 smooth periodic

h = h2 smooth solitary

h > h2

5.3 Generalized Camassa-Holm Equation

In [17] the authors study peaked solitary and periodic cusped traveling wave solutions of a
generalization of the CH equation of the form

ut + 2κux − utxx + a uux = 2uxuxx + uuxxx, (19)

where a ∈ R is an additional parameter. At the end of their paper they state the following
conjecture: “If the parameter a ≤ 0, then equation (19) has no peaked solitary wave
solution”. Using the approach developed in the preceding sections it is easy to see that this
assertion is true. Proceeding as with the CH above we introduce the traveling wave Ansatz
and integrate once to find that after the change of variables w = u− c we obtain

w′′w +
(w′)2

2
+ F ′(w) = 0,

which is an equation of the form (1) with

F (w) = Aw +Bw2 − a

6
w3,

where A = r + (1 − a
2 )c2 − 2κc and B = (1 − a) c2 − κ. Our analysis (cf. Proposition 6)

shows that an equation of this form has peaked solitary TWS if and only if F ′(0) < 0
and there exists m > 0 such that F (m) = F (0) with F (u) < F (0) for u ∈ (0,m) and
F ′(m) = 0. Assuming that a < 0, we see that F (w)→ ±∞ as w → ±∞. This contradicts
the conditions for the existence of peaked solitary solutions stated above. Indeed, if equation
(19) had peaked solitary TWS, then F ′(0) = A < 0. Thus, F would have a maximum to the
left and a minimum to the right of w = 0. Hence there exists m > 0 such that F (m) = F (0),
but F ′(m) 6= 0 since F has at most two extrema. For a = 0 the situation is similar. This
shows that the conjecture is true.
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[5] N. Duruk Mutlubaş. On the Cauchy problem for a model equation for shallow water
waves of moderate amplitude. Nonlinear Anal. Real World Appl., 14(5):2022–2026,
2013.
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