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Abstract. We classify the global phase portraits in the Poincaré disc of the
differential systems ẋ = −y+ xf(x, y), ẏ = x+ yf(x, y), where f(x, y) is a homo-
geneous polynomial of degree 3. These systems have a uniform isochronous center
at the origin. This paper together with the results presented in [9] completes
the classification of the global phase portraits in the Poincaré disc of all quartic
polynomial differential systems with a uniform isochronous center at the origin.

1. Introduction and statement of the main results

Isochronicity appears in many physical phenomena and it has a close relation
to the stability theory and to the uniqueness and existence of solutions for some
boundary value and bifurcation problems, for further information on these topics
see [3]. The first researches on isochronous systems date back at least to the XVII
century, even before the development of differential calculus, with the investigation
of the cycloidal pendulum by Christian Huygens, see [6].

In the last decades the study of isochronicity, specially in the case of polynomial
differential systems, has been boosted because of the proliferation of more powerful
methods of computerized analysis, see for instance [1, 2, 4, 8, 12] and the bibliography
therein.

Let p ∈ R2 be a center of a planar differential polynomial system. Without
loss of generality we can assume that p is at the origin of coordinates. Then p
is an isochronous center if it is a center having a neighborhood such that all the
periodic orbits in this neighborhood have the same period. Moreover p is a uniform
isochronous center if the system, in polar coordinates x = r cos θ, y = r sin θ, is of
the form

(1) ṙ = G(θ, r), θ̇ = k,

with k ∈ R \ {0}. For further information see Conti [4].
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In this paper we classify the global phase portraits in the Poincaré disc of the
uniform isochronous centers with quartic homogeneous polynomial nonlinearities.
Our results together with those presented in [9] completes the classification of the
global phase portraits in the Poincaré disc of all quartic polynomial differential
systems with a uniform isochronous center at the origin.

Our main result is the following.

Theorem 1. Let

(2) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

be a polynomial differential system of degree 4, such that f(x, y) is a cubic
homogeneous polynomial. Then any quartic polynomial differential system which
can be written into the form (2) has a uniform isochronous center at the origin and
its global phase portrait is topologically equivalent to one of the 3 phase portraits of
Figure 1.

(b)(a) (c)

Figure 1. Phase portraits of the uniform isochronous centers with
quartic homogeneous polynomial nonlinearities.

Our results have been checked with the software P4, see for further information
on this software the Chapters 9 and 10 of [5].

The rest of the paper is organized as follows. In section 2 we present some concepts
and results used in our study. In section 3 we prove Theorem 1.

2. Preliminary results

In this section we present some results we shall use in our study.

2.1. Poincaré compactification Consider X a planar polynomial vector field of
degree n. The Poincaré compactified vector field p(X ) corresponding to X is an
analytic vector field induced on S2 as follows, for further details see for instance [7],
or Chapter 5 of [5]. Let S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1} (the so called
Poincaré sphere) and TyS2 be the tangent space to S2 at the point y. Moreover,
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consider the central projection f : T(0,0,1)S2 → S2. This map defines 2 copies of X ,
one in the northern hemisphere and the other in the southern one. Denote by X ′ the
vector field Df ◦X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}. Note
that S1 is identified to the infinity of R2. Then p(X ) is the only analytic extension
of yn−1

3 X ′ to S2. On S2\S1 there are two symmetric copies of X , and studying the
behavior of p(X ) around S1, we obtain the behavior of X at infinity. The projection
of the closed northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2) is
known as the Poincaré disc, and it is denoted by D2. One important property of
the Poincaré compactification is that S1 is invariant under the flow of p(X ).

Since S2 is a differentiable manifold we consider the six local charts Ui = {y ∈ S2 :
yi > 0}, and Vi = {y ∈ S2 : yi < 0} where i = 1, 2, 3 for computing the expression
for p(X ). The diffeomorphisms Fi : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3 are
the inverses of the central projections from the planes tangent at the points (1, 0, 0),
(−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), and (0, 0,−1) respectively. We denote by
(u, v) the value of Fi(y) or Gi(y) for any i = 1, 2, 3. Note that (u, v) represents
different things according to the local charts under consideration.

In the local chart (U1, F1), p(X ) is written as

u̇ = vn
[
−uP

(
1

v
,
u

v

)
+Q

(
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v
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v
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, v̇ = −vn+1P
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v
,
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)
,

and the expression for p(X ) in the local chart (U2, F2) is

u̇ = vn
[
P

(
u

v
,
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)
− uQ

(
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,
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)]
, v̇ = −vn+1Q

(
u

v
,
1

v

)
,

and finally for (U3, F3) it is

u̇ = P (u, v), v̇ = Q(u, v).

The expression for p(X ) in each chart (Vi, Gi) is the same as in the chart (Ui, Fi),
multiplied by (−1)n−1, i = 1, 2, 3. The points of S1 in any chart have v = 0.
Therefore we have a polynomial vector field in each local chart.

The unique singular points at infinity which cannot be contained into the charts
U1 ∪ V1 are the origins of U2 and V2. Then, when we study the infinite singular
points on the charts U2 ∪ V2, we only have to verify if the origin of these charts are
singularities.

2.2. Topological equivalence Two polynomial vector fields X and Y on R2 are
topologically equivalent if there exists a homeomorphism on S2 which preserves the
infinity S1 carrying orbits of the flow induced by p(X) into orbits of the flow induced
by p(Y ), preserving or reversing simultaneously the sense of all orbits.

A separatrix of p(X) is an orbit which is either a singular point, or a limit cycle,
or a trajectory which lies in the boundary of a hyperbolic sector at a finite or infinity
singular point.
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We denote by Sep(p(X)) the set formed by all separatrices of p(X). The set
Sep(p(X)) is closed, see [11]. Each open connected component of S2 \ Sep(p(X)) is
called a canonical region of p(X). A separatrix configuration is a union of Sep(p(X))
plus one representative solution chosen from each canonical region. Moreover,
Sep(p(X)) and Sep(p(Y )) are equivalent if there exists a homeomorphism in S2

preserving the infinity S1 carrying orbits of Sep(p(X)) into orbits of Sep(p(Y )),
preserving or reversing simultaneously the sense of all orbits.

The next result is due to Neumann [11] and characterizes the topologically equivalence
between two Poincaré compactified vector fields.

Theorem 2. Let X and Y be two polynomial vector fields in R2. If p(X) and p(Y )
have finitely many separatrices, then p(X) and p(Y ) are topologically equivalent if
and only if their separatrix configurations are equivalent.

Theorem 2 implies that, to obtain the global phase portrait of a polynomial vector
field p(X) with finitely many separatrices, we need to determine the separatrices of
p(X) and one orbit in each canonical region.

Using the arguments of the proof of Theorem 2 the next result follows.

Theorem 3. Let X and Y be two polynomial vector fields in R2. If p(X) and
p(Y ) have the infinity filled of singular points and finitely many separatrices in
R2, then p(X) and p(Y ) are topologically equivalent if and only if their separatrix
configurations are equivalent.

According to Theorem 3, in order to have the global phase portrait of a polynomial
vector field X with the infinity filled of singular points and finitely many separatrices
in R2, we need to determine the separatrices of p(X) and one orbit in each canonical
region.

2.3. Some results on the uniform isochronous centers

Proposition 4. Assume that a planar differential polynomial system ẋ = P (x, y),
ẏ = Q(x, y) of degree n has a center at the origin of coordinates. Then this center
is uniform isochronous if and only if by doing a linear change of variables and a
rescaling of time it can be written as

(3) ẋ = −y + x f(x, y), ẏ = x+ y f(x, y),

with f(x, y) a polynomial in x and y of degree n− 1, f(0, 0) = 0.

See for instance [9] for a proof of Proposition 4.

In the case of homogeneous uniform isochronous centers, Conti provided the
following result in Theorem 2.1 of [4].
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Theorem 5. Let f(x, y) =
∑

i+j=n−1

fi,jx
iyj be a homogeneous polynomial of degree

n− 1. Then system (3) has a uniform isochronous center at the origin if either n is
even, or if n is odd and

n−1∑

ν=0

[
fn−1−ν,ν

∫ 2π

0

cosn−1−ν θ sinν θ dθ

]
= 0.

We remark that by Theorem 5 all the homogeneous quartic polynomial systems
of the form (3) have a uniform isochronous center at the origin.

The following result and its proof can be found in Theorem 3.1 of [4].

Theorem 6. Consider the differential system (3) of degree n. If n > 1 and the
origin is a uniform isochronous center then it cannot be a global center.

3. Proof of Theorem 1

The fact that any quartic polynomial differential system of the form (2) has a
uniform isochronous center at the origin is a direct consequence of Theorem 5.

In order to provide all possible phase portraits in the Poincaré disc for the uniform
isochronous system (2) with homogeneous nonlinearities of degree 4, we shall study
the finite and infinite singular points of such systems.

3.1. Finite singular points In polar coordinates (x, y) = (r cos θ, r sin θ) the differential
system (2) is written as (1). It follows that the origin is the unique finite singular
point of (2).

More generally, if a planar polynomial differential system has a uniform isochronous
center at the origin, this system can be written as (1). Thus no polynomial differential
system can have more than one uniformly isochronous center. On the other hand,
there are differential systems with more than one isochronous center, see for instance
[10].

Theorem 6 together with the fact that the origin is the unique finite singular
point in system (2) imply that the boundary of the period annulus of the uniform
isochronous center at the origin is a graphic formed by infinite singular points and
their separatrices.

3.2. Infinite singular points In the chart U1 the differential system (2) when
f(x, y) is a homogeneous polynomial of degree 3 becomes

(4)
u̇ = v3(1 + u2),

v̇ = v(uv4 − f(1, u)).
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Therefore all the points (u, 0), for all u ∈ R are infinite singular points in U1. In
order to obtain the local phase portraits near the infinity, we rescale system (4)
doing ds = vdt and we obtain

(5)
u′ = v3(1 + u2),

v′ = v(uv4 − f(1, u)),

where the prime denotes derivative with respect to s.

Now the infinite singular points of system (5) are (u∗, 0) with u∗ a zero of f(1, u).
So at the chart U1 we have at most 3 infinite singular points.

Since at most one more additional infinite singular point can appear, which is the
origin of the chart U2, without loss of generality we can assume that all the infinite
singular points of system (2) after the rescaling ds = vdt are in the local chart U1,
otherwise doing a rotation in the coordinates (x, y) this would be the case. So in
what follows we do not need to study whether the origin of the chart U2 is an infinite
singular point.

To investigate the infinite singular points of system (2), we need to split our
study into several cases, according to the cubic homogeneous polynomial f(x, y).
Taking into account that we can assume that all the infinite singular points after
the rescaling ds = vdt are in the local chart U1, the polynomial f(x, y) must have
one of the following expressions, with a 6= 0

f1 = a(y − r1x)(y − r2x)(y − r3x), r1 < r2 < r3,

f2 = a(y − r1x)
2(y − r2x), r1 < r2,

f3 = a(y − r1x)
3,

f4 = (αx2 + βxy + γy2)(y − r1x), β
2 − 4αγ < 0,

f5 = (αx2 + βxy + γy2)y, β2 − 4αγ < 0.

In the polynomial fk, k = 1, 2, 3 we can assume that a = 1 in system (2) by doing
the rescaling (x, y) 7→ (x/ 3

√
a, y/ 3

√
a), and otherwise we can assume γ = 1 applying

the rescaling (x, y) 7→ (x/ 3
√
γ, y/ 3

√
γ).

In short we must study the phase portraits of the uniform isochronous system (2)
with f(x, y) in one of the following cases.

Case I: f(x, y) = (y − r1x)(y − r2x)(y − r3x), r1 < r2 < r3;

Case II: f(x, y) = (y − r1x)
2(y − r2x), r1 < r2;

Case III: f(x, y) = (y − r1x)
3;

Case IV: f(x, y) = (αx2 + βxy + y2)(y − r1x), with β2 − 4α < 0;

Case V: f(x, y) = (αx2 + βxy + y2)y, with β2 − 4α < 0.

Except for the Cases I and IV, in which system (2) depends of 3 parameters, in
all other cases it depends at most of 2 parameters.
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For the characterization of each local phase portrait, we shall apply the well known
results for the hyperbolic and nilpotent singular points, see for instance Theorems
2.15 and 3.5 of [5]. In what follows we study each case in detail.

Case I. In the chart U1 the differential system (2) becomes

(6)
u̇ = (1 + u2)v3,

v̇ = v[r1r2r3 − (r1r2 + r1r3 + r2r3)u+ (r1 + r2 + r3)u
2 − u3 + uv3],

Performing the rescaling of time ds = vdt system (6) writes as

(7)
u′ = (1 + u2)v2,

v′ = r1r2r3 − (r1r2 + r1r3 + r2r3)u+ (r1 + r2 + r3)u
2 − u3 + uv3.

The singular points at infinity are p1 = (r1, 0), p2 = (r2, 0) and p3 = (r3, 0). The
linear parts of system (7) at each of these points are respectively

(
0 0

(r2 − r1)(r1 − r3) 0

)
,

(
0 0

(r1 − r2)(r2 − r3) 0

)
,

(
0 0

(r1 − r3)(r3 − r2) 0

)
.

Since r1 < r2 < r3 the terms ri − rj for i 6= j, i, j = 1, 2, 3 never vanish.
Consequently the corresponding linear parts of system (7) at p1, p2 and p3 are
never identically zero and thus they are nilpotent singular points. For each singular
point, we perform appropriate translations and rescalings of time to have system (7)
under the normal form necessary to apply Theorem 3.5 of [5]. Taking into account
the hypothesis r1 < r2 < r3, we conclude that each one of these 3 singular points is
a cusp. Therefore modulus a translation to the origin and undoing the rescaling of
time ds = vdt, the local phase portrait for each singular point of system (6) might
be one of the two shown in Figure 2.

u

v

p
1

and p
3 p

2

u

v

Figure 2. Local phase portraits at p1, p2 and p3 of system (6). The
horizontal axis is filled of singular points.

Each global phase portrait for this case is obtained taking into account: all
the local phase portraits of the finite and infinite singular points; the existence
and uniqueness theorem for the solutions of a differential system; the boundary of
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the Poincar’e disc consists entirely of singular points; and that the graphic at the
boundary of the period annulus of the uniform isochronous center at the origin is
formed by separatrices of infinite singular points. Hence the global phase portrait
for Case I is topologically equivalent to the ones of Figure 1(a) or (b) of Theorem
1. We remark that the two configurations are possible by setting convenient values
to the real parameters r1, r2 and r3.

Case II. In the chart U1 system (2) is written as

(8)
u̇ = (1 + u2)v3,

v̇ = v[r21r2 − (r21 + 2r1r2)u+ (2r1 + r2)u
2 − u3 + uv3],

and after the rescaling of time ds = vdt system (8) becomes

(9)
u′ = (1 + u2)v2,

v′ = r21r2 − (r21 + 2r1r2)u+ (2r1 + r2)u
2 − u3 + uv3.

The singular points at infinity are p1 = (r1, 0) and p2 = (r2, 0). We first analyze p1.
The corresponding linear part of system (9) at this singular point is identically zero.
Thus it is necessary to apply a directional blow up (u, v) 7→ (u, w) where v = uw,
obtaining the following system, modulo a translation of p1 to the origin

(10)
u̇ = u2(1 + r21 + 2r1u+ u2)w2,

ẇ = u[r2 − r1 − u− (1 + r21)w
3 − r1uw

3].

Performing a change of the independent variable of the form dT = u ds in (10), we
get the system

(11)
u′ = u(1 + r21 + 2r1u+ u2)w2,

w′ = r2 − r1 − u− (1 + r21)w
3 − r1uw

3,

where the prime now denotes derivative with respect to T. On the axis u = 0 there
is a unique singularity q1 = (0, 3

√
(r2 − r1)/(1 + r21)). The corresponding linear part

of system (11) at q1 is
(

−3(1 + r21)
1/3(r2 − r1)

2/3 0
0 (1 + r21)

1/3(r2 − r1)
2/3

)
.

Applying Theorem 2.15 of [5] and the hypothesis r1 < r2 we conclude that q1 is
a saddle. The local phase portrait at q1 for system (11) and system (10) are shown
in Figures 3 and 4, respectively

Going back through the blow up we get the local phase portrait at the origin of
system (9), see Figure 5. Finally, taking into account the rescaling of time ds =
vdt, we obtain that the phase portrait at the origin of system (8) is topologically
equivalent to the one of Figure 6.



QUARTIC UNIFORM ISOCHRONOUS CENTERS 9

w

u

q
1

Figure 3. Phase portrait
of system (11).

w

u

Figure 4. Phase portrait of
system (10). The vertical axis
is filled of singular points.

v

u

Figure 5. Phase portrait
of system (9).

v

up
1

Figure 6. Phase portrait of
system (6). The horizontal
axis is filled of singular points.

Now we perform the study for p2. The corresponding linear part of system (9) at
this singular point is

(
0 0

−(r1 − r2)
2 0

)
.

Since r1 < r2 by hypothesis, (r1 − r2) never vanishes. Therefore p2 is a nilpotent
singular point. By performing convenient translation and rescaling of time to have
system (9) under the normal form necessary to apply Theorem 3.5 of [5], and taking
into account the hypothesis r1 < r2, we conclude that this singular point is a cusp.
Therefore modulus a translation to the origin and undoing the rescaling of time
ds = vdt, the local phase portrait of system (8) for p2 is topologically equivalent
to the picture on the left side of Figure 2. The global phase portrait for Case II is
topologically equivalent to the one of Figure 1(c) of Theorem 1.
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Case III. In the chart U1 system (2) becomes

(12)
u̇ = (1 + u2)v3,

v̇ = v(r31 − 3r21u+ 3r1u
2 − u3 + uv3),

and after the rescaling of time ds = vdt system (12) is written as

(13)
u′ = (1 + u2)v2,

v′ = r31 − 3r21u+ 3r1u
2 − u3 + uv3.

The only singular point at infinity is p1 = (r1, 0). The corresponding linear part of
system (13) at this singular point is identically zero. Thus it is necessary to apply a
directional blow up (u, v) 7→ (u, w) where v = uw, obtaining the following system,
after performing a translation of p1 to the origin

(14)
u̇ = u2(1 + r21 + 2r1u+ u2)w2,

ẇ = −u[u+ (1 + r21)w
3 + r1uw

3].

Performing a change of the independent variable of the form dT = u ds in (14), we
get the system

(15)
u′ = u(1 + r21 + 2r1u+ u2)w2,

w′ = −(u+ (1 + r21)w
3 + r1uw

3).

On the axis u = 0 there is a unique singularity q1 = (0, 0). The corresponding linear
part of system (15) at q1 is (

0 0
−1 0

)
.

Applying Theorem 3.5 of [5] we conclude that q1 is a saddle. The local phase
portrait at q1 for system (15) and system (14) are shown in Figures 7 and 8,
respectively

w

uq
1

Figure 7. Phase portrait
of system (15).

w

u

Figure 8. Phase portrait of
system (14). The vertical axis
is filled of singular points.
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Going back through the blow up we get the local phase portrait at the origin of
system (13), see Figure 9. Finally, we obtain that the phase portrait at the origin
of system (12) is topologically equivalent to the one of Figure 10. Thus the global

v

u

Figure 9. Phase portrait
of system (13).

v

u

p
1

Figure 10. Phase portrait
of system (12). The
horizontal axis is filled
of singular points.

phase portrait for this case is topologically equivalent to the one of Figure 1(c) of
Theorem 1.

Case IV. In the chart U1 system (2) is

(16)
u̇ = (1 + u2)v3,

v̇ = v[r1α + (r1β − α)u+ (r1 − β)u2 − u3 + uv3].

We perform the rescaling of time ds = vdt to obtain

(17)
u′ = (1 + u2)v2,

v′ = r1α + (r1β − α)u+ (r1 − β)u2 − u3 + uv3.

The unique singular point at infinity is p1 = (r1, 0) and the corresponding linear
part of system (17) at p1 is

(
0 0

−α− r1(r1 + β) 0

)
.

Due to the hypothesis β2−4α < 0, the expression −α−r1(r1+β) never vanishes.
In fact, if α = −r1(r1 + β) then by the hypothesis we would have (β + 2r1)

2 < 0
which is obviously a contradiction. Thus p1 is a nilpotent singular point. Applying
Theorem 3.5 of [5] we conclude that the resulting local phase portrait at the origin
of system (16) is topologically equivalent to the one on the left of Figure 2. This
local phase portrait is obtained using a similar method applied in the previous cases.
The global phase portrait for Case IV is topologically equivalent to the one of Figure
1(c) of Theorem 1.
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Case V. In the chart U1 system (2) is written as

(18)
u̇ = (1 + u2)v3,

v̇ = uv(−α− βu− u2 + v3).

We perform the rescaling of time ds = vdt to obtain

(19)
u′ = (1 + u2)v2,

v′ = u(−α− βu− u2 + v3).

The origin is the unique singular point at the infinity and the linear part of system
(19) at (0, 0) is (

0 0
−α 0

)
.

Since α > 0, due to the hypothesis β2 − 4α < 0, the linear part of system (19)
at (0, 0) is never identically zero and therefore the origin is a nilpotent singular
point. Applying Theorem 3.5 of [5] and a similar procedure as those applied in the
previous cases, we conclude that the resulting local phase portrait at the origin of
system (18) is topologically equivalent to the one on the left of Figure 2. The global
phase portrait for this case is topologically equivalent to the one of Figure 1(c) of
Theorem 1.

Remark 7. From the proof of Theorem 1 it follows that the global phase portrait of
any quartic polynomial differential system which can be written into the form (2) is
topologically equivalent to the phase portrait (a) or (b) of Figure 1 if we are in Case
I, and to the phase portrait (c) of Figure 1 otherwise.
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