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Abstract. The number of critical periodic orbits that bifurcate from the outer boundary of a potential
center is studied. We call this number the criticality at the outer boundary. Our main results provide
sufficient conditions in order to ensure that this number is exactly 0 and 1. We apply them to study
the bifurcation diagram of the period function of X = —y0, + ((z + 1)? — (x + 1)?)9, with ¢ < p. This
family was previously studied for ¢ = 1 by Y. Miyamoto and K. Yagasaki.

1 Introduction and setting of the problem

In this paper we study planar differential systems

{ T = f(xvy)a
v =g(z,y),

where f and g are analytic functions on some open subset U of R2. A singular point p € U of the vector field
X = f(z,y)0 + g(x,y)0y is a center if it has a punctured neighbourhood that consists entirely of periodic
orbits surrounding p. The largest punctured neighbourhood with this property is called the period annulus
of the center and it will be denoted by 2. Henceforth 842 will denote the boundary of & after embedding
it into RP?. Clearly the center p belongs to &2, and in what follows we will call it the inner boundary of
the period annulus. We also define the outer boundary of the period annulus to be I1:= 0% \ {p}. Note
that II is a non-empty compact subset of RP?. The period function of the center assigns to each periodic
orbit in & its period. If the period function is constant, then the center is said to be isochronous. Since
the period function is defined on the set of periodic orbits in &, in order to study its qualitative properties
usually the first step is to parametrize this set. This can be done by taking an analytic transverse section
to X on &, for instance an orbit of the orthogonal vector field X+. If {7s}se0,1) is such a parametrization,
then s — T'(s):={period of ~,} is an analytic map that provides the qualitative properties of the period
function that we are concerned about. In particular the existence of critical periods, which are isolated
critical points of this function, i.e. § € (0,1) such that T"(s) = a(s — §)* +o((s — 8)*) with a« # 0 and k > 1.
In this case we shall say that v; is a critical periodic orbit of multiplicity k£ of the center. One can readily
see that this definition does not depend on the particular parametrization of the set of periodic orbits used.
Critical periodic orbits play in the study of the period function an equivalent role to limit cycles, which is
a fundamental notion in qualitative theory of differential systems in the plane.

Suppose now that the vector field X depends on a parameter . € A, where A is an open set of R?.
Thus, for each p € A, we have an analytic vector field X,,, defined on some open subset U, of R? with
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a center at p,. Concerning the regularity with respect to the parameter, we shall assume that {X,,},ca is
a continuous family of planar vector fields, meaning that the map (z,y,u) — X, (z,y) is continuous on
the subset {(z,y,u);u € A and (z,y) € U,} of R¥*2. Fix i € A and, following the notation introduced
previously, let II; be the outer boundary of the period annulus &7; of the center at p; of X;. The aim
of the present paper is to provide tools in order to study the following bifurcation problem: which is the
number of critical periodic orbits that can emerge or disappear from II; as we move slightly the parameter
1~ 17 We shall call this number the criticality of the outer boundary of the period annulus. In order to
define it precisely we adapt the notion of cyclicity (cf. [2,26]), which is its counterpart in the study of limit
cycles.

Definition 1.1. We define the criticality of the pair (II;, X;) with respect to the deformation X, to be
Crit ((Hp, Xz), X)) := infs . N(6,€), where

N (0, ) = sup {number of critical periodic orbits v of X,;: dg(v,1I;) < e and ||u — || < 0},

with d being the Hausdorff distance between compact sets of RP?. O

In other words, what we call the criticality Crit ((Hﬂ, Xn), X #) is the maximal number of critical periodic
orbits that tend to 1I; in the Hausdorff topology of the non-empty compact subsets of RP? as p — fi.

Definition 1.2. We say that i € A is a local reqular value of the period function at the outer boundary of
the period annulus if Crit((Hﬂ,Xﬂ),Xﬂ) = 0. Otherwise we say that it is a local bifurcation value of the
period function at the outer boundary. O

At this point it is to be quoted some previous results on the period function closely related to the ones we
are concerned about. The aim of the series of papers [17-19,22-24] is also to study the bifurcation of critical
periodic orbits from the outer boundary in a family of centers. However there are some striking differences
with our approach due to the fact that we deal with non-polynomial vector fields. Recall that a polynomial
vector field X on R? can be extended to a vector field X on the two-dimensional sphere S? by means of
the Poincaré compactification. The compactified vector field X is meromorphic on the equator of S2, which
corresponds to the line at infinity in the original coordinates. Thus, even in case that the center has an
unbounded period annulus, one can use this meromorphic extension X to study the bifurcation of critical
periodic orbits from its outer boundary II, which becomes a polycycle in S2. The polycycle consists of regular
trajectories and singular points with a hyperbolic sector, which after the desingularization process give rise
to saddles and saddle-nodes. It is here where the use of normal forms of such singular points permit to obtain
an asymptotic development of the period function near II. Computing the first non-vanishing coefficient in
this development is the key tool in the mentioned series of papers in order to determine which parameters
are local regular values of the period function at II. On the contrary, the vector fields that we deal with in
the present paper are not polynomial, but only analytic on some open subset U of R%2. We compactify the
set & in order to define its outer boundary II in case that & is unbounded, but we can not compactify the
vector field X itself. Furthermore, even in the case of a bounded period annulus, it may happen that the
vector field X is not defined at all the points in II. For this reason the approach that we follow must be
completely different. It is also to be noted that once we have determined the local bifurcation values of the
period function at the outer boundary, we aim to bound its criticality. This is also a novelty with respect
to the quoted papers previously.

The notions that we have introduced so far are general. In the present paper we shall develop tools in
order to study them in case that the differential system is potential, i.e.,

T = —-Y,
§=V'(x).
The corresponding Hamiltonian function is given by H(z,y) = 1y?+V(z), where we set V(0) = 0. Suppose

that the origin is a non-degenerated center (i.e., V/(0) = 0 and V" (0) > 0) and let (z¢, x,) be the projection
of its period annulus & on the z-axis. Let us also fix that H(Z?) = (0, ho) with hg € RT U {400}, in other



words, that the energy level of the outer boundary II is H = hg. It turns out that the period T'(h) of the
periodic orbit vy inside the energy level h € (0, hg) is given by

/ du / hsm9 de,
Yh z

where the definite integral follows by using the polar coordinates that brings the oval v, C {3y*+V (z) = h}
to the circle of radius vh. Suppose now that the function V depends on a parameter 1 € A, so that we deal
with a family of differential systems given by X, = —yd, + V};(x)0,. Then the bifurcation problem that we
are interested in is to compute Crit((Hﬁ, Xu), X, M) for some fixed i € A. To this end, following the obvious
notation, we compute the derivative with respect to i of the above definite integral

V'hsin 0) sin 6d6.
N 2\/7 / % )

This leads us to an integral operator that depends on a parameter and our aim is to study its asymptotic
behaviour as h tends to hy. We tackle this problem of mathematical analysis in an abstract setting and
Section 2 is devoted to obtain the theoretical results in this regard. These general results are then applied
in Section 3 to the specific definite integral that gives the derivative of the period function for potential
systems. For simplicity we only consider two situations: the case in which hg = 4o0 for all 4 ~ i and
the case in which hg < 400 for all u ~ 1. Theorems A and B give, respectively, sufficient conditions for
Crit((Hﬂ,Xﬂ),Xu) =0 and Crit((Hﬁ,Xﬂ),Xu) < 1 in the first case, whereas Theorems C and D provide,
respectively, sufficient conditions for Crit((Hﬂ, Xu), Xu) =0 and Crit((Hﬂ, Xi)s Xu) < 1 in the second case.
These results are of course related with the finiteness problem of the number of critical periodic orbits in a
given family of centers, and the reader is referred to the papers of Chicone and Dumortier [7] and Mardesié
and Saavedra [21] in this regard. Concerning the applicability of our results, we note that, among others,
Loud’s centers and quadratic-like Hamiltonian centers can be brought to a potential system by means of a
coordinate transformation (see [9,12,30]).

As an application of the previous results, in Section 4 we study the family of potential systems given by

&= -y,
{y (€ + 1) — (z + 1)1, @

where p and ¢ are real numbers. This differential system is analytic on U = {(x,y) € R? : 2 > —1}. Note
in addition that the singular point at the origin is a hyperbolic saddle for p < ¢ and a non-degenerated
center for p > ¢g. The period function of this center in case that ¢ = 1 was previously studied by Miyamoto
and Yagasaki in [25,31]. Following the notation just introduced, we define A = {(¢,p) € R? : p > ¢} and
X, =—y0: + ((z+1)P — (x + 1)7)0, with 1 = (g, p). In order to state our result concerning this family of
potential system let us denote

I'pi={peA:q=0U{pecA:p=1,¢g< -1}U{peA:p+2¢+1,q> -1}
and

Tpi={peA:(2¢+1)(3g+1)(g+1)(p+1) =0}

Here the subscripts B and U stand for bifurcation and unspecified, respectively. The curve I'p splits the
parameter space A into three connected components, see Figure 1. We denote by Ip the union of the two
grey components and by Dp the white component.

Theorem E. Let {X,,},.cn be the family of vector fields in (1) and consider the period function of the center
at the origin. Then the open set A\ (I'p UTy) corresponds to local regular values of the period function at
the outer boundary of the period annulus. In addition,

(a) If i € Ip \ Ty then the period function of X is increasing near the outer boundary.
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Figure 1: Bifurcation diagram of the period function of (1) at the outer boundary.

(b) If i € D\ T'y then the period function of X, is decreasing near the outer boundary.

Moreover the parameters in I'g are local bifurcation values of the period function at the outer boundary of
the period annulus. Finally, Crit((Il;, X;), X,) = 1 for all i = (§,1) with ¢ < —3 and g = (¢, —24 — 1)
with § € (fg, f%) \ {—% .

We have not determined the character of the parameters in I'y;. We conjecture that they are not bifurca-
tion values at the outer boundary. Besides the criticality of the outer boundary of &, Theorem E provides
information about the monotonicity of the period function there. The reason for this is because we can
combine this information with the behaviour of the period function near the center in order to obtain a
global conjecture. Indeed, one can easily show (see [13] for instance) that the first period constant of the
center at the origin for (1) is given by

Ai(q,p) =2p° +2¢° +Tpg —p—q — 1.

The parameters outside the hyperbola {A; = 0} are local regular values of the period function at the inner
boundary of & (i.e., the center). The hyperbola consists of local bifurcation values and in a forthcoming
paper [15] we will prove that its criticality is exactly one. The sign of A; outside the hyperbola determines
weather the period function is increasing or decreasing near the center. The combination of this information
with the monotonicity near the outer boundary given by Theorem E lead us to formulate a conjecture for
the global behaviour of the period function, see Figure 2. This conjecture claims in particular that there
are no parameters for which two critical periodic orbits collapse disappearing in the “interior” of the period
annulus.

Questions related to the behaviour of the period function have been extensively studied by a number of
authors. Let us quote for instance the problems of isochronicity (see [9,14,20]), monotonicity (see [5,6,28]) or
bifurcation of critical periodic orbits (see [8,10,27,29]). Most of the work on qualitative theory of differential
systems in the plane, including the present paper, is related to the questions surrounding Hilbert’s 16th
problem (see [3,11,26,32] and references there in) and its various weakened versions.

2 Previous technical machinery

As we will see in Section 3, to study the criticality at the outer boundary in a family of potential systems
Xy =—y0: —|—Vé(x)8y, it is necessary to investigate the asymptotic behaviour of a certain family of functions
defined by means of integrals depending on parameters. In case that the outer boundary II,, is reached with
infinite energy this leads to study the behaviour at infinity of a family of functions {F),} defined by

/2
Fu(s) = / fu(ssin)do,

—m/2



Figure 2: Conjectural bifurcation diagram for the period function of the differential
system (1). The solid and dashed curves consist of local bifurcation values at the inner
and outer boundary of &, respectively. The parameters in the grey region correspond
to systems with exactly one critical periodic orbit, and the three squares at (—3,1),
(—1,0) and (0,1) to the isochronous centers.

where f,, is a function obtained from the potential V),. In this section we introduce some technical results
that relate the asymptotic behavior of f,, and F},, that plays an essential role to prove Theorems A and B.

2.1 Asymptotic study of an integral operator

Given a continuous function f : [0,00) — R, in this section we consider

F(s) = /0 * F(ssin6)do, (2)

which is a well defined function on [0,+00). Our goal is to study under which conditions the asymptotic
behaviour of f at infinity is transferred to F' after integration. We begin by introducing precisely this notion
in a slightly more general context.

Definition 2.1. Let f be a continuous function on I = (a,b). We say that f is quantifiable at b by o with
limit ¢ in case that:

(i) I b € R, then lim,_,;- f(z)(b—x)* =L and £ # 0.

14) If b = +o0, then lim,_, @) — ¢ and ¢ £ 0.
+ z

We call a the quantifier of f at b. We shall use the analogous definition at a. O

The integral fog sin® 0d# is convergent for all @ > —1. In what follows we shall denote its value by Z(«).
It is well known, see for instance [1], that

T e AT () 1 (1 a+l
%’(a).—/o sin 0d9_2m+2%)_23(2,2), (3)

where I and B are respectively the Gamma and Beta functions.

Proposition 2.2. Let f : [0,00) — R be a continuous function which is quantifiable at +00 by o > —1
with limit a. Then the function F defined in (2) is also quantifiable at +oo by o with limit aB(c).



Proof. Consider a given € > 0. Since f is quantifiable at 400 by a with limit a, there exists M > 0 such

that
_c
2% ()

Moreover, due to the continuity of f, there exists K > 0 such that |f(z)| < K for all z € [0, M]. Then

|f(z)z7* —a| < for all z > M. (4)

1 arcsin(M/s) K
|f(ssinf)] df < o arcsin(M/s).

wa a
% Jo

On account of a > —1, lim,_, o, & arcsin(M/s) = 0. Hence we can take s; > 0 such that

s«

1 arcsin(M/s)
/ f(ssinf)db
0

— <§foralls>51.
¢ 4

Similarly lim,_, foarCSin(M/s) alsin@|* df = 0, so there exists so > 0 such that

arcsin(M/s)
/ asin® 6do
0

< Z for all s > ss.

Taking s3 = max{si, s2}, from the two previous inequalities we obtain that

arcsin(M/s) : arcsin(M/s)
/ (f(ssm&) — asin® 0> de + / asin® 0do
0 0

S(X

3
< =

<
2

arcsin(M/s) .
/ f(ssin®) d@‘
0

SO&

for all s > s3. In addition, due to ssinf € (M, s) for § € (arcsin(M/s),n/2), from (4) we get

/2 (f(s.sm 6 _ a) sin® 6
arcsin(M/s) (S Sin g)a

for all s > M. Finally, taking s, = max{ss, M}, the combination of the two previous inequalities gives

3 z 3 3 3
< — sin® 0df < —— / sin® 0df = —
2%(0[) /arcsin(M/s) 2%(60 0 2

F Bl E 5
g —a%B(a)| = s_o‘/ f(ssinf)df — aB(a)| = / (f(tfﬂ) — asin® 9) do
0 0
arcsin(M/s) : z .
< / (f(ssm@) — asin® 9) do| + / (f(ssm@) - a> sin® 0df| < e
0 5% arcsin(M/s) (5 Sln@)o‘
for all s > s4. This proves the result. [ |

The previous result shows that if f is quantifiable at +00 by a > —1 then F' inherits this behaviour.
Particularly, when « > 0, both functions tend to infinity with the same order. We shall consider next the
case o < —1, so in particular when f tends to zero at infinity. To this end the following definition is needed:

Definition 2.3. Given a continuous function f on [0, +00), setting fo:= f, we define

fn(2) = fru1(2)2? + Z/OZ fr—1(t)dt for all n > 1.

Then, in case that f,,_1 is quantifiable at +00 by a < —1, we call

Mn:: /0 fnfl(t)dt

the n-th momentum of f. O



In order that the n-th momentum is well-defined it is necessary that M; =0 for all j € {1,2,...,n—1}.
The following result provides a formula that relates the integrals of f and f,.

Lemma 2.4. Let f:[0,00) = R be a continuous function. Then for any n € N we have that

/ f(ssinf)d / fn(ssin®)do for all s > 0.

Proof. Let us fix s > 0 and note that if h is any continuous function on [0, s], then the change of variable

u = ssin 8 gives
/2
/ h(ssin0)df =
0

Set g(z):= 1 fo t)dt. Then, integrating by parts,

/s() Ji / W+ glu mdu—/f )v/5? —2du. (6)

/O \/%du. (5)

Some easy manipulations show that

us

: e 2q e 2
/0 (f+g)(ssin9)Sin20d0:S—2/ (f+9)(u )\/i 2/ f(u)<82u_2+ 52u2>du

- [

where in the first and fourth equalities we use (5) with h(z) = z2(f + g)(2) and h(z) = f(2), respectively,
while in the second one we use (6). On account of Definition 2.3, this proves the result for n = 1. The
general case follows recursively. [ ]

Next result shows that if f is quantifiable at 400 by « = —1, then F is not quantifiable in the sense of
Definition 2.1.

Proposition 2.5. Let f : [0,00) — R be a continuous function which is quantifiable at +00 by a« = —1 with

limit a. Then the function F defined in (2) satisfies lim,_, | oo Sf;(;) =

Proof. Consider a given € > 0 and let M > 0 be such that |zf(z) — a| < ¢/6 for all z > M. Since f is
continuous, there exists K > 0 such that |f(z)| < K for all z € [0, M]. Therefore

s arcsin(M/s) s
— |f(ssin®)|df < Kl— arcsin(M/s) for all s > M.
ns

Ins /g

This shows that lim, o o deTCbln(M/ ) |f(ssin®)|df = 0 and so there exists so > M satisfying that

s arcsin(M/s)

ns /, |f(ssin9)\d9<§f0r all s > sq.

On the other hand, since one can verify that fa L_dfd = In (”7 VSLMz) for all s > M, we have

rcsin(M/s) sin 6

that limg_, oo — s arcsm(M/ ) 31dn9 1. Accordingly there exists s; > sg such that

1 [z do
— / - < 2 and
Ins arcsin(M/s) S11 0

for all s > s7.

/5 do
IHS arcsin(M/s) Slna 3| |




Taking these inequalities into account we get that if s > s; then

s z s arcsin(M/s) s z
—/ f(ssinf)db — a <—/ |f(ssin6)|db + —/ f(ssinf)df —a
Ins 0 Ins 0 Ins arcsin(M/s)
<S4 1/72r f(ssin@)s.sinﬁ—a—l—adg_a
3 Ins arcsin(M/s) sin 6
1 (2 i inf — 1 (3 1
e, b 3 |f(ss1n9?ss1n0 a|d9+‘a| 7/2 R
3 Ins arcsin(M/s) sin ¢ Ins arcsin(M/s) SML 0
P
376 3
This completes the proof of the result. [ ]
According to the previous results the cases & = —1 and a > —1 are completely different with regard

to the asymptotic behaviour of F' at infinity. Following results clarifies that &« = —1 is a threshold in that
respect because to analyse the case a < —1 it is required to take the momenta of f into account. Before state
the next results we need to introduce some notation. For o < —1let n > 0 such that —2n—1 < o < —2n+1.

— e J a+21
Then for j =1,2,...,n, we define oj:= [ [;_, i

Lemma 2.6. Let f : [0,00) — R be a continuous function which is quantifiable at +o00 by o < —1 with
limit a. Let n € N be such that —2n —1 < a < —2n+ 1. Then the following hold:

(a) If My = My = ... = My, = 0 for some k < n, then f; is quantifiable at +00 by a + 2j with limit ac;
forallj=1,2,... k.
b) If My =My =...= M, =0 and o # —2n, then f, is quantifiable at 400 by o + 2n with limit ac,.
Proof. To show (a) assume that M7 = My = ... = M} = 0 for some k < n. We will prove recursively that
lim 1 (2) =aaj forall j =1,2,... k.

23400 zat+2j

We begin with the case j = 1. From Definition 2.3 we get

1 z
P -12 5 [ roa

The assumption on f implies that lim, ., ! Z(j)

that lim, z"‘% foz f(®)dt is a 0/0 indeterminate form. Thus, by applying Hopital’s Rule, this limit is

equal to ail' Consequently lim, . £ L(fg = ag—ﬁ = aaq, which is a real number different from zero

because o # —2. So the case j = 1 follows. Suppose now that the result holds for j < k and let us show its
validity for j7 + 1. We have

= a. Moreover, the hypothesis M; = 0 and o < —1 imply

fi+1(2) fi(2)22 2 [y fi(t)dt

sat2(i+1)  yat2(i+1) sat2(j+1)

;ZE;)J = ac;. On the other hand, by assumption, M;,1 = [ f;(t)dt =0

and a+2j5+1 < 0, so the second function above is again a 0/0 indeterminate form as z tends to +oo. Then
by applying Hopital’s Rule we get

lim fy fi)dt i fi(2) aq

By induction hypothesis, lim,_,

zovoo zot2+l shoo (425 +1)20F2 a+25 417

Hence lim,_, o ijﬁit](i)l) = aaj%g_ﬁ) = aej41, as desired, and this proves (a). To show (b), by using the
same arguments we obtain that lim, ., Zfi‘? = aanflaj‘_%’_‘l = aa,,, which is a number different from
zero due to a # —2n. This completes the proof of the result. [ ]



Proposition 2.7. Let f : [0,00) — R be a continuous function which is quantifiable at +o00 by a@ < —1
with limit a and F defined in (2). Let n € N be such that —2n—1 < a < —2n+1. Then the following holds:

(@) If My =My =--- = M;_1 =0 and M; # 0 for some j < n, then F is quantifiable at 400 by 1 — 2j
with limit M;.

(b) If My =My =---=M, =0 and a ¢ {—2n,—2n — 1}, then F is quantifiable at +0o by o with limit
ac, B(a+ 2n).

2n+1

(¢) If My =My=---=M, =0 and a = —2n — 1, then lims_, 2

S F(s) = a and in particular F is not
quantifiable at 4+oc0.

Proof. In order to prove the assertion in (a) let us note first that
fiz) _ T , ‘ ,
o= zfj—1(2)+ | fi—1(t)dt — M; # 0 as z tends to +o0
0

because, by Lemma 2.6, f;_; is quantifiable by o 425 —2 < —1. Then
. ) Bl 1 /%
s R (s) = 527t / f(ssinf)dbd = 7/ fi(ssin®)dfd — M; # 0 as z tends to 400,
0 S Jo

where the second equality follows by Lemma 2.4 and the limit by applying Proposition 2.2 to f;. To show (b)
we note that, again by Lemma 2.4,

s F (s /fssm9d9—/ fn(ssinB)d

Due to My =--- =M, =0 and a ¢ {—2n,—2n — 1}, f, is quantifiable at 400 by o + 2n > —1 with limit
aay, thanks to Lemma 2.6. Thus, by Proposition 2.2, fO% frn(ssinf)df is also quantifiable at +o0o by « + 2n.
Accordingly, from the above equality we get that F is quantifiable at 400 by «, and so (b) follows. Finally
let us show (c¢). By the previous reasoning, f,, is quantifiable at +00 by a + 2n = —1 thanks to Lemma 2.6.
Thus, by applying Proposition 2.5,

lim —/ frn(ssin®)dd = a # 0,

g2n+1

and hence, using Lemma 2.4 once again limg_, o 55—

F(s) = a. This shows (¢) and completes the proof. B

Remark 2.8. Notice that the previous result deal with all the possible values of « (even when F(s) turns
to be not quantifiable) except by the case when M; = My = --- = M,, = 0 and « = —2n. The authors want
to remark that the hypothesis of f to be quantifiable by « = —2n in this case is not enough to stablish the
quantifier of F'(s) at infinity. In fact, even it is not possible to say if it is quantifiable or not. For instance,
let us consider the following three examples:

1 1 9 1 1
5 z=21 =t 221 =+ 221
z z , g(z) =<2 g , h(z) =<2 Z .
1) = {4z—3 z€[0,1) 92) {3’522—2 z€[0,1) ) 7:—-5 z€[0,1)
All these functions are quantifiable by a = —2 and it is a computation to prove that the first momentum
of the three functions vanish. Let us denote F(s fo f(ssin6)db, G(s fo (ssin@)df and H(s) =

h(ssin t turns out that an are quantifiable by —3 and by —5 respectively, and that
o 0)de. 1 hat F(s d H(s fiable by —3 d by —5 1 d th
G(s) is not quantlﬁable since




Next result provides a useful tool for the computation of momenta and motivates the terminology.

Lemma 2.9. Let f : [0,00) — R be a continuous function which is quantifiable at +00 by a < —1 with
limit a. Let us take n > 2 satisfying o < —2n + 1 and assume that My = My =--- = M,,_1 =0. Then

M, = H <1 - > /OO 2= F(4)dt.

Proof. By applying Lemma 2.6, the functions f,_ (1) are quantifiable at +o0o by a+2(n —k — 1) because
fo = f is quantifiable at +oco by a < —2n+ 1 and My = Ms = --- = M,,_; = 0. It is also clear that these
functions are continuous at the origin. Then, for any k € {1,2,...,n — 1}, integrating by parts we get

o o t
/o 2R p L (b)dt :/0 <t2kfn—k—1(t) +t2k71/ fn—k—l(u)du> dt
= (121,6) | i+ < / [ du)

Since f—(k+1) is quantifiable at +o00 by a+2(n — k — 1) and M,,_;, = 0, by the Hopital’s Rule we obtain

=00

t=0

. Fr—kr1)(?)
tlggo%/ Fr—(n) (0 u:tlggoiwzo'

00 3 1 o
/O 2 g (8)dt = (1—%>/0 £ f (i) (Bt

and, using this equality iteratively,

I R B _ _n1< _1) % a(n—1)
Mn_/0 fn,l(t)dt_Q/o tfn,g(t)dt_..._k 1 1— o /0 t fo(t)dt

This proves the result. u

Therefore

2.2 Parametric results

In this section we generalise the previous results to a family of functions depending on parameters. First of
all we extend the previous notion of quantifiable behaviour to this situation.

Definition 2.10. Let A be an open subset of R? and suppose that, for each pu € A, fu is a continuous
function on some real interval I,,. We say that {f,}.ea is a continuous family of continuous functions on I,
if the map (x, u) — f,(z) is continuous on {(z,pu) e R x A:z € I,}. O

Definition 2.11. Let {f,},.ea be a continuous family of continuous functions defined on an interval I,.
Assume that I, = (a(u),b(n)) where either b (respectively, a) is a continuous function from A to R or
b(p) = +oo (respectively, a(p) = —oo) for all p € A. Given fi € A we shall say that {f,}.ca is continuously
quantifiable in i at b(p) by a(p) with limit £ if there exists an open neighbourhood U of ji such that f, is
quantifiable at b(u) by a(u) for all 4 € U and, moreover:

(i) Tn case that b(fz) < 00, then 1my (a5 fal@) () — )% = £ and £ £ 0.

(i1) In case that b(j1) = 400, then lim (s ;1) (400,) i’i(m =/{and ¢ # 0.
We shall use the analogous definition for the left endpoint of I,,. O
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Remark 2.12. Notice that the map « : U — R that appears in the above definition must be continuous
at fi. If not, then there exists a sequence {, }nen such that lim, o a(p,) = (i) + £ with k£ # 0. Then,
for instance in case that b(fi) = +oo, we will have

0= lim Jun@) gy <nm fun(x)>: N 1C)

(@, ) — (+00,+00) 2o (pn) T 5 +Foo \ nS4oo 2o (fn) z—+oo pa(f)+r’

which, on account of ¢ # 0, contradicts the fact that, by definition, lim,_, 1 i‘;—((ff)) is finite and different
from zero. O

From now on we shall assume that {f,}.ca is a continuous family of continuous functions on [0, +00)
which is continuously quantifiable at +oo by o : A — R at 4 € A with limit (). That is, for all 4 in a
neighbourhood of [, f, is quantifiable by a(u) with limit a(x) and

W) _ ay #0

1 =
(2.1) = (+00,) 2(H)

Let us denote .
F(s):= /2 fu(ssin@)de. (7)
0

In the same way as in the previous section, our aim is to investigate if the family {F},},ca is continuously
quantifiable, assuming that {f,}.ca is continuously quantifiable, and which is its quantifier. The purpose
of this study is essentially the uniformity of the limit with respect to the parameter. The next result is the
analogous to Proposition 2.2 for the parameter case and in its statement £ is the function defined in (3).

Theorem 2.13. Consider a continuous family { fu.} e of continuous functions defined on [0, +00). Suppose
that it is continuously quantifiable in [i at 400 by a(u) with limit a and that a(f) > —1. Then the family
{F,.}uen defined in (7) is also continuously quantifiable in fi at +00 by o) with limit aZB(o(f1)).

Proof. On account of Remark 2.12 and the fact that (1) > —1, there exists a compact neighbourhood K;
of fu such that a(p) > —1 for all p € K;. Consequently fog (sin0)*Wdo = B(a(w)) for all p € K. Let
us take N := max{%#(a(u));pn € K1}, which is well defined since p — %(a(p)) is continuous. Consider
a given ¢ > 0. Since {f,}.ea is continuously quantifiable in i at 400 by a(u) with limit a, there exists
M > 0 and a compact neighbourhood Ky C Kj of ji such that

’f#(z)z_a(“) - a‘ < & for all z> M and p € Ks. (8)

We have on the other hand

/g (f“(s $i06) _ o (sin a)a@)) df
0

a0 <

/E (f”(ssme) - a(sin@)a(“)) do
0

SUC(H)

+

/2 a ((sin )" — (sin 9)0‘(‘1)> de
0

Since p — %’(a(u)) is continuous, there exists a compact neighbourhood K3 C Ks of i such that

/05 a ((sin g)a) _ (sin@)o‘(ﬂ)) d6| = |a| | B(a(n)) — B(a(i))| < g for all 1 € K. (10)

Let us take R:= max{|f.(2)|;(z, 1) € [0, M] x K3}, &:= min{a(p) : p € K3} and any s; > 1. Then

1 arcsin(M/s) R R
— | fu(ssin0)]df < —— arcsin(M/s) < — arcsin(M/s) for all s > s; and p € K.
S (k) 0 S (k) S
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Due to & > —1, lim,_, Sﬁn arcsin(M/s) = 0, so there exists s; > max{sy, M} satisfying that

1 arcsin(M/s) e
7@/ |fu(ssin)|do < 3 for all s > s and p € Ks. (11)
0

se(

There exists in addition s3 > sy such that
arcsin(M/s) arcsin(M/s) .
a/ (sin 0)*") dg a/ (sin 6)*db
0 0

where in the first inequality we use that 0 < sinf < 1, while in the second one we take & > —1 and
limgs_, oo arcsin(M/s) = 0 into account. The triangular inequality combined with (11) and (12) yields to

arcsin(M /s :
/ (M/s) <fu(581119) —a(sin@)o‘(“)> do
0

Sa(ﬂ)

<

< % for all s > s3 and p € Ks, (12)

< Z for all 4 € K3 and s > s3. (13)

Note on the other hand that M < ssin < s for all 6 € (arcsin(M/s),7/2). Thus from (8) we get

b fu(ssin®) . e [z . € €
= 0)>W | < — 0)*Wdp < —N = = 14
/arcsin(]\/f/s) ( (5 sin g)a(,u) ¢ (Sln ) 4N arcsin(M/s) (Sln ) 4N 4 ( )
for all s > so and p € K3. The combination of (13) and (14) show that
z . arcsin(M/s) .
/2 M _ a(sin&)“(") do| < / M _ a(sin9)“(“) de
0 SQ(N) 0 SQ(M)
+ /2 <fﬂ(ssm)) _ a) (sinf)*Wdp| < =
arcsin(M/s) (S S1n a)a(u 2
for all s > sg and p € K3. By using the above inequality together with (10), from (9) we get
sTOW R (55 p) — a%’(a(ﬂ))‘ < % + % + Z =¢ for all s > s3 and p € K3.
This completes the proof of the result. ]

It is clear by Proposition 2.5 that we can not expect {F,},ea to be continuously quantifiable when
a(fr) = —1 since F(s; fi) is not even quantifiable. So let us study next the case a(ft) < —1. With this aim
in view we shall first prove some previous results.

Lemma 2.14. Leta € (0,+00], A be an open subset of R and {f,,}en be a continuous family of continuous
functions defined on the interval [0,a). The following statements hold:

(a) Iflimg_.q fu(x) =: fu(a) uniformly in p, then for all i € A, lime, ) (a,n) fu(x) = fa(a).

(b) Reciprocally, if im g )~ (a,p) fu(x) =: fa(a) exists for all fi € A, then lim, 4 f, () = fu(a) uniformly
on compact subsets of A.

Proof. We prove the result in the case a is finite. (The case a = 400 follows with the obvious adaptations.)

In order to prove (a) let us show first the continuity of the function p —— f,(a) at some fixed ji. Consider

a given € > 0. The uniformity of the limit lim,_,, f,(x) = f.(a) implies that there exists § > 0 such that
|fu(z) — fu(a)| < % for all € (a — 6,a) and u € A.

On the other hand, since p — f,,(z) is continuous, there exists a neighbourhood U of ji such that

|fu(z) — fal(z)] < % for all p € U.
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Therefore, on account of the two previous inequalities and taking an auxiliary z € (a,a — ¢),

£u@) = (@] <1fu@) = Fu@)] + 1Ful@) = Fa @) + fle) = fal@)| < S+ 5+ 5 =¢
for all u € U, which proves the continuity of y — f,,(a) at fi. Let us show now that, under the uniformity
assumption, f,(x) tends to fi(a) as (x,u) — (a, 1). Consider a given € > 0. Then, since u — f,(a) is
continuous, there exists a neighbourhood U of fi such that |f,(a) — fu(a)| < § for all u € U. Furthermore,
thanks to the uniformity assumption, there exists 6 > 0 such that |f,(z) — fu(a)| < § for all z € (a — J,a)
and p € U. Consequently,

e €

fu(@) = fala)l < |fu(@) = ful@)[ +[fula) = fala)l < 5 + 5 =cforallz € (a—b,a) and p €U
and this proves (a). To show (b) let us consider a compact subset K of A. By hypothesis (z, ) — f.(z)
extends continuously to [0, a] x K, which is also compact. So the map is uniformly continuous, which clearly
implies that lim,_,, f,(z) = f.(a) is uniform on K. This proves (b) and completes the proof of the result. B

Following Definition 2.3, for each p € A, we define f,(-;p) and M, (p) setting fo(-;p):= fu-

Lemma 2.15. Let A be an open subset of R and consider a continuous family {fu}uen of continuous
functions defined on [0,00). Suppose that { fn—1(-; 1) }uen is continuously quantifiable in ji at +o00 by B(u)
and that B(fr) < —1. Then M,(u), the n-th momentum of f,, is well defined and continuous on some
neighbourhood of i and, moreover,

hm /fnltudt M, (f1).

—(+00,41)

Proof. We claim that lim,_, foz Sfn—1(t; u)dt converges uniformly to M, () in a neighbourhood of fi.
Once we prove the claim then the result will follow by (a) in Lemma 2.14. Consider a given ¢ > 0.
On account of Remark 2.12 we can take a compact neighbourhood K; of i such that S(u) < —1 for all
1€ Ki. Let us denote 3:= max{B(u); u € K}, which is strictly smaller than —1. Since {f,—1(-; ) }puea
is continuously quantifiable in fi at +co by ( ) with, let us say, limit a, there exist 2 > 0 and a compact

neighbourhood Ko C Kj of i such that f" 1( ey m ‘ < 1forall z> 2 and p € Ky. On the other hand,
Therefore,

since the integral fo tBat converges due to ,8 < —1, there exists b > 2 such that fb thdt <

1(t;u)dt‘ </
c

< (1+|a\)/ tPdt < e

1+| [

fn—l (t7 M)
tB(w)

t5<ﬂ>dt+|a|/ P W dt < (1 + |a|) / Pt
C

for all ¢ € (b,00) and p € Ky. This proves the claim and so the result follows. ]

Proposition 2.16. Let A be an open subset of R® and consider a continuous family {futnen of continuous
functions defined on [0,00). Suppose that the family is continuously quantifiable in A at +o00 by a(p) with
limit a(p). Assume also that for some i € A a(i) < —1 and take n € N such that —2n—1 < a(f) < —2n+1.

Then, setting o;(p):= Z:l % forj=1,2,...,n, the following assertions hold:

(a) If, for some k < n, Mi(p) = Ma(p) = -+ = Myp(u) = 0 for all p € A, then for all j = 1,2,...,k,
{fi(-31)}uea is continuously quantifiable in some neighbourhood of ji at +o00 by a(p) + 25 with limit
alp)og (p).

(0) If My(pn) = Ma(p) = -+ = Myp(p) =0 for all p € A and () € {—2n, —2n — 1}, then {fu(-; 1)} uen is
continuously quantifiable in some neighbourhood of i at +o00 by a(w) + 2n with limit a(p)am, ().
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Proof. To show the assertion in (a) assume that, for some k < n, My(u) = Ma(p) = -+ = My(p) = 0 for
all u € A. We will prove recursively that there exists a neighbourhood Uj of fi such that
- filzsp) o _
(ZM)E?}FOO@ ST a(f)a;(p) for all o e Uj.
For j = 0 this follows by assumption taking Uy = A. For the inductive step suppose that it is true for j — 1.
By applying Lemma 2.6 for each fixed u € U;—; we have
. filzw)
= Mo ().
Thus, for each fixed p € U;_1, the function f;(z; ) is quantifiable at +00. Let us show that is, indeed,
continuously quantifiable. With this aim in view we note that

filzsm)  fioa(zp) +fozfj71(t;u)dt.

ZaU0+2i | Za(12G-1) | La(w+2i-1

(15)

By the induction hypothesis, {fj—1(-; ) }uea is continuously quantifiable in U;_; at +00 by a(u)+2(j—1)
with limit a(p)oj—1(@). Therefore

. fia(zp) _ _
(Z’#)Elgim’ﬁ) m = Cl(,U)O(]_l(,LL) for all e U]_l. (16)
To obtain the limit of the second summand in (15) we use the uniform Hopital’s Rule in Proposition 4.6.
With this aim in view note that the functions [ f;—1(t; u)dt and 2> +2~1 are differentiable on (0,00) for
each p € Uj_1. Moreover, from (16), the limit of the quotient of derivatives is

1i fi-1(z ) _a(@)aj_1(p)
1m - = s .
(z1) = (o0,ii) (a(p) 4+ 25 — 1)z +2i-2 " o() + 25 — 1

for all 1 € Uj_

and so, by applying Lemma 2.14, there exists a compact neighbourhood K of fi such that

lim fj__l(Z;'u) — = a(u)aj_l,(u) uniformly on K.
amoo (a(p) + 25 — 1)z 272 a(p) +2j — 1

Therefore it only remains to check condition (e) in Proposition 4.6, i.e., that there exists ¢ € (0,00) such
that, for each = € (¢, 00),

a(p)+25-1 21 (s p)dt
lim - =0and lim —fo /s 1)

, - = 0 uniformly on pu.
z—+00 xa(l‘)+21_1 z——+o00 xa(l‘)‘f‘QJ—l Y H

In order to verify this let us take a neighbourhood U; of fi such that &:= max{a(u) +2j —1:p € U;} is
strictly smaller than —1. Then, taking > 1,

pa(p)+2j-1 (Z)a(u)+2j—1

palmf2i—1 < 2¥WH2=1 & 4 () as 2 tends to 400,
. -

T
and so the first limit tends to zero uniformly on U;. We claim that the second limit is also uniform in a
neighbourhood of fi. To show this we note that, by Lemma 2.15,

N T Y
(z,0) = (+o0,p)  xe(n)+2j—1 po(i)+25-1

=0forall i € Uj

and then the claim follows by Lemma 2.14. Taking U; to be the intersection of the previous neighbourhoods
we can thus apply Proposition 4.6 and assert that

h Jofimi(tm)dt  a(uay ()
1m - = -
z—+oo  pa(w)+2j-1 o[(’u) +25—1

uniformly on Uj.
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Consequently, by applying Lemma 2.14 once again,

Jo fiatswdt  a(fi)oy—1(fn)
m - = -
()= (+oo,p)  zWF+2i—1 alp) +2j -1

for all 1 € Uj.

Then, from (15), the above limit together with (16) show that
T FLCD)

(2.1)— (+oo,m) 2 +27

a(p)a;—1(7) N o
— =a(p)a;(f) # 0.
Therefore f;(z;p) is continuously quantifiable in U; at +o00 by a(u) + 25 with limit a(u)a;(pe). This shows

the inductive step and so (a) follows. The proof of (b) follows exactly the same way taking into account
that oy, (p) is well defined and non-vanishing due to a(p) ¢ {—2n, —2n — 1} in a neighbourhood of i. M

= a(p)aj-1(n) + —

Now we are in conditions to prove the second main result of this section. In its statement recall that %
is the function defined in (3).

Theorem 2.17. Let A be an open subset of R? and consider a continuous family {fu}uen of continuous
functions defined on [0,00). Suppose that the family is continuously quantifiable in A at +o00 by a(u) with
limit a(p) and let {F,} e defined in (7). Assume also that for some i € A a(ft) < —1 and taken € N such

that —2n — 1 < a(ft) < —2n + 1. Then, setting oj(p) == f 1 ﬁ for 5 =1,2,....,n, the following

assertions hold:

(a) If, for some 1 < j < n, Myi(u) = Mo(p) = ... = M;_1(p) =0 for all p € A and M;(ir) # 0, then
{F,}.en is continuously quantifiable in some neighbourhood of [i at +o0o by 1 — 2j with limit M;(p).

(b) If Mi(p) = Ma(p) = -+ = My(p) = 0 for all p € A and o) ¢ {—2n —1,—-2n}, then {F,}uca is
continuously quantifiable in some neighbourhood of [i at +0o by o) with limit a(u)an(u)%’( (1)+2n).

Proof. Let us show (a) first. By applying Proposition 2.16 there exists a neighbourhood U of [ such that
{fi=1(- ;1) }uen is continuously quantifiable in U at +o00 by a(p) + 2(j — 1) with limit a(p)oj—1 (). Then

a(pu)+2j-1

lim fici(z )z = lim a(p)a;—1(p)z =0 forany iU

(Z7M)*>(+Oo»ﬁ) (2,#)4)(4’007;1)
due to j < n and a(p) + 2n < 1. Consequently, since f;(z;u) = fi—1(z;p)2% + zfoz fij—1(t; p)dt, by using
Lemma 2.15 we get

: fitzsp) /
lim lim (t; dt
(z)—(+o0,m) 2 () (oo ) fi—1(t; p)dt = M;().

Accordingly, the family {f;(-; )} ea is continuously quantifiable in U at 400 by 1 with limit M;(p).
Hence, by Lemma 2.4 and Theorem 2.13, {F,},eca is continuously quantifiable in U at +oo by 1 —2j
with limit M; (). This proves the validity of (a). Let us turn now to the proof of (b). In this case, by
Proposition 2.16, {f,(-; 1) }uea is continuously quantifiable in a neighbourhood of fi at +0o by a(u) + 2n
with limit a(p)a, (). Since a(p) +2n > —1, by Lemma 2.4 and Theorem 2.13 it follows that {F),},ea is
continuously quantifiable in some neighbourhood of i at 400 by () with limit a(pw)a, (1) B(a(p) + 2n).
So the result is proved. [ |

3 Criticality at the outer boundary of potential centers

This section is devoted to prove the main theoretical results about criticality at the outer boundary. We
consider analytic potential differential systems

T = -Y
y=Vu(z),
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depending on a parameter ;1 € A, where A is an open subset of R?. Here V,, is an analytic function on a
certain real interval I,, that contains x = 0. In what follows sometimes we shall use the vector field notation
Xy = —y0, + V(x)0y to refer to the above differential system. We suppose V,;(0) = 0 and V;/(0) > 0,
so that the origin is a non-degenerated center and we shall denote the projection of its period annulus &,
on the z-axis by Z,, = (x¢(n), z,(1)). Thus z,(p) < 0 < x,(1). The corresponding Hamiltonian function
is given by H,(z,y) = %y2 + V,.(z), where we fix that V,(0) = 0, and we set the energy level of the outer
boundary of &, to be ho(p), so that V,(Z,) = [0, ho(1)). Note that ho(u) is a positive number or +oo. In
addition we define

()= L)

which is clearly a diffeomorphism on Z,, since V,,(0) = V/;(0) = 0 and V,/'(0) > 0. It is well-known (see [16]
for instance) that the period T),(h) of the periodic orbit v; inside the energy level H, = h is given by

T.(h) = L v _ f/g 9, (Vhsin0)de, (17)

where the definite integral follows by using the polar coordinates that brings the oval v, C {3y*+V,.(z) = h}

to the circle of radius v/h. (Here the dependence of 73, on p is omitted for shortness.) It is well known that,
for each p € A, the function T}, is an analytic on (0, ho(n)) and that can be extended analytically at h = 0.

Concerning the dependence of X, with respect to the parameter ;, from now on we shall say that the
family of potential systems {X,,},ca verifies the hypothesis (H) in case that the following holds:

(z,p) — V,""(x) is continuous on {(z,pu) ER x Az € I},
> V,/(0) is continuous on A,
) is continuous on A or x,(u) = 400 for all p € A,
p+— xp(u) is continuous on A or zy(p) = —oo for all p € A,
)

is continuous on A or hg(u) = 400 for all p € A.

Clearly (H;) and (Hs) imply that (z,pu) — V(i)( ) is continuous on {(x p) € RxA:ax e l,} for
i = 0,1,2. Indeed, for instance for i = 2 this follows from noting that V! (z) = [ V,/(s)ds — V,/'(0).

Lemma 3.1. Let {X,,},ca be a family of analytic potential systems satisfying (H). Then (z, n) — g;l(z)

is a continuous map on the open set {(z,,u) ERXA:ze (—y/ho(p), \/ho(u))},

Proof. By the assumptions in (H), Q:= {(z,u) € Rx A : 2 € Z,} is an open subset of R™! and the
map G : @ — R4 given by G(z, 1) = (g, (), 1) is continuous. It is also injective because, for each fixed

),
p € A, g, is a diffeomorphism from (z¢(), z (1)) to (—v/ho(p), /ho(p)). Then the result follows by the
Invariance Domain Theorem (see for instance [4]). [ |

Lemma 3.2. Suppose that {X,}.en is a family of analytic potential systems satisfying (H). Then

lm g7 () = we(p) and  Tm g7\ () = 2,(s)
z——+/ho(p) z—r4/ho()

uniformly in compacts of A. Moreover, if the functions ho, x; and x, are finite then (z,u) — g;l(z)
extends continuously to (—v/ho(ft), t) and (\/ho(f2), 1) for all p € A.

Proof. Let us prove the first assertion of the lemma. Consider a given compact subset K of A. Let us prove
for instance that limzﬂmggl(z) = z,(p) uniformly on K. We consider the case when ho(y) = co and

xr(p) < co. Set 6:= min{x,(u) : p € K}. Then for any 0 < € < ¢ define

A.:=max {g,(z, (1) —¢) :p € K},
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which is well defined because K is compact and p +— g, (2, (1) — €) is continuous. Thus g, (z, (k) —¢) < z
for all z > A, and p € K, which implies 0 < 2, (1) — g,,' () < &. This ends the proof in this case. The other
cases follows in a similar way with the obvious modifications. Finally the continuity of (z,u) — g;l(z)
follows from the first assertion of the lemma together with Lemma 2.14 and the continuity of hg. ]

Next two sections are concerned with the criticality at the outer boundary of potential systems verify-
ing (H). Section 3.1 is devoted to prove Theorems A and B, that deal with the case hg = 400, whereas in
Section 3.2 we prove Theorems C and D, that tackle the case in which hg is finite.

3.1 Outer boundary reached with infinite energy

In this section we shall study the bifurcation of critical periodic orbits in a family of potential systems
for which ho(u) = +oo for all 4 € A. The first result provides a way to study the criticality at the outer
boundary in this situation.

Lemma 3.3. Let {X,},ca be a family of analytic potential systems satisfying (H) such that hy = +oo and
fix i € A. Then the following holds:

(a) Suppose that for all p € A there exist aq () and A1 (w) such that
lim A UIT! (h) = Aq(p).

h—+o0

If there exist two sequences {putYnen with it — fi such that Ay () A1 (p;) < 0 for all n € N, then
Crit((Hﬂ,Xﬂ),Xﬂ) > 1. If the above limit is uniform on A, the map p — aq(u) is continuous at
1= f and Ay (f1) # 0, then Crit((I1;, Xz), X,.) = 0.

(b) If there exist two continuous functions aq and ag at p = [i such that

lim Ao (h“l(“)TI’t(h))/ = Aq(p), uniformly on A,

h—+o00

and Aq(f1) # 0, then Crit((Hﬂ,Xﬂ),X#) < 1.

Proof. Let us prove the first assertion in (a). The assumption implies that, for all § > 0 and h > 0, there
exist u* € A and h* > 0 with ||[u* — || < § and h* > h satisfying T/ (h)T},_(h) <0 for all h > h*. Then,
on account of the continuity of y —— T}, (h*), there exists u* in the segment that joins pt and p~ such
that 7. (h*) = 0. This shows that Crit((Hz, X;), X,) > 1. Let us turn to the second assertion in (a). For
any (h,u) € (0,00) x A define f,(h) = hal(“)TL(h). Then {f,}uca is a continuous family of continuous
functions on (0,00) and by (a) in Lemma 2.14 we have lim ) (00,4) fu(h) = A1(j2). Then, on account of
Aq(f1) # 0, there exist a neighbourhood % of fi and h* > 0 such that, for all p € %, T},(h) # 0 for all
h € (h*,00). This shows that Crit((Il;, X;), X,) = 0 and completes the proof of (a).

In order to prove (b) we take f,,(h):= ho2() (ho‘l(“)Tl’L(h))/. Exactly as before, the assumption Aq (1) # 0
implies that limy, ;) (c0,p) fu(h) # 0. Accordingly there exist a neighbourhood % of fi and h* > 0 such
that, for all p € %, (h“l(“)T[L(h))/ # 0 for all h € (h*,00). Then by applying Bolzano’s Theorem it follows
that, for all u € %, T},(h) = 0 has at most one root on (h*, 00), multiplicities taking into account. Therefore
Crit((Hﬂ, X5), Xu) < 1 and so the result is proved. [ ]

The previous result is a key tool to prove the main results of this section. Our goal will be then to find
sufficient conditions in order that the limits in Lemma 3.3 are uniform with respect to the parameter. In
other words, sufficient conditions for {T;/L}ue A to be continuously quantifiable at h = +co0. Our next result
gives the limit value of the period function as we approach to the outer boundary. It is a non-parametric
result and so the dependence on p is omitted for the sake of shortness.

Theorem 3.4. Let X be an analytic potential differential system with hg = +oo and such that (g~1)" is
monotonous near the endpoints of the interval (—v/ho,/ho). Then the following statements hold:
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(i) The limits lim,,_, _ 5=(97") (2) =:a¢ and lim,_, ;=(97")(2) =:a, exist and ay,a, € [0,+00]. More-

over T'(h) tends to (ag + a,) 75 a8 h — +00.

1) The limits lim__, _ g 1" (2) =:by and lim g1 (2) =:b, exist. Moreover /WI'(h) tends to
z——+V ho z—vho
be + b, V2 g5 h — 400 except for the cases {by = +00,b,. = —o0} and {by = —00, b, = +00}.
2

Proof. For the sake of brevity we only prove (z) since (i) follows similarly. From the expression for the pe-
riod function in (17) we get T(s?) = v/2 f_7 (ssin #)df. The monotonicity of (g~1)” near the endpoints
of (—v'hg, vVho) implies the same property for ( 1Y, Therefore a, (respectively, a,.) either ex1sts or it is in-

finity. In addition, due to ¢’ > 0, we have ay, a, € [0,400]. We claim that lims_, ‘[fo 1Y (ssinf)df =
ar . Let us consider first the case a, < 400. Due to lim,_, z=(97")'(2) = a, < o0 there exist M > a,

such that (¢71)'(x) < M for all z > 0. Given ¢ > 0, deﬁne ¢’ = ¢/v/2 and let = > 0 be such that
‘(g_l)’(x) —a,| < 6— for all x > Z. Flnally, let sg be such that sg sin (4M) > Z. Then if s > sy we have

‘\f/ ssm@)dG—‘ ) (ssinf) — a,) df

(ssinf) —a,) do

<\f<2 1M ) V2e = e.

Let us consider now the case a, = +o00. Given any K > 0, let Z > 0 be such that (¢7!)'(z) > K for all
x > Z. As before, let sg be such that sg sm( ) > Z. Then, if s > sg we get that

\f/ '(ssinf)d \f/ )/ (ssin6) 62K\/§%>K.

Thus limg_, o \[fo 1Y (ssin@)df = +oo. Exactly the same way can be proved that
lim \f/ ) (ssin0)df = agi,
5—>00 x \/5

so the result follows. [ ]

Lemma 3.5. Let {X,}.en be a family of analytic potential systems satisfying (H) and such that hg = +o00.
Take 1 € A and suppose that {g,}uca is continuously quantifiable in [i at x,(u) (respectively, xo(p)) by B(w)
with limit b. Consider a continuous family { f.}uea of continuous functions such that {f, o g, }uen is con-
tinuously quantifiable in i at () (respectively, x¢(pn)) by a(w) with limit a. Then {fu}uea is continuously
quantifiable in fi at +oo (respectively, —oo) by 6(# with limat ab—)/ B

Proof. Let us consider the case z,(ji) < oo first. On account of Lemma 3.2, hm;c—>+oo g, (x) = z,(n)
uniformly in p. Thus, by applying Lemma 2.14, we have that lim, ) (4-00,1) 9,0 Y(z) = x,(j1). Therefore

S

—a(p)

lim 2)2 B = lim T () P
(z:1) = (+00,2) ful) (1) (zr (1),0) 11(9u(%))(9u ()

= o m  Fu(0u() 90 (0) 7 (o () — ) G () — ) 5

(937/‘“)*)(9:7 (2).2)

_ o)
= dm g (@) — )0 (gu@) (e (3) - )7 )

(@)= (r (2),2)
— b/ 4

where in the last equality we took the assumptions on f,, 0 g, and g, into account. One can easily show the
same in case that x,.(fi) = co and so for the sake of brevity we do not include the proof. ]
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It is easy to show that if hyg = 400 and {g, } is continuously quantifiable in 1 € A at z, () by 8(u), then
B(p) > 0 for all o =~ fi. This is also true for the quantifier of x,(u). For this reason the quotient «(u)/8(u)
for p ~ [1 is well defined in Lemma 3.5.

Next, by applying the tools developed in Section 2, we prove a criterion for a parameter 1 € A to be a
local regular value of the period function at the outer boundary.

Theorem A. Let {X, },ca be a family of analytic potential systems satisfying (H) and such that hg = +o00.
Assume that the even part ofz(ggl)//(z) is continuously quantifiable in A at +oo by v(u) and, for eachi € N,

let M;(1) be the i-th momentum of the even part ofz(gljl)//(z), whenever it is defined. Then the following
hold:

(a) If y(1) > —1, then i is a local reqular value of the period function at the outer boundary of the period
annulus.

(b) If y(i) < =1, let n € N be such that —1 — 2n < y(ft) < 1 —2n. Then i is a local reqular value of the
period function at the outer boundary of the period annulus in case that

(b1) either M;(fr) # 0 for some j € {1,2,...,n} and M1 =My = ... = M;_1 =0,
(b2) orv(f) ¢ {—-1—2n,—2n} and My =My =...= M, =0.

Finally the even part ofz(ggl)//(z) is continuously quantifiable at +oo by () = 1+max{ (5—@) (%) (0}
in case that the following is verified:

(1) {gutuen is continuously quantifiable at x¢(pn) by Be(p) and at x,(pn) by Br(p) with limits be(p) and
b-(p), respectively,

(#4) {%} R is continuously quantifiable at x¢(p) by cp(p) and at x,(u) by ay-(p) with limits ae(p) and
® ne
a(u), respectively,

”2

(i11) and either Gt (u) # 3=(u) or, otherwise, (acb, 7 + abr B () #0

Proof. Let us show first that if i € A verifies (a) or (b) then it is a local regular value. With this aim in
view note that, from the expression in (17), the derivative of the period function can be written as

d 2

%Tu( %) =2sT) (s \f/w )" (ssin 0)ssin 0d6 = \[/ fu(ssinb)do,
3

where we define f,, to be the even part of z(g;l)”(z). By hypothesis, {f,} is continuously quantifiable

at +00 by 7y(p) with, let us say, limit d(u). The assertion in the cases (a) and (b2) follows by applying

Theorems 2.13 and 2.17, respectively. Indeed, in case (a) Theorem 2.13 shows that

lm s /0 * fulssin0)d0 = (i) B(x()) # 0,

(s5p) = (+00,41)

and in case (b2), setting v;(u) = 3:1 % for j =1,2,...,n, Theorem 2.17 shows that

lim s / Fo (50 0)d8 = d()yyn () B(y(1) + 2m) # 0.

(s51) = (400, /2)

In both cases this implies that s>~ 7(*)T7 (s?) tends to a non-zero number as (s; ) — (+00,1). Therefore
Lemma 3.3 shows that [ is a local regular value. To prove the assertion in case (b1) note that, from (a) in
Theorem 2.17,

(s31) = (400, /1)

lim 527'—1/2 Fu(ssin0)dd = M;(i) # 0
0
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and, consequently, s>/ 177 (s%) tends to a non-zero number as (s; ) — (400, fi). Again Lemma 3.3 shows
that [ is a local regular value and the first part of the result follows.

Let us prove the second part. In this regard note that, by Lemma 3.5 and since (g;l)” ogy = %, the
combination of (i) and (i) implies that {(g,')"}ea is continuously quantifiable at +oco by (%)(,u), with
limit ¢, := ar(br)f(%), and at —oo by (%)(u), with limit ¢y := ae(bg)_(?ﬁ). (Here we omit the dependence
on u for the sake of brevity.) Thus, taking (ii¢) also into account, we can assert that the even part of
z(g;l)”(z) is continuously quantifiable at +oco by y(u) = 1 + max{(%)(ﬂ), (%)(u)} with limit d(u)/2,

e ()0 > (3) ),
d(p):= q (ce + ) (w) i (55) () = (52) (w), (18)

cr(n) if (52) (1) < (52)(n)-
This completes the proof of the result. [ ]

Remark 3.6. The proof of Theorem A shows that T7,(h) = b (Ay () + f1(h; ), with fi(h; 1) tending
to zero as (h, u) — (400, fi), where

ar(p) = 92 and - Ay (p) = v2d(1) By (1), in case (a),
ar(p) = -2 and  Aq(p) = V2M;(p), in case (b1),
or(p) =12 and  Ay() = v2d(p)ya (1) B(y(1) +2n),  in case (b2).
In other words, it gives the quantifier of the derivative of the period function when A; (i) # 0. (]

The previous remark, together with (a) in Lemma 3.3, provides a tool to conclude that a certain pa-
rameter [ is a local bifurcation value, and it will be used in Section 4 to study a specific family of potential
systems. We finish this section by proving a criterion to bound the number of critical periodic orbits that
can bifurcate from the outer boundary of the period annulus.

Theorem B. Let {X,},en be a family of analytic potential systems satisfying (H) and such that ho = +oc.
Assume that there exists a continuous function v : A — R such that the even part of

fu(2):=(g.1)"(2)2% = v(w)(g,;, )" (2)z,

is continuously quantifiable in A at 400 by (u). For each i € N, let M;(p) be the i-th momentum at of the
even part of f,, whenever it is defined. Then the following hold:

(a) If&(p) > —1, then Crit((I1;, X;), X,) < 1.

(b) If&(p) < =1, let n € N be such that —1 — 2n < £(f1) < 1 — 2n. Then Crit((I;, X;), X,) < 1 if

(b1) either, M;(f1) # O for some j € {1,2,...,n} and My = My = ... = M;_1 =0, for all p in a
neighbourhood of i,
(b2) or, £(f) ¢ {—1—2n,—2n} and My = My = ... = M, =0 for all pu in a neighbourhood of [i

Qr

Finally the even part of f, is continuously quantifiable at +oo by £(p) = max{(%)(u), (B—)(u)} in case
that the following is verified: 4

(2) {9u}uea is continuously quantifiable at x¢(p) by Be(p) and at x,.(n) by Br(u) with limits be(p) and
b (1), respectively,

(10) {fu o gutuen is continuously quantifiable at x¢(pn) by ae(p) and at z,(p) by on(p) with limits ag(p)
and a,(u), respectively,

_e o

(11i) and either G (u) # G=(u) or, otherwise, ar(be)” P (1) + ae(by)” 7 (n) # 0.

14
4
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Proof. An easy computation using the expression in (17) shows that

d ’ g P
<s”(“>dT#(52)> — /27 v(m)—2 ’ fu(ssinf)do = 2\657”(”)72/2 fu(ssin)do,
s _ 0

jus
2

where f, is the function defined in the statement and f“ its even part. If £(fi) > —1 then Theorem 2.13
shows that

i —cw [ 7 F (ssi _
(s,u)g?ioo,ﬂ) s /0 fu(ssin@)dd =:L # 0.
Consequently s?(#)—&(#)+2 (s_v(“)%TH(SQ))/ tends to 2v/2L as (s, i) — (400, ). On account of Bolzano’s
Theorem, this implies that there exists M > 0 and a neighbourhood % of i such that if u € % then Tj,
has at most one zero for s > M. Hence the criticality at the outer boundary of X; with respect to the
deformation X, is at most one. By using (b) in Theorem 2.17 instead, exactly the same proof applies in
case that £(1) € (=1 —2n,1 —2n)\ {—2n} and M; = My = ... = M,, = 0, i.e., (b2) is verified. Finally,
if (b1) holds, then by applying (a) in Theorem 2.17 we conclude that

. v . —w d ! R
(s u)ggl-oo w° R (8 (H)dsT“(SQ)) = 2V2M; () # 0,

which exactly as before implies that the criticality at the outer boundary of X with respect to the deforma-
tion X, is at most one. This proves the first part of the result. In order to show the second part note that,
by Lemma 3.5, the assumptions (¢) and (é¢) imply that f, is continuously quantifiable at —oo by % and at

+00 by 5=, with limits ag(b[)_ﬁ and a,(b,) "5, respectively. (Here we omit again the dependence on g
for the sake of brevity.) Finally, by the assumption in (iii), we have that the even part of f, is continuously
quantifiable at +oo by &(u) = max{(F2)(u), (5=) (1)} So the result is true. [ ]

Remark 3.7. The proof of Theorem A is based on the quantification of Tl:. More concretely, it gives

sufficient conditions in order that T}, (h) = Aq (p)her ) 4 e £y (hy i), with Aq(f1) # 0 and the remainder
f1(h; 1) tending to 0 as h — 400, uniformly on p ~ fi. The explicit value of the quantifier o4 is given in
Remark 3.6. In case that Aq(fi) = 0 we must go further in the asymptotic development to get

T3 () = Ax (A )+ Ag(u)h™®) 4 ho209 fy (b 1), with an (i) > s ().
If the new remainder has “good properties” with respect to the division-derivation process, then

lim por W=+l (h_al(“)TL(h))/ = (a2(p) — a1(p)) Az (p), uniformly on p = fi.

h—+oco

From this point of view, the proof of Theorem B is based on the quantification of a combination of the first
and the second derivative of the period function, more concretely, hT)/(h) — a1 ()T}, (h). Thus, in order to
apply Theorem B, a good choice is to take the function v in its statement as the quantifier a; of T7,. O

It is to be noted that, for any given n € N, it is possible to obtain a criterion for Crit((Hﬂ, X4), Xu) <n
by using Theorems 2.13 and 2.17 exactly as we do in Theorem B for n = 1.

3.2 Outer boundary reached with finite energy

In this section we shall study the bifurcation of critical periodic orbits in a family of potential systems for
which the energy level ho(u) is finite for all 4 € A. Our first result is the counterpart of Lemma 3.3 for this
situation and, since its proof is very similar, we omit it for brevity.

Lemma 3.8. Let {X,},.ca be a family of analytic potential systems satisfying (H) such that ho(p) is finite
and fix i € A. Then the following holds:
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Ty | Zr Ty | Ly Ty |

Figure 3: Graph of V for admissible potential systems with finite energy and only
one non-regular endpoint, cf. (a) in Definition 3.9.

Ty | Ty Ty | |

Figure 4: Graph of V for admissible potential systems with finite energy and two
non-regular endpoints, cf. (b) in Definition 3.9.

(a) Suppose that for all p € A there ewist Ay (p) such that

lim  T.(h) = Ay (p).
p i w(h) 1(w)

If there exist two sequences {ut ynen with s — fi such that Aq(u)Aq(p;,) < 0 for all n € N, then
Crit((Hﬂ, Xu), X“) > 1. If the above limit is uniform on A and Ay (f1) # 0, then Crit((Hﬂ, Xu), Xu) =0.

(b) Iflimp s py () T, (h) = oo uniformly on A, then Crit((z, Xz), X,) = 0 for all i € A.

Definition 3.9. Let X = —yd, + V'(z)d, be an analytic potential system with a non-degenerated center
at the origin and let (z4,z,) be the projection on the z-axis of its period annulus. We say that =, (re-
spectively, x..) is reqular if V is analytic at z, (respectively, x,) and V' (z,) # 0 (respectively, V'(z,) # 0).
Otherwise we say that the endpoint is non-regular. Moreover, we say that the potential system is admissible
if it verifies one of the following conditions:

(a) either z; or z, is regular.

(0) limy—sy, V' (2) = limy—y,, V/(z) = 0.
O

We point out that x, and x, cannot be regular simultaneously, otherwise the projection of the period
annulus is larger than the interval (z4,x,). In what follows, without lost of generality, we shall assume
that x, is non-regular. Figures 3 and 4 display the graph of V for all the possible cases giving rise to an
admissible potential system under this assumption.

Lemma 3.10. Suppose that X = —yc‘? + V' (x)0y is an admissible analytic potential system with two non-
regular endpoints and such that (g=1)" is monotonous near the endpoints of (—v/ho,vho). Then (g71)"(2)

tends to +oo (respectively, —oc) as z / \/hg (respectively, z \, —v/hg).

Proof. By hypothesis, lim,_,,, V'(z) = lim,_,,, V'(x) = 0. Since g(z) = x)y/V(z), this implies that
lim, ., /=(97")/(z) = +oo. Then, due to the fact that the interval (—v/h \/ 0) s bounded there exist

two sequences a,, /* vho and b, \, —v/ho such that (¢71)"(a,) and (g~1)"” ( n) tend, respectively, to +oo
and —oo as n — co. Now the result follows on account of the monotonicity of (g~ ) near the endpoints

of the interval (—v/ho, v/ho). [}
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Proposition 3.11. Let F': [0,0) — R be a continuous function that is monotonous near x = o. Then,
for anyn € N,
Bl Bl
lim F(sosinf)sin™ 0df = / F(osin®)sin™ 0d0,
0

s—1— 0

where the improper integral on the right either converges or it tends to infinity.

Proof. Let us prove first the result in case that L:= fog F(osinf)sin™ 0d6 is a convergent integral. Clearly
the limit of F(z) as z /' ¢ exists due to the monotonicity of F' near z = ¢. If this limit is finite then the
result is straightforward. Hence let us suppose, for instance, that lim,_,, F/(z) = +o00. Thus F is a positive
increasing function on (o — k,0) for some k > 0. Consider any € > 0 and let  and d; be small enough
positive numbers such that sosinf > o —« for all 0 € (§ —n, 5) and s € (1 —61,1). Then, for these values,
0 < F(sosinf) < F(osin#) and consequently

3 3
0< / F(sosinf)sin™ 6df < / F(osinf)sin” 6df < Sforallse (1-=1461,1),
i Bl 4
where the last inequality follows due to the fact that J"O% F(osinf)sin™ 6df is a convergent integral and

taking 7 smaller if necessary. On the other hand, since s — fO%—n F(sosinf)sin™ 0df is continuous at
s =1, there exists do > 0 such that

5N
/ (F(osinf) — F(sosinf)) sin™ 6df| < % for all s € (1 —4,1).
0

Accordingly if s € (1 —6,1) with §:= min{dy, d2}, then

L— / * F(sosinf) sin” 40| < / * F(osing)sin” 0do| + / " F(sosin6) sin” 0d6
0 - -0

™

2N
+ / (F(osinf) — F(sosinf)) sin™ 6df| < e,
0

and the result follows.
Now let us prove the result in case that fog F(osinf)sin™ 0d0 does not converge. This implies, due to

the monotonicity of F(z) at z = o, that fo%—n F(osinf)sin™ 0df tends to infinity as n N\, 0. Suppose, for
instance, that it tends to +oo. Hence F(z) tends to +o00 as z 0. Take zZ € (0,0) such that F is positive
on (z,0). Let ; and 0; be positive numbers such that sosin@ > z for all § € (5 —n1, 5) and s € (1 —0d1,1).

3 TMm
/ F(sosinf)sin™ 6df > / F(sosinf)sin™ 0df for all s € (1 —d7,1). (19)
0 0

Consider at this point any M > 0. Then, due to fO% F(osinf)sin™ 8df = 400, there exists 72 € (0,7;) small
enough such that

512
/ F(osinf)sin™ 0do > M.
0

Define S(s):= fog_m F(sosinf)sin™ 0df, which is a continuous function on [0, 1]. Therefore, on account of

S(1) > M, there exists do € (0,07) such that S(s) > M for all s € (1 — §2,1). Hence, since F(sosinf) > 0
for all 0 € (5 —m1, %) and s € (1 —61,1), from (19) we can assert that

3 it
/ F(sosinf)sin™ 6df > / F(sosinf)sin™ 0df = S(s) > M for all s € (1 — d2,1),
0 0

where in the first inequality we take 0 < J2 < d; and 0 < 72 < 7 also into account. This shows that
limg_, ;- f(f F(sosinf)sin” 0df = 400, as desired, and completes the proof of the result. ]
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Next result gives the limit value of the period function and its derivative as we approach the outer
boundary. Since it is non-parametric, the dependence on p is omitted for the sake of brevity.

Corollary 3.12. Let X be an admissible analytic potential system with hg < +oco and such that (g=1)" is
monotonous near the endpoints of the interval (—v/'ho,vho). Then either limy, »p, T'(h) = 400 or

lim T'(h) = ﬂ/_g (971 (/o sin 6)do

h,ho

us
2

and the integral is convergent. Similarly, either limp »p, T (h) = too or

1 3
: / - — 1\ . .
hl}nﬁoT(h) = \/%/g(g )" (+/ ho sin @) sin 0d6,

and the integral is convergent.

Proof. Clearly the monotonicity assumption on (g~1)” implies that (¢~!)" is monotonous near the endpoints
of (—v/'ho,vho) as well. Let us prove the assertion concerning the first limit. Denote f(z):= v2(g~!)(2).
Then, from (17), we can write

T(hos®) = I (s) + I_(s), where I (s):= /07 F(#sv/ho sin0)do.

By applying Proposition 3.11 we have that Iy (s) tends to I1(1) as s 1, with I (1) being a positive
number or +o0 since (g~1)’ is a positive function. This proves the first assertion.

Let turn now to the second assertion. In this case, setting f(2):= v2ho(g™1)"(2), we write

L%T(hosQ) = 2hosT (hos®) = Ry (s) — R_(s), where Ry(s):= /2 f(£5v/hosin 0) sin 0d6.
0

Again, by Proposition 3.11, Ry (s) tends to Ry(1) as s , 1, with Ry(1) being a real number or oo.
Accordingly the result follows except in case that R_(1) and R, (1) are both co. However, due to the
admissibility assumption (see Definition 3.9), this can only occur if V' tends to zero as we approach to the
endpoints of (z¢, x,.). Hence, by Lemma 3.10, f(z) tends to +oo (respectively, —occ) as z 7 \/hg (respectively,
2 \y —vho) and, consequently, R_(1) and R (1) are both +oc0. This completes the proof of the result. W

Once we have stablished the limit of T (h) as h tends to ho(u), our next goal is to give sufficient conditions
to ensure that this limit is uniform with respect to p. With this aim in view we prove the following result.

Lemma 3.13. Let {X,},ca be a family of admissible analytic potential systems satisfying (H) and such
that ho and x; are finite. Assume that x¢(p) is regular. Then the map (z, ) — (g,")"(2) is continuous

on {(z,p) €ERxA:z€[—\/ho(p),0]}.

Proof. Since V,,(z) = g,(x)? and x¢(p) is regular, g/, (z¢(p)) # 0. On the other hand, by implicit derivation,

"
-9,

(9.1)" = @) °9n L. Note also that (z, ) — %(w) is continuous on {(z, ) € Rx A : z € [—\/ho(u), 0]}

thanks to hypothesis (H). By Lemma 3.1, (z,p) — g;,'(z) is continuous on {(z,u) € Rx A : z €

(—=v/ho(n),0]} and it extends continuously at (—+/ho(u), 1) by Lemma 3.2. The result follows then by
composition. |

Definition 3.14. Let {f,},eca be a continuous family of continuous functions defined on I, = (a(y), b(1)).
Suppose that each endpoint of I, is either a continuous function on A or identically co. We say that the family
{fu}uen is uniformly monotonous in ji € A at a(p) (respectively, at b(u)) if there exist a neighbourhood U
of 1 and Z € R such that, for all p € U, Z € I, and z — f,(z) is monotonous on (a(u), Z) (respectively,
on (2, b(1))). 0
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Definition 3.15. Let {X,,},ca be a family of admissible analytic potential systems. We say that a given
parameter fi € A satisfies condition (C) if the following holds:

(C1) The family { (;,")3} R is uniformly monotonous in £ at the non-regular endpoints of Z,,.
23 ne

(C2) The families {g, — ‘/ho(u)}ue/&’ {9, uen and {g;/},en are continuously quantifiable in fi at the
non-regular endpoints of Z,,.

Let o (11) be the quantifier of {g, — ‘/ho(“)}ueA at x,(p), which recall that it is non-regular by convention

(see Figures 3 and 4). If x¢(u) is non-regular too, then we denote the corresponding quantifier at xy(u)
by ay(p). With this notation we define

M(p) = —Sa,(p) if z¢(u) is regular,
. max{—3a,(p), — 3, (u)} if z¢(p) is non-regular,

and
m(p) = —San(p) if x¢(u) is regular,
e min{—%ag(u),—%ar(u)} if x¢(p) is non-regular.
O

The functions M (p) and m(p) are positive. Indeed, since g, (x) — \/ho(1) — 0 as z tends to z,(u), it
follows that a..(u) < 0, and exactly the same occurs for xp(u).

Lemma 3.16. Let {X,},ca be a family of admissible analytic potential systems and suppose that i € A

verifies (Cq). Then the family {M%}%A is continuously quantifiable in i at x,.(u) by f%ar(u).
w 7

Moreover, if x¢(p) is non-reqular too, then the family is continuously quantifiable in i at x4 by —%ag(u).

Proof. By Hopital’s Rule it is easy to see that if z,.(12) is finite then the quantifiers of {g), }.ea and {g}, },ea
are «,-(u) +1 and «,. () + 2 respectively. If x,.(u) is infinite then the quantifiers are a,-(u) — 1 and ;- (@) — 2.
The result follows then by product of limits. The proof for the left endpoint follows in the same way. [ |

Proposition 3.17. Let {X,}.en be a family of admissible analytic potential systems satisfying (H) such
that ho(u) is finite and I, is bounded. Consider [i € A satisfying (C). Then,

(a) If M(fi) < 1 then

T, (h)

lim A
(hsp)—=(ho (), )

_ \/Q;OW [i(ggl)”(\/ho(ﬂ) sin 0)sin 00

and the integral is convergent.

(b) If M(fi) > 1 and m(f1) # 1 then lim, ) (no(p),0) 1}, (h) = F00.

Proof. Let us first prove (a). Setting H(z;u):= v/2ho(1)(g,")"(2) for the sake of brevity, the derivation
of the expression of the period function in (17) yields to

™

d

ETH(hO(M)SQ) = 2ho(1)sT}, (ho(p)s®) = /2 H (\/ho(p)s sin 6; ) sin 6d6. (20)

z
We split the interval of integration into (—7,0) and (0, ). We shall prove that

jus us

lim /2 H (s/ho(p) sin 0; 1) sin 6df = /2 H (\/ho(j) sin 6; i) sin 6df =: L (21)

(s,1)—=(1,2) Jo 0
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and that L is a convergent integral. Since the potential systems are admissible, two different situations are
considered: either x; is regular or both z, and x, are non-regular. We point out that in the first case the
assertion is immediate on (—%,0). Indeed, in this situation the potential family is analytic on z,(x) and
Vi(we(p)) # 0 for all p € A. Consequently, by Lemma 3.13 the function (z, ) = H(z; u1) is continuous on

{(z,p) ERXA:x € [—y/ho(1),0]}. On the other hand, if both x; and x, are non-regular, the proof of the
assertion on (—%,0) follows in the same way as the assertion on (0, 5). Accordingly the result will follow
once we prove (21). With this aim in view we claim that, for a given € > 0, there exist positive n, § and r
small enough such that

/2 H(sv/ho(p) Sinﬁ;,u)‘ sinfdf < e for all p € B,.(i) and s € (1 —4,1). (22)
5N

Here, and in what follows, B,(ii) := {u € A;||p — || < r}. To show this let us note first that a,(u) in
condition (C) is negative. Indeed, condition (Cz) implies that the limit

im  (gu(@) = vVho(p) (wr (1) — )~

(z,p) = (@ (f1),12)

is finite a different from zero. Due to g,(z) / \/ho(p) as x tends to x,(u) we have then o, (1) < 0. The
continuity of u — a,. (1), see Remark 2.12, allows us to suppose a,(u) < 0 for all p € B,.(fz). On the other

hand, by condition (Cs) and Lemma 3.16, the family {MZ—Z@W}#GA is continuously quantifiable in

fi at z,(p) by B(p):= —3a, (1) > 0. Moreover, by hypothesis M () < 1 so we have 0 < B(n) < 1 for all

i € By(ji) considering r smaller if necessary. Therefore, due to the continuity of p — 2,.(u), there exist
positive C, ¢ and r such that, for all u € B,(ji),

9,(7)gu(x) 1 C

G@F | Vil Vi) () —appm e (@ (1) = & ().
Therefore w (o) o
o) g (@) gu(a dx £1-B
Lo 7 | v < 1w

and so, taking £ and r smaller if necessary, we can assert that
9, (@) gu(x)

/wr(u)
@ () —& (QL(JJ))Q

If we perform the change of variable z = (g;')(y/ho(p)sin6) in the integral above, the inequality easily
implies that

dx
ho(p) — V()

< ¢ for all € B, ().

/2 ‘H( ho(p) sin; p)| sin 0df < e for all u € B,.(f1), (23)

-1

where 7:= § — max{arcsin(%);u € B,«(ﬂ)} > 0.

Recall at this point that, by condition (C;) and taking r > 0 smaller if necessary, there exists T € R
such that, for all u € B,(j1), it holds Z € (x,(n) — &, (1)) and (;—“)3 is monotonous on (Z,x,(w)). Since
m

gp is a diffeomorphism from (z¢(p), (1)) to (—v/ho(p), v/ho(p)) and (g,")" = (;,g;“/g o g, !, if we set
n

z 1= max{g,(z); p € By(f1)}, then for all u € B,(f1) the function (g, ')” is monotonous on (2, \/ho(u)).

Accordingly, for all p € B,.(f4), z — |H(z; )| is monotonous on (2, /ho(u)). Let us take now n € (0,7)

and ¢ > 0 small enough in order that \/ho(p)ssinf > 2 forall s € (1-6,1),0 € (5 —n,5) and p € B,.(f1). If

|H(-; )| is increasing then, for these values, |H (sv/ho(u) sind; p)| < |H(y/ho(p) sin8; p)| and consequently,
taking (23) also into account,

/5 ‘H(s\/ho(u) sinH;u)‘sin@dﬁ < /5
]

™
2

‘H( ho(w) sin9;,u)‘ sinfdf < e
2N
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for all s € (1 —6,1) and p € B,(j1). Hence the claim follows in this case. Suppose finally that |H(-;p)| is
decreasing. Then, for the same values as before, |H (sv/ho(p) sin 0; )| < [H ((1 — 8)+/ho(g) sin 0; 1) |, which
yields

’H((l — 0)v/ho(p) sin 0; 1) ’ sin 0d6.

™

3 3
/ ‘H(s\/ho(u)sinﬁ;p)’sin9d9g/

T 5N

It is clear that the integral on the right tends to zero as  — 0T uniformly for u € B,(ft) because,

by Lemma 3.1 and hypothesis (H), the function (6, ) — [H((1 — §)y/ho(p)sin; p)| is continuous on

[5 —n, 5]x B(j1). Thus the inequality in (22) is true for 7 > 0 small enough and so the claim follows also
in this case.

We are now in position to show (21). The fact that L is a convergent integral follows easily by using that,

due to the assumption in (C3) and Lemma 3.16, W#TV& is quantifiable at z,.(f1) by 0 < B(ji) < 1.

On the other hand,

/;H(s\/ho(u) sin 0; 1) sin 0df — L| < /§<H(s\/ho(u) sin ;1) — H (sy/ho () sin 0; 1) ) sin 09

0

™

/QH(s\/ho(ﬂ) sin 0 i) sin 0d6 — L

0

+

Let us denote the first and second summands above by S; and Ss, respectively, and consider any € > 0.
Then, by Proposition 3.11, there exists d2 > 0 such that Sy < /2 for all s € (1 — J2,1). In addition, taking
any 1 € (0, 5), we get

S <

7 (R s p) — s RoTa s ) s

us
2

+/’z’ ‘H(s\/msina;u)‘sinﬁfw—&-/

™ ™

‘H(s ho(f2) sin 6; ,&)‘ sin 6d6.
2N 27N

Let us denote by Si1, Si2 and Sis the first, second and third summands above, respectively. By applying
the claim in (22) twice, there exist positive 1, d; and r small enough such that Sis + S13 < ¢/4 for all
1 € By(fi) and s € (1 — 6y,1). Finally, since the function (6, s, ) — H (sy/ho(p) sin6; 1) is continuous
on [0, % —n]x [0,1] x By.(f1), thanks to Lemma 3.1, by making d; and r smaller if necessary, we get that
S11 <efd for all p € B.(fi) and s € (1 —d1,1). Hence S; + Sz < ¢ for all u € B,.(i) and s € (1 —§,1) with
0:= min{d1,d2}. This shows (21) and completes the proof of (a).

Let us prove (b). In this case two different situations can occur: either m(i) < 1 < M(f) or M (i) >
m(j1) > 1. Let us start proving the result in the first situation. In this case z; and z, are both non-regular.

Let us fix that m() = —2a,(i) and M (i) = —3a, (i) (the other situation follows exactly in the same
way). Lemma 3.16 shows that M (i) and m(j1) are the respective quantifiers of family {%} .
(912 ho(w) =V J pen

We split the integration interval of (20) into (—3,0) and (0, §) giving rise to two integrals that we denote
respectively by L™ (s;u) and L (s; ). On account of m(j1) < 1 the same proof as in (a) shows that L™ (s; u1)
converges as (s, ) — (1, fi). We claim at this point that LT (s; ) tends to infinity as s 1 uniformly in a
neighbourhood of ji. Note that once we show this the result will follow taking into account that ho(p) is a
continuous function. In order to show the claim we first note that, on account of condition (Cy), g, is non-
vanishing near z,(u). Suppose, for instance, that it is negative. Note that, on account of the assumption
in (C2) and Lemma 3.16, there exist Z € R and 7 > 0 verifying

—3,,(x)gu(z) - C

(g, (2))2\/ho (i) = Viu(w) ~ (p () — )20

where we can take C' > 0 because gg is negative near x..(j1). Moreover, by Lemma 3.2, there exist § > 0 and

> for all p € Br() and x €(Z, 2 (1)),
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r € (0,7) such that z < g ' (v/ho(u)s) < x(u) for all s € (1 —6,1) and p € B,.(f1). Consequently,

L (s ) im /gﬂvhﬂ“)s) g @gp()de o W) —gi(a)g, (x)de
s @ (9. (2))? v/ ho(p)s® = Viu(x) — Ja (9, (2))2/ho (1) — Vyu(2)
/gul(\/hg(u)s)

z

> C(zp () — m)%m‘(“)dx

:(:%oz,fu)Jrl) ((CUr(,U) _ g;l(\/ms))%ar(u)+l — (2 (1) — @)%a7~(u)+1) .

Since M(f) > 1 then lim,—; 3a.(u) +1 = 3a,(i) +1 = 1 — M(f1) < 0. Moreover Lemma 3.2 shows
9. ( ho(p)s)— @ (p) as s /1 uniformly on B, (f). Therefore the above inequalities show that L (s; 1)
tends to +0o as s ' 1 uniformly on B,.(fi) as desired. This shows the claim and so the result follows in the
case M(f1) > 1> m(f).

Finally let us consider the case when M (i) > m(ia) > 1. If x, is regular then L™ (s; ) converges to a
number as (s, ) — (1,/1) and the same procedure before shows that L™ (s; ) tends to infinity as s tends
to 1 uniformly on B,.(fi). So the result holds in this case. On the other hand, in case that both z, and x,
are non-regular, with the same argue we can prove that both L™ (s; ) and L*(s;pu) tend to infinity as s
tends to 1 uniformly on B,.(ji). Moreover, on account of Lemma 3.10, both integrals tends to +oc. Then,
the result follows in this case by additivity. [ ]

The next one is the last ingredient for the proof of the main results in the present section.

Proposition 3.18. Let {X,},ca be a family of admissible analytic potential systems satisfying (H) such
that ho(p) is finite and Z,, is unbounded. Consider fi € A satisfying condition (C). Then T'(h) tends to +o00

as (hvﬂ) — (ho(:&’)vﬂ)
Proof. The derivative of the expression of the period function in (17) gives

d

25 Tu(ho(1)s?) = 2sho ()T}, (ho(1)s*) = v/2ho(p) [ " (1) (V/hou)ssin 6) sin 6.

2
We split the integration interval into (—%,0) and (0, %), namely L~ (s;u) and LT (s; p) respectively. Due
to the hypothesis of the endpoints of Z,, three different cases can be considered: either z,(u) is regular and
X, = 400, or z¢(p) # —oo non-regular and x, = 400, or 2y = —oo and z, = +00. Notice that in the three
cases x, = 400 so the proof for LT (s; ) will be the same.

Let us consider first that xp(p) is regular and x, = +oo. In this case is clear by Lemma 3.13 that
L~ (s; u) tends to a number when (s, ) — (1, ). Then let us focus to show that L™ (s; 1) tends to infinity
uniformly on a neighbourhood of ji. By making the change of variable x = g;l( ho(p)ssin6), we obtain

™

LT (s;p) = /E(glfl)"( ho(u)s sin @) sin 0df = —9u(*)g9u (@)
0

1 9 (Vho()s) dx
Vho(p)s /o (95 (2))2y/ho()s? = V()

Note that, on account of condition (Ci), g, must be non-vanishing near x,(u). Suppose, for instance,
that it is negative. We claim that L*(s;u) tends to 400 as s * 1 uniformly on some neighbourhood of
fi (respectively, if g/ is positive near x,(p) then L*(s;u) tends to —oo uniformly). It is clear due to the
continuity of ho(u) that the result will follow in this case once we prove this. With this aim in view note
that, on account of the assumption in (Cz), ,-(u) is positive. Indeed, we have that the limit

i @) = Vho(w)
(@m)—(tooy)  zor(k)

is finite and different from zero. Due to g, (z) ,* v/ho(p) as = tends to +oo we have then a, (i) < 0. The
continuity of the map u — «,(u), see Remark 2.12, allows us to consider «, (1) < 0 for all u ~ fi. On
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account of Lemma 3.16 we have that the famil {L} is continuously quantifiable in [ at
we v Y Vo2 v/moto—Va S pen v #
infinity by B(u) := —2a,(u) > 0. Therefore, since lim,_,; z, (1) = +oo, there exists z € R and 7 > 0
verifying
—9,,(7)gu(x)

> CzPW for all u € By(f1) and e(z, z,(n)),

(95.())* /o (i) = Viu(x)

where we can take C' > 0 because we assumed gg to be negative near x,, = 4+00. Moreover, by Lemma 3.2,

there exists § > 0 and r € (0,7) such that & < g, (y/ho(u)s) < +oo for all s € (1 —6,1) and pu € B,.(f1).
Then

9" (Vho(w)s) —gy/(x)gu(w)da o Whows)  _gh(2)g,,(2)dx
LT(S;AL)::/ o > -

: (95 (2))2v/ho()s® = Vi(w) ~ Ja (93 (2))2v/ho(p) = Viu(x)

>/QM (v/ho(1)s)

C +
B(K) g — 1 Bm)+1  ~B(u)+1
Czx dx ) +1 (gu ( ho(u)s) —x )

Since S(p) > 0 and by Lemma 3.2 we have g;l( ho(1t)s)— +oo as s /1 uniformly on B, (fi), the above
inequalities show that L7 (s;p) tends to +oo as s ' 1 uniformly on B,.(f1). On the other hand

~ g, () g, (r)dx

+g ) e ’
L2 ( 7”) /0 (g:L(z))Q hO(,LL)$2 — V#(x)

is continuous on K := [1 — §,1] x B,(ji) because, by construction, & < min{g,*(\/ho(u)s), (s,n) € K}.

Vho(p)s ’

Accordingly Lj (s;u) tends to a number as (s, u) — (1, ). Therefore, due to L*(s;u) =
the claim is true and the result follows in this case.

Now let us consider z; to be non-regular and finite, and x, = +oo. In this case L™ (s;u) tends to a
number as (s, ) — (1, 1). We refer the reader to the proof of Proposition 3.17 for the details in this case.
On the other hand, we have L™ (s;u) tends to infinity uniformly on a neighbourhood of i as we proved
before. Consequently 7}, (h) tends to infinity as h approach hg () uniformly on a neighbourhood of .

Finally let us consider zy = —oo and x,, = +o00. The same proof for z, = 400 proves that L~ (s; u) tends
to infinity uniformly on a neighbourhood of ji in case that x; = —oo. Moreover, Lemma 3.10 shows that
both L~ and L* tend to +oo. Then, in this case we have that T},(h) tends to +0o as h 7 ho(u) uniformly
on a neighbourhood of fi. This shows the validity of the result in this case and completes the proof. [ ]

Now we are in position to prove a criterion for a parameter to be a local regular value of the period
function at the outer boundary of the period annulus.

Theorem C. Let {X,}.ecn be a family of admissible analytic potential systems satisfying (H) such that
ho(u) is finite and consider 1 € A satisfying (C). Then i is a local reqular value of the period function at
the outer boundary if one of the following conditions is verified:

(a) Z, is bounded, M(f1) <1 and Aq(f1):= /2 (91" (V/ho(p) sin 0)sin 6df # 0.

jus
2

(b) Z,, is bounded, M(ft) > 1 and m(f) # 1.

(¢) Z,, is unbounded.

Proof. The assertion in (a) follows from Proposition 3.17, which shows that

_L : “H'(y/ (1) sin 6) sin :L(ﬂ)
\/2ho(ﬂ)/g(g# V'(Vho(isinf)sinédt = Zp S

lim T (h
(h,i)— (ho (), A) w ()

0,
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and then by applying Lemma 3.8. Assertion in (b) follows also from Proposition 3.17. Indeed, this result
shows that 1im s, 1) (no(a),2) T),(R) = £00. On account of Lemma 2.14 we have that limy, ;) T/g(h) =400
uniformly on compact neighbourhood of fi. Then the result follows on account of Lemma 3.8. Finally

assertion in (¢) follows from Proposition 3.18 using again Lemma 3.8. [ |

The previous result guarantees that [ is a local regular value of the period function at the outer boundary
except for the case in which Z, is bounded and M (1) < 1 but Aq(fz) = 0. Next result can be applied to
bound the criticality in this situation. Since the proof is very similar to the one of Theorem C, for the sake
of brevity we do not include it here.

Theorem D. Let {X,},cn be a family of admissible analytic potential systems satisfying (H) with ho(p)
finite and Z,, bounded. Suppose that [i € A satisfies the following:

1IN2 1t
(i) The family {3(9“()57/#} N is uniformly monotonous in [i at the non-regular endpoints of Z,,.
3 ne

(ii) The families {g, — \/ho(ﬂ)}ueA, {9, uen, {9} pen and {g,'} uen are continuously quantifiable in fi
at the non-regular endpoints of Z,,.
Then Crit((I;, Xz), X,.) < 1 in the following situations:

™

(a) M(p) < 2 and Ay(f):= /2 (9.1)"" (v/ho(p) sin )sin® 8d6 # 0.

N

(b) M(i) € (3.1) \ {3} and m(f) ¢ {3, 3}-

4 Application

This section is devoted to the application of the previous tools to an specific family of potential centers.
As we explained in Section 1, we shall study the bifurcation problem at the outer boundary of system (1),
which recall that it is given by

i:_ya
y=(z+1)F—(z+1)7,

defined for z > —1 and p:= (¢,p) € A = {(¢q,p) € R? : p > ¢}. The corresponding potential function is

x+1
Vu(z):= /1 (u? — u?)du, (24)

which satisfies V,,(0) = V};(0) = 0 and V}//(0) > 0 for all 4 € A. Clearly the centers are determined by the
local minima of V,(z). In this case, for all ;1 € A, the origin is the only center of system (1). Let us define
the following three subsets of A,

Ai=ANn{peR?: -1 <q<p}
Ao=ANn{peR?:qg< -1<p},
Ayi=An{peR?:g<p< -1},

which form a partition of A. The projection of the period annulus &2, on the z-axis is 7, = (—1, p(p)) if
pe M, L, =(—1,+00)if p € Ay and Z,, = (p(p), +00) if u € Az, where

p+1 I
= —1.
p(1) (q+1)

Notice that p(u) is a continuous function in A; and Az. Both regions correspond to parameters such that the
energy level of the outer boundary is finite, more concretely, ho(p) which is clearly continuous.
The energy level is +oo for the parameters in As.

I
 (p+D(g+1)?

We consider each region separately and the proof of Theorem E follows from Propositions 4.3, 4.4 and
4.5, which are proved in Sections 4.1, 4.2 and 4.3, respectively.

30



AQ Al

<Y

Figure 5: Graph of V), for each parameter region.

4.1 Ciriticality for parameters inside A,

As we already mentioned, Z,, = (—1, p(n)) and ho(u)
satisfied on A;.

= % for all p € A;. Hence, condition (H) is

Lemma 4.1. Let X, be the potential vector field defined in (1). Then the following statements hold

(a) X, is admissible for all i € Ay and x,.(p) is reqular.
(b) If i € {(¢,p) € A1 : q(2q + 1) # O} then fi satisfies condition (C) and M(u) = 2(q+1).

1" 2_ mnr 1
(¢) If e {(q,p) € Ay : q(2¢+1)(3¢ + 2) # 0} then {%}%A is uniformly monotonous in i at x,
I
"

and {g#

tuen is continuous quantifiable in [i at .

Proof. For proving the first assertion of the lemma let us show that condition (a) of Definition 3.9 is
satisfied for p € Ay. Indeed, V), is analytic at z,(u) = p(u) and V;(x, (1)) # 0 so z, (1) is regular.

To prove (b) fix fi = (¢,p) € Ay with § # 0 and § # —1/2. We shall prove first condition (C;). That is,

the family {g, (QL)g}ue A is uniformly monotonous in i at xy = —1. With this aim in view we shall show
that (g//(g,,)%) = % does not accumulate zeroes near z, = —1 for y ~ ji. Since g, (z) is smooth in
Z,, it is enough to show that the function g;,g, — 3g;, does not accumulate zeroes at x, = —1 for u =~ 1. By
definition,

SVP’L’(VJ)2 + 6(V,1’)2VN —2V'ViV,
8V2 '
Again, in this case due to the regularity of V), in Z,,, it is enough to prove that the function on the numerator

does not accumulate zeroes. Let us denote by P, the numerator of the previous expression. Then some
computations show

i/

9.9, — 39, =

+ ay ()22~ 4 ap ()22 1 ag ()2 + ag(1)a 27 + as(p)e P + ag ()2l
.732_2(1

P(x—1) = )

where a; (1) are continuous rational functions on p = (g, p) in A; that we omitted for the sake of shortness.
Since p € Ay we have p+1 > g+ 1 > 0 so all the exponents on the numerator are positive. Notice that the
function 2?~24P,(z — 1) is continuous on the variables (z, ). Therefore we have that

lim 22 20P,(z — 1) = ag(d, p).

(z,n)—(0,2)
An easy computation shows that ao(q,p) = W, which is different from zero in the region under
consideration. Consequently the function P,(x) does not vanish near zy = —1 for all p ~ i and therefore
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the family {(g,)"/(g},)*} is uniformly monotonous on x; = —1 at fi. This proves (C;). Notice that the
(Ehamge1 of sign in the coefficient ag(g, p) when ¢ = —% implies there is no uniformity on the monotonicity in
q9=—3
Let us check that i verifies (Cz). On account of the expression in (24) we have that
(0 + )P (@t Dot

V() = P + ho(p)

and then

. _ _ 1 (@+1r 1
lim h — V() (x + 1)@t = im — = —
(ryu)%(—l,ﬂ)( (i) = Vul@))( ) (z.m)—(-1,2) ¢ + 1 p+1 g+1

Due to ho(p) — Vi = (Vho(p) — 9u) (W ho(p) + g,) and g, () tends to y/ho(p) as = tends to —1 we have
then that {\/ho(t) — gu}uea is continuously quantifiable at £ in z; = —1 by ay(n) = —(¢ + 1). Moreover,
on account of expression in (24), we can easily see that

£ 0.

lim Vi) z+1)"= lim 1—(z+1)P9=1
(@)= (=1,) wo) ) (@)= (—1,) ( ) ’
lim V/(@)(z+D'%= lim g—plx+1)P9=4+#0.
(@)= (—1,) H (@) ) (@)= (= 1,2) ( ) a
Consequently the families {V},ea and {V;/},ea are continuously quantifiable in fi at v, = —1 by —¢
’ 2 _ \2
and 1 — g, respectively. Taking this into account, and using that g;, = Q(V‘:ﬁ and g, = i%, one
can easily show that the families {gL}#eA and {g;’}#e,\ are continuously quantifiable in i at x; = —1 by —¢

and 1 — g, respectively. This shows that condition (Cz) is verified. Finally, since x, is regular, by definition
M(p) = —5ae(p) = 3(g+1).

)2=9,"9,

g

Let us prove (c¢). The assertion concerning the uniform monotonicity of the family {%}u A
#

follows similarly as the proof we have shown for proving (Cp) in (b). In this case we use that

3(9;)° —gy'gn 4V BV (V)? = 6(Vi)*V, + 2V, ViV,.)
(9.)° (V)

so we shall proof that the derivative of that function does not accumulate zeroes at zy = —1. For the sake
of simplicity we omit the computations and we have that

<3(9Z)2 - gﬁi’g;>/($) _ —4/Vu(@) (@ 1)P8 0u(e—1)

(9,.)° (p+1)2(g+1)*Vi(x)°

where Q,,(z) is a continuous function such that lim(, )00 Qu(2) = —24(p — §)%q4(G + 2)(G+ 3) # 0.
Therefore, and taking into account the regularity of V,, and V;: we have that the derivative of the family under
consideration does not accumulate zeroes at zy = —1. Consequently, the family is uniformly monotonous
in i at xy.

Finally let us prove that {g:j/} uen is continuously quantifiable in i at z,. On account of the expression
of V,, in (24) we can easily see that {V,"},eca is continuously quantifiable in fi at x, by 2 — ¢ with limit
4(g—1). Then, using that {V;},ea and {V;'} e are continuously quantifiable and their quantifiers together
with the equality

(V3 — 6V, V,V, + 4V}1”Vi

r 5
8V;2

"} e is continuously quantifiable in i at , by 2 — g as we desired. [ ]

"

9, =

/

we have that {g;,

Proposition 4.2. Consider the period function T}, of the center at the origin of system (1) with (¢,p) € Aq.
Then the following holds:
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/o -/ q+1 2(p E1) I 55=q .
(i) limypp (k) Tu(h) = ZW% (i) % y-l<a<l,
o

+00 ifg=>1

(-l )
o (p+1)2(p+2q+1) (- b1 if —1<q<-—1
\/72(1) 2o 2 T(5is) / q 3

—00 zf—f q <0,
400 if ¢ > 0.

(’LZ) limh_mo(ﬂ) T//J,(h) =

Proof. Since y1 € Ay we have that ho(p) is finite. Taking (g, (z))? = V,(z) = (z;}gfﬂ - (I';_l‘_)lqﬂ + ho(w)

into account and deriving implicitly it easily follows that (g, )" is non-vanishing near the endpoints of

—v/ho(p), v/ho(p)). Consequently (g, ')” is monotonous near the endpoints of (—v/ho(i), /ho(i)). Since

on the other hand X, is admissible thanks to Lemma 4.1, we can apply Corollary 3.12 to conclude that

h‘)ho(

lim T,( \[/ Vho(p) sin 6)df

and

[NE]

lim T/ (h) =

h—ho(u) M (9,1 (v/ho(p) sin 0) sin 66,

\/2h0 -z

where the improper integral on the right either converges or it tends to infinity. In the first case, if we
perform the change of variable 2 = g, (1/ho(u) sin #) we have

\f f p(p) dr
/1 Vho(p)sin )9 = / Vo) = Vo)

Then (¢) follows by the first assertion on Lemma 4.9 in the Appendix. In the second case, with the same
change of variable we have that

2

o V2w —3,(2)gu(x)
"(v/ho(p) sin6) sin 0df = T /_1 SN o

\/Qho /"5
Using that gi =V, it follows that

Vu(@)V,) (=)

moysmods — V2 [V 2T Ve
2h0 /g mSm ) sin 6df = hol) )L ol Vﬂ(x)

Then (i7) follows by the second assertion on Lemma 4.9 in the Appendix. [ ]

Next result proves Theorem E for the parameters inside Aj.

Proposition 4.3. If i = (¢,p) € {p € A1 : ¢q(p+2g+1)(2¢+1)(3g+ 1) # 0} then [ is a local reqular value
of the period function at the outer boundary of system (1). Moreover,

(@) If pe{ne A qglp+2¢+1) >0,(2¢+1)(3¢+ 1) # 0} then the period function of X, is increasing
near the outer boundary.

(b) If pe{pe :qlp+2¢+1) <0,(2g+1)(3¢g + 1) # 0} then the period function of X, is decreasing
near the outer boundary.

On the other hand, if i € {u € A1 : q(p +2q + 1) = 0} then fi is a local bifurcation value of the period

function at the outer boundary of system (1). Moreover, if i = (4, —24— 1) with G € (f%, f%) \{—1}, then
Cﬂt((Hﬂa Xﬂ)» Xﬂ) =1
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Proof. Consider i = (¢,p) € {p € A1 : ¢(p+2¢+1)(2¢+1)(3¢ + 1) # 0}. On account of Lemma 4.1 we
have that the potential family is admissible and that /i satisfies condition (C). Moreover, M (f1) = 3(¢+1).

Ifqg> f% then M (1) > 1 and, by applying Theorem C, [i is a local regular value of the period function
at the outer boundary. Moreover Proposition 4.2 shows that if § < 0 (respectively, ¢ > 0) then the period
function tends to —oco (respectively, +00) as h — ho(p). This proves (a) and (b) for ¢ > —% and also
that, by Lemma 3.8, {it € A; : ¢ = 0} consists of local bifurcation value of the period function at the outer
boundary. On the other hand, if § < —% then M (1) < 1. In addition, Proposition 4.2 shows that function
Aq(p) defined in Theorem C is

g4l
(p+1)2(p+2q+1) F( 2(p,q))
2(p— q)2p(p)™>" T (P““"l) '
2(p—q)

Ar(p) = —Vow

Due to ¢(p + 24+ 1)(24 + 1)(3G + 1) # 0, we have Aq(fi) # 0 so Theorem C guarantees that ji is a local
regular value of the period function at the outer boundary. This proves the assertion about the regularity.
Moreover, if p+2¢+1 < 0 and ¢ < f%, then A;(ix) > 0 whereas if p+2¢+ 1 > 0, then Aq(ii) < 0.
This proves the assertion concerning the monotonicity of the period function near the outer boundary if
g < —%. Due to the change of sign of A;, Lemma 3.8 shows that for all i € {u € Ay : p+2¢+1 =0}
we have Crit((II;, X;), X,) = 1, so they are local bifurcation values of the period function at the outer
boundary. Finally, if ¢ € (—2, 1)\ {3}, then M(2) € (2,1)\ {3}, so together with Lemma 4.1 we have
that Crit((II;, X;), X,,) = 1 by Theorem D. [ |

4.2 Criticality for parameters inside A,

Recall that ho(p) = 400 and Z,, = (—1,400) for all ;1 € Ay. We note also that condition (H) is not satisfied
for e {peAy:(g+1)(p+1)=0}. Indeed, in every neighbourhood % of ji there exist u1, u2 € % such
that hg(uq) is finite and ho(pe) is infinite. Hence the techniques developed in this paper do not apply for
these parameters. The proof of Theorem E on As follows from next result.

Proposition 4.4. Consider i = (§,p) € {n € Aa : (¢+ 1)(p+1) #0}. If p # 1 then fi is a local regular
value of the period function at the outer boundary of system (1). Moreover,

a) If p <1 then the period function of X is increasing near the outer boundary.
1)

(b) If p > 1 then the period function of X, is decreasing near the outer boundary.

On the other hand, if p =1 then i is a local bifurcation value of the period function at the outer boundary
of system (1). Moreover, if p=1 and § < —3 then Crit((II,, X), X,) = L.

Proof. First we shall apply Theorem A in order to prove that any fi = (¢,p) € {u € A2 : (¢+1)(p+1) # 0}
with p # 1 is a local regular value of the period function at the outer boundary. Since gﬁ =V,

—g. _ (V)2 -2V, V7
(9.)° (Vi)?

On account of expression in (24), {V,}.eca is continuously quantifiable in i at = co by p + 1 with limit

]ﬁ. In the same way, {V/},ea and {V/},ea are continuously quantifiable in /i at = oo by p with limit 1

and by p — 1 with limit p respectively. Using this together with the equality above we have that

—gp(x) 1 2(1-p
lim g“( 3) = (7?)
(z.1)—=(00,1) g}, ()3 2P 1+p

which is different from zero if p # 1. Then, if p # 1, the family {—g} (QL)S}MEA is continuously quan-
tifiable in i at z, = 400 by a, () = —p with limit a, = 2(1 — p)/(1 + p). Similarly one can prove that
{—91/(g,,)*}uen is continuously quantifiable in i at zy = —1 by ay(p) = ¢ with limit ap = 2(§—1)/(G+1).
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On the other hand, taking into account the expression of g, one can prove that {g,(z)},ea is also contin-
uously quantifiable in /i at both endpoints of Z,,, at x, by B,(u) = q+1 with limit by = (—(¢+1))~'/? and

at z, by B,(n) = 22+ with limit b, = (p + 1)7/2.
According with Theorem A, we have then that the even part of z(gu )’ (z) is continuously quantifiable

at infinity by v(u) := 1 + max{ qf’ll, ;f’l’} =1- m Moreover, (&) > —1 for all 4 under consideration.
Therefore, if i = (¢,p) € {(¢,p) € Aa : (¢ +1)(p+ 1) # 0} with p # 1, by Theorem A, we have that i is
a local regular value of the period function at the outer boundary. Particularly, Remark 3.6 shows that in

this situation
w(u)

W () = Ad() £ 0

lim
(h,p) = (+00,)

—2il T(ghy)

where Aq(p) = 2v/2m(1 —p)(1 4+ p)” »#1 W Notice that Aq(f) > 0if p <1 and Ay(f) <0if p > 1.
1

This proves the assertion concerning the mogotomclty of the period function near the outer boundary.

Moreover, Lemma 3.3 shows in this case that Crit((II,, X), X,) > 1 if i = (G,1), so we have that [ is a
local bifurcation value of the period annulus at the outer boundary.

Finally let us prove that Crit((Il,, X;), X,) <1 for i = (¢,1) with § < —3. To this end we shall apply
Theorem B taking v(u):= —2—” (Thlb ch01ce is based on Remark 3.7.) Define

Fulz):= (g )" (2)2% = v(u)(g.)" (2)2,

and then one can verify that

2,/Vy ((QVHV;' — (Vlj)Q)(U(,u)(Vli)2 + 6VMV;) - 4V5V,1Vlj”)
fu Ogu = (V’)5 :
m

On account of expression in (24), some long and tedious computations show that

(fuogu)(@) _ 4p(1+3p)(p—q) _ 2v2(1—q)

lim , = - — = 0,
(@) (0) gzt (1+9)>2(1+4) I
e p-@-1) 20 g
. a-1 p—aq)\q— —dq
lim ogy)(x)(x+1 g - - = 0,
(et y i 0 90 (@) 4 1) Q+p)(=1=>2  (=1-¢)P? 7
where we omit the explicit expression of f,og, for shortness. Therefore, the family {(f,o g,)(x)}uea is
continuously quantifiable in i at zy = —1 by ay(pn) = q% and at x, = 0o by «a,(u) = 1+3p Accordingly
&(p) = max{(%) ( ) )} = max{ ;+fp, ;1 = q+1 due to § < —3. In addition f( ) € (—2,-1).

Moreover, by Deﬁnltlon 2. 3, we have that the first momentum of the even part of f, is

-/ °; iz = [ °° Fulon(@))glu(@)da

= (sc@ o) - 2 +5§2§Vu<m> ) 4%(;)@@ <x>>

for all u € {(q,p) € A2 : (¢+ 1)(p+ 1) # 0}. So, by applying case (b2) of Theorem B we conclude that [
has criticality at most one. That proves Crit((II,, X;), X)) = 1 for i = (¢,1) with § < —3 as we desired. B

o0

=0
-1

Theorem B can not be applied to study the criticality of the local bifurcation parameters fi = (4,1)
with § € (=3, —1) because £(fi) = —2 and M;(ft) = 0. In this case the result does not hold even in the
non-parametric setting, cf. Remark 2.8.

4.3 Criticality for parameters inside A3

For parameters inside A3 we have Z, = (p(u), +00), with p(u) = (Zﬂ) — 1, and ho(n) = D
We also point out that condition (H) is satisfied on Az. The assertion in Theorem E concerning Az follows
from the next result.
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Proposition 4.5. If i € A3 then [i is a local reqular value of the period function at the outer boundary of
system (1). Moreover the period function of X is increasing near the outer boundary.

This result can be proved by using the techniques developed in Section 3.2. However, we omit the proof
because it is a corollary of Theorem A in [15], where the authors prove the (global) monotonicity of the
period function for this parameter region.

Appendix

In this Appendix we show some technical results that are needed in the previous proofs. The first result is
a uniform Hopital’s Rule. The authors in [17] give a uniform version of this classical result in case that the
function on the denominator tends to infinity. Here we adapt their proof to the case in which the numerator
and denominator tend to zero.

Proposition 4.6 (Uniform Hépital’s Rule). Let f, and g, be two real valued functions defined on an
interval (a,b) and depending on a parameter ;1 € A C RY. Suppose that:

(a) fu and g, are differentiable on (a,b),
(b) g,(z) #0 for all v € (a,b) and p € A,

(@)

(¢) for all p € A, there exists L, € R such that lim,_, ,+ @)

= L, uniformly on p € A,
(d) sup{|Ly|;p € A} < +o0,

(e) there exists ¢ € (a,b) such that, for each x € (a,c) we have that

July) =0 and lim L(y) = 0 uniformly on p € A.
y—at gu(ﬂf) y—at gu(x)
Then lim,,_, .+ Z:Zgrg = L, uniformly on p € A.

Proof. Consider a given € > 0. Setting M := sup{|L,|;p € A}, which is well defined by the assumption (d),
let us take €1 := min{ 357, 1}. From (c) there exists ¢ > 0 such that, if ¢ € (a,a+0), then ;78 - Lu‘ <&

for all u € A. Let us fix at this point any = € (a,a + ¢). By the Mean Value Theorem, for each y € (a, )

there exists ¢ = c(x,y, 1) € (y,2) C (a,a + §) such that LD =TuW) _ 7ul) " Therefore
9 (%) —9u(y) g;.(c)
fu(z) _ fu(y) !
0@ " gu@ o | _|fule)
1— 9u(y) B g/ (C) LH < (25)
gu(x) ®

On the other hand, the assumption (e) guarantees that there exists z, € (a,z) such that

Julv) < g7 and 9u(v) ‘ < ¢ forally € (a,z;) and p € A. (26)
9u () 9u ()
Note then that ‘(Lu + el)Z:E‘z;‘ < (|L,| + €1)e1 and, accordingly,
— (|| + e1)er < (L el (L] + €1)er. (27)
9u(x)

The second inequality in (26) shows in particular that 1 — ‘g“—gi’; > 0 because €1 < 1. Hence, from (25),
n

_ _ gu(y) f#(y) fu(w) _ Q/L(y) fﬂ(y)
(et L) (1 gu<x>>+gu<x> < gula) <@t L <1 gu<x>)+gﬂ<w>'
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Therefore,

o _ g,u(y) fﬂ(y) _ _ B
ey @ o) S S T e G ey

From this, on account of (27) and the first inequality in (26), we get that

fu(z)
gu(x)

—2e1 — (‘LM‘ + 51)61 <

— L, <2+ (L] +¢e1)er-
Accordingly, for all € (a,a + 0) and pu € A,

fu(z) _
9u(z) t

W <e1@4 Ll +e1) <13+ L)) <e1(3+M) < e

and this proves the result. |

Next three lemmas deal with the computation of some integrals used in the proof of Proposition 4.2.

Lemma 4.7. Let o and 3 be any complex number with strictly positive real part. Then,

1ua—l — )P gy = Ooua—1 w) (@ 5)u:F(a)F(5)
e e [ R

where I' denotes the Gamma function.
Proof. See for instance (6.2.1) and (6.2.2) of [1]. [ |

Lemma 4.8. Let a and B real numbers such that a + 8+ 1 0. Then,

/u“(u—i—l)ﬁdu: L/u“(u—i—l)ﬁ_ldu—l—

w1 + )P,
a+p+1 ( )

a+p+1

Proof. The result follows from

1 ' B
a+1 1 e 1 B8 _ [e] 1 [3*1
(a+ﬂ+1 (s )> e ey
|
Lemma 4.9. Let pn € {(q,p) € R* : p > q > —1}. Consider V,,(z) = (I;E;)H - (I:}s-)lﬁl + (p+11’)_(3+1> and
=
p(p) = (f;?) — 1. Then,
VaTT (pr1\ T T()
pP—q 2(p—gq ;
| / de [ ymE (§+1) F(éit!i;%) if —1<q<1,
R I ifg>1
o 1 (- 3q+1 .
L V@) SRt )2 oA ) F((pii‘;i?)) if —1<q<-4,
(id) / 2 Vi (@)? do — 2(p—q)(g+1)p(p) 2 20— )
X
\/(p+1)(<1+1) Val(@) +00 if ¢ > 0.

Proof. Let us prove (). The improper integral under consideration can be written as

p(p) dr
/. R




In case that ¢ > 1 it is clear that the 1mpr0per integral is +00. Let us consider ¢ < 1 and let us perform

w) — 1. Therefore, the improper integral becomes

the change of variable x = ( )

/ 2(17 q) 1 —2p+gq
g+1 <p—|—1) / u_%(l—u)lz(ii) du.
0

p—q \qg+1

Notice that due to g < 1 the integral satisfies assumptions in Lemma 4.7 and so the result follows immediately
applying this lemma.

!/
Let us prove (ii). If we denote v (z) = —3 + (&,Ei;) the improper integral under consideration can be
m
expressed as
p(1) v (z)dx

S Vo) - V@)

By substituting the expression of the function V),, we have that the improper integral is given by

p(m) 1 op—q) |
/71 (z+1)2@tD) <2(p N W e + G(x,,u)) dx

where G(z; ) is a continuous function on {(x, u) : x € [-1 p(u)] € A} with G(—1;u) =0 for all p € A;.
Consequently, the improper integral is 00 in case that —g < ¢ # 0 and the 31gn of the infinity is given by
the sign of g, so the result holds in this cases. On the other hand, if ¢ < —% then the integral converges.

Let us assume that —1 < ¢ < —% and let us compute the integral. Let us denote for the sake of simplicity
29T p4+1 1 1 p—q 1
D(z;p) = —— =2 Uzp) = ———, hazp)=—P(zp)2 + ————=P(z; 1) 2.

With this notation and considering the expression of V,,, the improper integral under consideration can be
written as follows

(k) 1 B L R
1) = lim 7/ <I>(z;u)‘%lz—|—/ U(z; p)h(z; p)dz |
1 Vho(p) = Vu(z)  R=pw+1\2 ) 0

Integrating by parts the second integral it holds that

p(p) I
_ nlxdr lim —/ ®(z;p0) " 2dz + 1(z; p)h / Uz )b (25 p)dz
-1 ho(p) = Vu(z) — B=ew+1\ 2 Jo

Since I(z; p)h/ (23 p) = 2@ (25 0) 72 + %M%Q(Z; 1)~ 2 and due to lim._,0{(z; 1)h(z; 1) = 0 we have then

p(p) yl(x)dx _ . . ) B EL R -3
L V) V@ —RJ;{E)H (l(R, ) h(R; 1) 2(p+1)(q+1)/0 ®(2; ) dz). (28)

Moreover, let us denote A:= %?Z’qu = f(z) with f(z) = ﬂlzp_;i—q
q+1
We have that R s HR)
1
/ <I>(z;u)_%dz = (p—i_—m/ u%_)‘(u + D) du.
0 (p—a)p(p) 2" Jo

Applying Lemma 4.8 to the above integral and taking into account that lim, ¢ QU%_)‘(U +1)*~1 = 0 since
—-1<g< —%, we have that

R . » (p+ 1)% 3x 1 B f(R) wz=A ’
| ot —(p_q)p(u)gp;1<f<m E+1 20— [ ). 9
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At this point we claim that

_ 3atl pt2q+1 1
lim I(R; p)h(R; ) — f(R) 2= (f(R) + 1)' 20 (p+1)2 -0
Roplr \ T (g+D)p(n) 5"
Indeed, if we substitute f(R) = % then we have
q+1

Nl

_ 3q41 pt2g+1 N _
f(R) 2o (f(R) + 1)3:(:’1"” (p+1): =(p+ 1)*%]{*% (p—l— 1 qu) ’
(g+1)p(p) > q+1

and so using the expressions of I(R; 1) and h(R; () we can obtain that

1
_1 _ (et _ Rr—a T2

UR: ph(R:p) — (p+ 1)~ R (pHR> - (q“m )
q+1 Vp+ 1R (RP — RY9)

1

which clearly tends to 0 as R — p(u) + 1 = (fl’%) """ so the claim is proved.

Substituting expression in (29) into the equality in (28) and using the claim we have that

p(k) Vl(.’L‘)dx ) _(p+ 1)% f(R) u%_A
“1 Vho() = Vil@)  Boen+1 (g + 1)p(n) ™ o (utl)
Finally, since limp_, ()41 f(R) = 400, using Lemma 4.7 with a = —;ng(l]) >0 and 8 = % > 0, and
substituting the value of A we have that
1 1 1 1 _ 3¢+1
“tDE /”R) W et Dipr2en T (2)T ( 2<qu))
Rop(n+1 (g + Dp(n) 5 o WELPA 2 —g)a+ e T T (5et)
Consequently we obtain that the value of the improper integral is given by
1 3q+1
P() vi(z)dx _ —(p+ 1)%(p+2q—|—1) F(a)F(—z(Z_q)>
— o _ 3ptl —4g—1
0 VR =Vale) 2 - )@+ D E T ()
as we desired. ]
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