A SUFFICIENT CONDITION IN ORDER THAT THE
REAL JACOBIAN CONJECTURE IN R? HOLDS
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ABSTRACT. Let F = (f,g) : R? — R? be a polynomial map
such that det DF(x) is different from zero for all z € R? and
F(0,0) = (0,0). We prove that for the injectivity of F' it is suffi-
cient to assume that the higher homogeneous terms of the polyno-
mials ff; + g9, and ff, + gg, do not have real linear factors in
common.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let F = (f,g) : R?® — R? be a smooth map such that det DF
is nowhere zero. It is clear that I is a local diffeomorphism, but it
is not always injective. There are very general well known additional
conditions to ensure that F'is a global diffeomorfphism, see for instance
[8, 11, 13].

If F'is a polynomial map, the statement that F'is injective is known
as the real Jacobian conjecture. This conjecture is false, since Pinchuk
constructed, in [12], a non injective polynomial map with nonvanishing
Jacobian determinant. Thus it is natural to ask for additional con-
ditions in order that this conjecture holds. In [3], for instance, it is
showed that it is enough to assume that the degree of f is less than
or equal to 3. This result was recently generalized in [2], where it was
proved that for the injectivity of F' it is enough to assume that the
degree of f is less than or equal to 4. If we assume that det DF(z) =
constant # 0, then to know if F' is injective is an open problem largely
known as the Jacobian conjecture (see [1] and [10] for details and for
surveys on the Jacobian conjecture and related problems).

In the following result we provide a sufficient condition for the va-
lidity of the real Jacobian conjecture.

Theorem 1. Let F' = (f, g) : R? — R? be a polynomial map such that
det DF' is nowhere zero and F(0,0) = (0,0). If the higher homogeneous
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terms of the polynomials f f,+gg. and f f,+gg, do not have real linear
factors in common, then F s injective.

In the particular case deg f = degg, we prove in Lemma 8 bellow
that if the homogeneous terms of higher degree of f and g do not have
real linear factors in common, then the homogeneous terms of higher
degree of ff, +gg, and ff, + gg, also do not have real linear factors in
common. Thus our present result is a generalization of the main result
of [4], where besides the assumption deg f = degg it was assumed
that the homogeneous terms of higher degree of f and g do not have
real linear factors in common (see also [5], for a similar result in R").
Moreover, the following example shows that Theorem 1 is stronger than
the main result of [4].

Example 2. Let F' = (f,g), with f(x,y) = v —y+2° and g(z,y) =
y + a3. Here det DF(x,y) = 1+ 6x%. The higher homogeneous terms
of f and g are both z* (which has x as a common factor). Moreover
the higher homogeneous terms of

flot 99 =2 —y+42®+62°, ff,+99,=—x+2y

are 6x° and —x + 2y respectively, which do not have real linear factors
m common.

An example satisfying the assumptions of Theorem 1 when deg(f) >
deg(g) is the following.

Example 3. Let F' = (f,g), with f(z,y) = 2(3+ 2%)/3 and g(z,y) =
r+y. Here det DF(z,y) = 1+ 22 and the higher homogeneous terms
of the polynomials

4 1
ffx+ggx=2x+y+§fc3+§:c5, ffy+ 99y =2+y.

are 2°/3 and x + y, respectively, which do not have real linear factors
m COmmon.

We now recall a result of [7]. Firstly we introduce the notion of
quasihomogeneity. Let wq,...,w, and r be positive integers, and set
w = (wy,...,w,). We say that a polynomial map h : R"” — R is quasi-
homogeneous of quasidegree r with weight w if h (A*'zy, ..., A\"x,) =
AN'h(xq,...,x,) for all A > 0 in R and for all (xq,...,x,) € R". Given
a polynomial map h : R" — R, we denote by h,, its quasihomoge-
neous term of higher quasidegree. Moreover, for a polynomial map
F = (F'...,F") : R" - R", we denote F, = (Fl ..., F"). The
result is the following: Let F': R” — R” be a a polynomial map such
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that det DF is nowhere zero. If there is a weight w such that the only
real solution of F,,(z) = 0is x = 0, then F is injective.

The following example shows that our Theorem 1 does not generalize
this result.

Example 4. Let F = (f, g), with f(z,y) = 2*+y3+x and g(z,y) = y.
Here det DF(x,y) = 32* + 1, and with weight w = (1,1), we have
fu(z,y) = 2 + 4 and gu(x,y) =y. Thus fu(r,y) = gu(z,y) = 0 has
only the solution x =y = 0. On the other hand,

fle+99: =@+ 9 +2)(32% + 1) =32%(2° + y°) + 42° + ¢ + w,
[y +a99, = (@ +9*+2)8y°) +y = 3y*(2° + ¥°) + 32y° + v,

whose higher homogeneous parts has the factor x® + vy in common.

In fact in this example, for all weight w = (wyi,ws), the parts of
higher quasidegrees of ff. + gg9. and ff, + gg, have common real
factors. Indeed, independently of w, these higher parts are contained in
32 + 322y and 3x3y? + 3y° + 3>, respectively. Therefore, if wi = ws,
then these parts have also the factor z3 + y3 in common. If w; > wy,
then it is clear these parts have x in common. Finally, if wi < ws,
then they have in common the factor y.

On the other hand, an open problem is to know if Theorem 1 can
be attained from the mentioned result of [7]. We discuss the relation
between both results in section 4.

We anyway stress that our approach is completely different from
theirs. Indeed, our proofs rely only on the qualitative theory of ordinary
differential equations, following ideas started by Sabatini in [14], while
the proofs in [7] are based in the structure of polynomial maps.

In section 2 we summarize some results that we shall use in the proof
of Theorem 1 given in section 3.

2. PRELIMINARY RESULTS

A singular point p of a vector field defined in R? is a centre if it has
a neighborhood filled of periodic orbits with the unique exception of p.
The period annulus of the centre p is the maximal neighborhood P of
p such that all the orbits contained in P are periodic except of course
p. A centre is global if its period annulus is the whole R2.

The next result due to Sabatini, see Theorem 2.3 of [14], will play a
main role in the proof of Theorem 1.

Theorem 5. Let F' = (f,g) be a polynomial map with nowhere zero
Jacobian determinant such that F(0,0) = (0,0). Then the following
statements are equivalent.
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(a) The origin is a global centre for the polynomial vector field X =

(=ffy = 99y, [ fo + 992)-
(b) F is a global diffeomorphism of the plane onto itself.

Let X be a planar polynomial vector field of degree n and S* = {y =
(y1,y2,y3) € R®: 42 +y2+y3 = 1} (the Poincaré sphere). The Poincaré
compactification of X, denoted by p(&X'), is an induced vector field on
S? defined as follows. For more details see Chapter 5 of [9].

Denote by T,S? the tangent space to S? at the point y. Assume
that X is defined in the plane T| (070,1)82 = R2. Consider the central
projection f : T(001)S* — S?. This map defines two copies of X, one
in the open northern hemisphere H" and other in the open southern
hemisphere H~. Denote by X’ the vector field Df o X defined on S?
except on its equator S' = {y € §* : y3 = 0}. Clearly S! is identified
to the infinity of R%. In order to extend X’ to a vector field on S?
(including S!') it is necessary that X satisfies suitable conditions. In
the case that X is a planar polynomial vector field of degree n then p(X)
is the only analytic extension of 3 &’ to S%. On $? \ S' = H* U H~
there are two symmetric copies of X, one in H' and other in H™, and
knowing the behaviour of p(X’) around S', we know the behaviour of
X at infinity. The Poincaré compactification has the property that S!
is invariant under the flow of p(X).

The singular points of X are called the finite singular points of X
or of p(X), while the singular points of p(X) contained in S, i.e. at
infinity, are called the infinite singular points of X or of p(X). It is
known that the infinity singular points appear in pairs diametrically
opposed.

Given a polynomial p : R? — R , we denote by p;, the homogeneous
term of degree k of p.

Let ¢ be an infinite singular point and let h be a hyperbolic sector
of q. We say that h is degenerated if its two separatrices are contained
in the equator of S? (i.e. in S'), otherwise h is called non-degenerated.

We denote by G, ,,, the set of all polynomial vector fields X = (P, Q)
with deg(P) = n and deg(Q)) = m such that P, and @,, have no real
linear factors in common.

The next result is due to Cima, Gasull and Manosas, see Theorem
2.2 of [6].

Theorem 6. Let q be an infinite singular point of the polynomial
Hamiltonian vector field X = (—H,, H,) such that deg(H,) = n and
deg(H,) = m. Then the following statements hold.
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(a) Ifn =m and X € G, then q is a node and hence its topological
index is one.

(b) If ¢ has some non-degenerated hyperbolic sector h, then the two
separatrices of h are tangent to the same direction and in one
netghbourhood of q this direction is not between these separatri-
ces. Furthermore, X ¢ G,

(c) If n >m and X € G, then

(c.1) Ifn is even, then q is a node and hence its topological index
1S one.

(c.2) If n is odd and m is even, then q has one degenerated hy-
perbolic sector and one elliptic sector and its topological
index 18 one.

(c.3) If n and m are odd, then either q has two degenerated hy-
perbolic sectors and topological index zero, or q has two
elliptic sectors and topological index two.

The next result is the Poincaré—Hopf Theorem for the Poincaré com-
pactification of a polynomial vector field. For a proof see Theorem 6.30
of [9].

Theorem 7. Let X be a polynomial vector field. If p(X) defined on
the Poincaré sphere S? has finitely many singular points, then the sum
of their topological indices is two.

We end this section with the lemma mentioned in the introduction
section.

Lemma 8. Let F' = (f,g) : R> — R? be a polynomial map such that
det DF' is never zero. Suppose deg(f) = deg(g) = k. If fr and gi do
not have real linear factors in common, then the higher homogeneous
terms of ffz + 99. and ff, + gg, also do not have real linear factors
m common.

Proof. We first observe that (fZ2+g?). # 0 and (f2+g7), # 0, because
if (f2+9?), = 0, for instance, then (as we are dealing with polynomials)
fr = aory® and g = bory”, a contradiction.

Thus the homogeneous parts of higher degree of f f, +gg, and f f, +
99, arve (fZ + g2):/2 and (f? + g3),/2, respectively. If there is a real
linear factor ax + by dividing them, then ax + by will be also a factor of
o(ff+90)./2+y(ff+93),/2 = k(ff+gi). Hence ax+ by is a common
factor of f, and g, a contradiction. O

The first example of the introduction section shows that the converse
of Lemma 8 is false.
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3. PROOF OF THEOREM 1

Assume that we are under the assumptions of Theorem 1.
We consider the function H : R? — R defined by

f(z,y)* + g(z,y)*
2
and its associated Hamiltonian vector field X = (P, Q), i.e

P=-H,=—ff,— 99y, Q=H,=[fe+ 99
We claim that each finite singular point of X is a centre, and thus has
index 1. Indeed, z € R? is a singular point of X if and only if

( fo(2) g:(2) ) ( f(z) ) _ ( 0 )

fu(2) gy(2) 9(2) 0)’

which gives that f(z) = g(z) = 0, since det DF'(z) # 0. Let U be
a neighbourhood of z in which F' is injective. We have that H is
positive in all the points of U different from z, while H(z) = 0, which
proves that z is an isolated minimum of H. Then all the orbits of X

in a neighbourhood of z (maybe smaller than the neighborhood U) are
closed, proving that z is a centre of X.

H(.?Z,y) =

By Theorem 5, in order to prove Theorem 1 it is enough to prove
that (0,0) is a global centre of the vector field X .

From hypothesis, X € G,,,. Without loss of generality, we can
assume that deg(H,) > deg(H,). Thus from Theorem 6, the index
of each infinite singular point of X is greater than or equal to zero.
Moreover, as we saw above, the index of each finite singular of X" is
equal to 1. Since the points (0,0,1) and (0,0, —1) of the Poincaré
Sphere are finite singular points of p(X) (corresponding to the singular
point (0,0) of X'), each of them with index 1, it follows from Theorem 7
that p(&X’) does not have others finite singular points and all the infinite
singular points have index 0.

We claim that p(X') either does not have infinite singular points or
iof it does, they are formed by two degenerated hyperbolic sectors. In-
deed, from statement (b) of Theorem 6, if an infinite singular point
of p(X) has a non-degenerated hyperbolic sector, then X ¢ G,, ., a
contradiction.

Now we shall prove that the boundary of the period annulus P of
the centre of p(X) located at (0,0, 1) is the equator S! of H. This
of course will show that the centre (0,0) of X is global, finishing our
proof. Since there are no finite singular points in H*, except the centre
in (0,0,1), and there are either no infinite singular points, or all the
infinite singular points are formed by two degenerate hyperbolic sectors,
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it follows that the boundary of the period annulus P is either a finite
periodic orbit « or it is S

If it is S!, we are done. If not, we consider the Poincaré map =
defined in a transversal section S through ~. Since the vector field
p(X) is analytic, it follows that 7 is also analytic. Hence as 7 is the
identity map in S NP, it must be the identity in S N (HT \ P). But
then the orbits in S N (H* \ P) near P are also periodic, and v is not
the boundary of P, a contradiction.

We finish this section with a characterization for the validity of the
real Jacobian conjecture in the plane.

Corollary 9. Let F' = (f,g) : R? — R? be a polynomial map such that
det DF' is nowhere zero and F(0,0) = (0,0). Then F is injective if
and only if the vector field X = (—ff, — 99y, f f= + 99.) has no infinite
singular points or each of them is formed by two degenerated hyperbolic
sectors.

Proof. If there exists an infinite singular point of X having a non-
degenerated hyperbolic sector, then it is clear that the centre (0,0)
of X is not global. Hence from Theorem 5, it follows that F' is not
injective. On the other hand, if there are no infinite singular points or
each of them is formed by two degenerated hyperbolic sectors, then it
follows from the proof of Theorem 1 that F' is injective. U

4. ON THE EQUIVALENCE BETWEEN THEOREM 1 AND THE MAIN
RESULT OF [7]

We saw in the introduction section that Theorem 1 does not imply

the mentioned result of [7]. Up to now we do not know if [7] implies
Theorem 1. More precisely, we have the following.
Open question: Let F = (f,g) : R? — R? be a polynomial map such
that det DF is nowhere zero in R? and F(0,0) = (0,0). Set wy, = (1,1).
If the system of equations (f f,+ ggs), (2.4) = (o + 9,),. (5:9) =
0 has only the trivial solution, then is there a weight w = (wy,w,) such
that the system of equations f,(x,y) = gu(x,y) = 0 has only the trivial
solution?

If this question has positive answer, then [7] implies Theorem 1.

We begin with the following result.

Lemma 10. Let f : R? — R be a polynomial map of degree m such that
Vf(x,y) # (0,0) for all (z,y) € R*%. Then the equation f,(z,y) =0

has nontrivial real solutions.
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Proof. We consider the vector field X = (—f,, f;). From hypoth-
esis, X has no finite singular points. Thus by the Poincaré-Hopf
Theorem (Theorem 7), X must have infinite singular points. Since
a polynomial vector field (P,Q) of degree k& = max{deg P, degQ}
has infinite singular points if and only if there are nontrivial solu-
tions of —yPy(z,y) + zQr(x,y) = 0, it follows that mf,(z,y) =
—y(=fmy(%,9)) + 2 frm, (2, y) annihilates for some (z,y) # (0,0). O

The following result shows that the previous open question has af-
firmative answer if we suppose that the Jacobian determinant of F' is
a non-zero constant.

Proposition 11. Let F = (f,g9) : R* — R? be a polynomial map
such that det DF' is a constant different from zero and F(0,0) = (0,0).
For wy, = (1,1), if the only solution of the system of equations (f f. +
992)w, (€, y) = (ffy + 99y)w, (x,y) =0 is x = y = 0, then the same is
true for the system fu, (x,y) = Gu,(x,y) = 0.

Proof. Without loss of generality, we can assume that m = deg f >
deg g = n.

We suppose on the contrary that f,, (¢,y) = gu, (x,y) = 0 has non-
trivial solutions. We claim that fu, = 0 or fm, = 0. Indeed, if both
these polynomial are not zero, then

(ffa: + ggx)wh = fmfmx + ImYmz» (.ffy + ggy)wh = fmfmy + gmgmy-

With our assumptions we cannot have, for instance, f,, fi, + 9mGm. =
0, otherwise (f2 + g2). = 0, and thus, since we are dealing with
polynomials, f,,, = gm, = 0. If n = m, then since we are assum-
ing that the system of equations f,,(z,y) = gm(x,y) = 0 has non-
trivial solutions, it follows that the system (f..fms + 9mGm.) (T, y) =
(fmSmy + Gmmy) (x,y) = 0 also has nontrivial solutions, a contra-
diction with the hypothesis. On the other hand, if n < m, then
(ffe+ 992)w, and (ff, + 99,)w, have the factor f,, in common. Since
from hypothesis, f is a submersion, it follows that f,, has real factors as
divisors from Lemma 10. Then we reach to a contradiction, concluding
the proof of the claim.

By changing = by y and dividing F' by a constant, if necessary, we
can assume that f,, = ™. If n = m, the same arguments show that
9mz = 0 01 g, = 0. Since we are supposing that the system f,,,(z,y) =
gm(z,y) = 0 has nontrivial solutions, it follows that g,, = bez™, for
some by,g # 0.

Thus we suppose from now on that f,, = x

(bmo # 0 or not).

™ and g, = bpor™
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This means that (ff; + 99:)w, = m(1+ b2,,)z*" . Therefore, from
the hypothesis, we have that = does not divide (ff, + 9gy)w,. We
observe that up to now we have not yet used the hypothesis on the
Jacobian determinant.

Now since the Jacobian deteminant of F' is constant, it follows that
all the non constant homogeneous terms of the polynomial det DF'(z, y)
are zero.

The higher possible homogeneous terms of f f, 4+ gg, and det DF" are
the following, respectively,

" ((fm—l)y + bmogm—ly) ) mxm—l (gm—ly - bm()fm—ly) .

Thus fin-1, = gm-1, = 0. After that, the higher possible homogeneous
terms of ff, 4+ gg, and det DF' are the following

"™ ((fm—2)y + bmogm—2y) ) ma"™ ! (gm—2y - bmofm—zy) )

respectively. Thus f,,—2, = gm-2, = 0. Continuing in this way, it

is clear that we reach f,, = gm, = fm-1, = Gn-1, = -~ = f1, =
g1, = 0, and then f, = g, = 0, which gives that det DF' = 0, a
contradiction. O

To show that the above open question has a negative answer, we need
examples where for any weight w = (wy,ws), fu(z,y) = gw(z,y) =0
always have a nontrivial solution, and such that with w, = (1,1),
(ffa + ggm)wh(:c,y) = (ffy + 99y)w, (x,y) = 0 has only the solution
x=y=0.

By making calculations with Mathematica, we have shown that there
are no such examples if max{deg f,degg} < 17.

Bellow we present a step-by-step idea to construct such an example.

(1) We assume m = deg f > degg = n.

(2) By Proposition 11, we have to assume that det D(f, g)(z,y) is
not constant, say det D(f, g)(z,y) > 0.

(3) By the first part of the proof of Proposition 11, we can also
assume that f,, = 2™ and ¢,,, = by, 0™ (b # 0 or not).

(4) Thus the homogeneous term of higher degree of ff, + gg. is

m(1+ bfmo)me’l,

and hence we have to look for f and ¢ such that the homo-
geneous term of higher degree of ff, 4+ gg, does not have the
factor x.

(5) Analyzing det DF(z,y), we observe its homogeneous term of
higher possible degree is m(gm_ly - bm,ofm_ly)xm_l. This has
degree 2m —3, an odd number. Thus in order to have det DF' >
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0, we must have Gm—1, — bm7[)fm_1y = 0. On the other hand,
the homogeneous term of higher possible degree of ff, + gg,
is (fm-1, + bmogm-1,)2™. From (4) we must have f,, 1, +
bmogm-1, = 0, and consequently, f,—1, = gm-1, = 0. This
means we have to assume fp,_1 = am_102™ " and g1 =
bm_ljol‘mil.

(6) Therefore, it follows that the higher homogeneous term that
ffy + 99, can have is (fin—2, + bmogm-2,)2™. Thus again from
(4), we can always suppose fm_2, = —bm0gm—2,-

(7) Now the higher homogeneous term of det DF(z,y) is m(1 +
b7, 0)9m—2,2™". Hence in order to have det DF > 0, we have
to suppose gm—2, 2" > 0.

(8) Using similar arguments used in steps (3) to (7), we see that
if Im-2, = 0, then we will have fm,gy = gm-3, = 0 and
fmf4y = —bm,ggm,ély. Moreover, in this case, we have to sup-
pose G,z > 0.

This gives the idea of an induction procedure to prove that
there is not a such example: the idea would be to prove that
Gm—2, = 0. Then fm_gy =0 and fm_gy = gm-3, = 0. Moreover,
fmf4y = —bmyogm%y. Then we would prove that Im—1y = 0,
and hence g6, = 0, and so on.

(9) Consider the weight w = (m — 2,m). We have f,(x,y) =
" — bm,ObO,m—Qym_2 and Jw (SL’, y) = bm,Oa:m + bO,m—Qym_Q' Since
Juw(x,y) = gw(x,y) = 0 has nontrivial solutions it follows that
bO,m—Q = 0.
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