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Abstract. Let F = (f, g) : R2 → R2 be a polynomial map
such that detDF (x) is different from zero for all x ∈ R2 and
F (0, 0) = (0, 0). We prove that for the injectivity of F it is suffi-
cient to assume that the higher homogeneous terms of the polyno-
mials ffx + ggx and ffy + ggy do not have real linear factors in
common.

1. Introduction and statement of the main result

Let F = (f, g) : R2 → R2 be a smooth map such that det DF
is nowhere zero. It is clear that F is a local diffeomorphism, but it
is not always injective. There are very general well known additional
conditions to ensure that F is a global diffeomorfphism, see for instance
[8, 11, 13].

If F is a polynomial map, the statement that F is injective is known
as the real Jacobian conjecture. This conjecture is false, since Pinchuk
constructed, in [12], a non injective polynomial map with nonvanishing
Jacobian determinant. Thus it is natural to ask for additional con-
ditions in order that this conjecture holds. In [3], for instance, it is
showed that it is enough to assume that the degree of f is less than
or equal to 3. This result was recently generalized in [2], where it was
proved that for the injectivity of F it is enough to assume that the
degree of f is less than or equal to 4. If we assume that det DF (x) =
constant ̸= 0, then to know if F is injective is an open problem largely
known as the Jacobian conjecture (see [1] and [10] for details and for
surveys on the Jacobian conjecture and related problems).

In the following result we provide a sufficient condition for the va-
lidity of the real Jacobian conjecture.

Theorem 1. Let F = (f, g) : R2 → R2 be a polynomial map such that
det DF is nowhere zero and F (0, 0) = (0, 0). If the higher homogeneous
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terms of the polynomials ffx+ggx and ffy +ggy do not have real linear
factors in common, then F is injective.

In the particular case deg f = deg g, we prove in Lemma 8 bellow
that if the homogeneous terms of higher degree of f and g do not have
real linear factors in common, then the homogeneous terms of higher
degree of ffx +ggx and ffy +ggy also do not have real linear factors in
common. Thus our present result is a generalization of the main result
of [4], where besides the assumption deg f = deg g it was assumed
that the homogeneous terms of higher degree of f and g do not have
real linear factors in common (see also [5], for a similar result in Rn).
Moreover, the following example shows that Theorem 1 is stronger than
the main result of [4].

Example 2. Let F = (f, g), with f(x, y) = x − y + x3 and g(x, y) =
y + x3. Here det DF (x, y) = 1 + 6x2. The higher homogeneous terms
of f and g are both x3 (which has x as a common factor). Moreover
the higher homogeneous terms of

ffx + ggx = x − y + 4x3 + 6x5, ffy + ggy = −x + 2y

are 6x5 and −x + 2y respectively, which do not have real linear factors
in common.

An example satisfying the assumptions of Theorem 1 when deg(f) >
deg(g) is the following.

Example 3. Let F = (f, g), with f(x, y) = x(3 + x2)/3 and g(x, y) =
x + y. Here det DF (x, y) = 1 + x2 and the higher homogeneous terms
of the polynomials

ffx + ggx = 2x + y +
4

3
x3 +

1

3
x5, ffy + ggy = x + y.

are x5/3 and x + y, respectively, which do not have real linear factors
in common.

We now recall a result of [7]. Firstly we introduce the notion of
quasihomogeneity. Let w1, . . . , wn and r be positive integers, and set
w = (w1, . . . , wn). We say that a polynomial map h : Rn → R is quasi-
homogeneous of quasidegree r with weight w if h (λw1x1, . . . , λ

wnxn) =
λrh(x1, . . . , xn) for all λ > 0 in R and for all (x1, . . . , xn) ∈ Rn. Given
a polynomial map h : Rn → R, we denote by hw its quasihomoge-
neous term of higher quasidegree. Moreover, for a polynomial map
F = (F 1, . . . , F n) : Rn → Rn, we denote Fw = (F 1

w, . . . , F n
w). The

result is the following: Let F : Rn → Rn be a a polynomial map such
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that det DF is nowhere zero. If there is a weight w such that the only
real solution of Fw(x) = 0 is x = 0, then F is injective.

The following example shows that our Theorem 1 does not generalize
this result.

Example 4. Let F = (f, g), with f(x, y) = x3+y3+x and g(x, y) = y.
Here det DF (x, y) = 3x2 + 1, and with weight w = (1, 1), we have
fw(x, y) = x3 + y3 and gw(x, y) = y. Thus fw(x, y) = gw(x, y) = 0 has
only the solution x = y = 0. On the other hand,

ffx + ggx = (x3 + y3 + x)(3x2 + 1) = 3x2(x3 + y3) + 4x3 + y3 + x,

ffy + ggy = (x3 + y3 + x)(3y2) + y = 3y2(x3 + y3) + 3xy3 + y,

whose higher homogeneous parts has the factor x3 + y3 in common.
In fact in this example, for all weight w = (w1, w2), the parts of

higher quasidegrees of ffx + ggx and ffy + ggy have common real
factors. Indeed, independently of w, these higher parts are contained in
3x5+3x2y3 and 3x3y2 +3y5+3xy3, respectively. Therefore, if w1 = w2,
then these parts have also the factor x3 + y3 in common. If w1 > w2,
then it is clear these parts have x in common. Finally, if w1 < w2,
then they have in common the factor y.

On the other hand, an open problem is to know if Theorem 1 can
be attained from the mentioned result of [7]. We discuss the relation
between both results in section 4.

We anyway stress that our approach is completely different from
theirs. Indeed, our proofs rely only on the qualitative theory of ordinary
differential equations, following ideas started by Sabatini in [14], while
the proofs in [7] are based in the structure of polynomial maps.

In section 2 we summarize some results that we shall use in the proof
of Theorem 1 given in section 3.

2. Preliminary results

A singular point p of a vector field defined in R2 is a centre if it has
a neighborhood filled of periodic orbits with the unique exception of p.
The period annulus of the centre p is the maximal neighborhood P of
p such that all the orbits contained in P are periodic except of course
p. A centre is global if its period annulus is the whole R2.

The next result due to Sabatini, see Theorem 2.3 of [14], will play a
main role in the proof of Theorem 1.

Theorem 5. Let F = (f, g) be a polynomial map with nowhere zero
Jacobian determinant such that F (0, 0) = (0, 0). Then the following
statements are equivalent.
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(a) The origin is a global centre for the polynomial vector field X =
(−ffy − ggy, ffx + ggx).

(b) F is a global diffeomorphism of the plane onto itself.

Let X be a planar polynomial vector field of degree n and S2 = {y =
(y1, y2, y3) ∈ R3 : y2

1 +y2
2 +y2

3 = 1} (the Poincaré sphere). The Poincaré
compactification of X , denoted by p(X ), is an induced vector field on
S2 defined as follows. For more details see Chapter 5 of [9].

Denote by TyS2 the tangent space to S2 at the point y. Assume
that X is defined in the plane T(0,0,1)S2 ≡ R2. Consider the central
projection f : T(0,0,1)S2 → S2. This map defines two copies of X , one
in the open northern hemisphere H+ and other in the open southern
hemisphere H−. Denote by X ′ the vector field Df ◦ X defined on S2

except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified
to the infinity of R2. In order to extend X ′ to a vector field on S2

(including S1) it is necessary that X satisfies suitable conditions. In
the case that X is a planar polynomial vector field of degree n then p(X )
is the only analytic extension of yn−1

3 X ′ to S2. On S2 \ S1 = H+ ∪ H−

there are two symmetric copies of X , one in H+ and other in H−, and
knowing the behaviour of p(X ) around S1, we know the behaviour of
X at infinity. The Poincaré compactification has the property that S1

is invariant under the flow of p(X ).

The singular points of X are called the finite singular points of X
or of p(X ), while the singular points of p(X ) contained in S1, i.e. at
infinity, are called the infinite singular points of X or of p(X ). It is
known that the infinity singular points appear in pairs diametrically
opposed.

Given a polynomial p : R2 → R , we denote by pk the homogeneous
term of degree k of p.

Let q be an infinite singular point and let h be a hyperbolic sector
of q. We say that h is degenerated if its two separatrices are contained
in the equator of S2 (i.e. in S1), otherwise h is called non–degenerated.

We denote by Gn,m the set of all polynomial vector fields X = (P,Q)
with deg(P ) = n and deg(Q) = m such that Pn and Qm have no real
linear factors in common.

The next result is due to Cima, Gasull and Mañosas, see Theorem
2.2 of [6].

Theorem 6. Let q be an infinite singular point of the polynomial
Hamiltonian vector field X = (−Hy, Hx) such that deg(Hy) = n and
deg(Hx) = m. Then the following statements hold.
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(a) If n = m and X ∈ Gn,n, then q is a node and hence its topological
index is one.

(b) If q has some non-degenerated hyperbolic sector h, then the two
separatrices of h are tangent to the same direction and in one
neighbourhood of q this direction is not between these separatri-
ces. Furthermore, X /∈ Gn,m

(c) If n > m and X ∈ Gn,m, then
(c.1) If n is even, then q is a node and hence its topological index

is one.
(c.2) If n is odd and m is even, then q has one degenerated hy-

perbolic sector and one elliptic sector and its topological
index is one.

(c.3) If n and m are odd, then either q has two degenerated hy-
perbolic sectors and topological index zero, or q has two
elliptic sectors and topological index two.

The next result is the Poincaré–Hopf Theorem for the Poincaré com-
pactification of a polynomial vector field. For a proof see Theorem 6.30
of [9].

Theorem 7. Let X be a polynomial vector field. If p(X ) defined on
the Poincaré sphere S2 has finitely many singular points, then the sum
of their topological indices is two.

We end this section with the lemma mentioned in the introduction
section.

Lemma 8. Let F = (f, g) : R2 → R2 be a polynomial map such that
det DF is never zero. Suppose deg(f) = deg(g) = k. If fk and gk do
not have real linear factors in common, then the higher homogeneous
terms of ffx + ggx and ffy + ggy also do not have real linear factors
in common.

Proof. We first observe that (f 2
k +g2

k)x ̸= 0 and (f 2
k +g2

k)y ̸= 0, because
if (f 2

k +g2
k)x = 0, for instance, then (as we are dealing with polynomials)

fk = a0ky
k and gk = b0ky

k, a contradiction.
Thus the homogeneous parts of higher degree of ffx +ggx and ffy +

ggy are (f 2
k + g2

k)x/2 and (f 2
k + g2

k)y/2, respectively. If there is a real
linear factor ax+ by dividing them, then ax+ by will be also a factor of
x(f 2

k +g2
k)x/2+y(f 2

k +g2
k)y/2 = k(f 2

k +g2
k). Hence ax+ by is a common

factor of fk and gk, a contradiction. �

The first example of the introduction section shows that the converse
of Lemma 8 is false.
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3. Proof of Theorem 1

Assume that we are under the assumptions of Theorem 1.
We consider the function H : R2 → R defined by

H(x, y) =
f(x, y)2 + g(x, y)2

2

and its associated Hamiltonian vector field X = (P, Q), i.e

P = −Hy = −ffy − ggy, Q = Hx = ffx + ggx.

We claim that each finite singular point of X is a centre, and thus has
index 1. Indeed, z ∈ R2 is a singular point of X if and only if(

fx(z) gx(z)
fy(z) gy(z)

)(
f(z)
g(z)

)
=

(
0
0

)
,

which gives that f(z) = g(z) = 0, since det DF (z) ̸= 0. Let U be
a neighbourhood of z in which F is injective. We have that H is
positive in all the points of U different from z, while H(z) = 0, which
proves that z is an isolated minimum of H. Then all the orbits of X
in a neighbourhood of z (maybe smaller than the neighborhood U) are
closed, proving that z is a centre of X .

By Theorem 5, in order to prove Theorem 1 it is enough to prove
that (0, 0) is a global centre of the vector field X .

From hypothesis, X ∈ Gn,m. Without loss of generality, we can
assume that deg(Hy) ≥ deg(Hx). Thus from Theorem 6, the index
of each infinite singular point of X is greater than or equal to zero.
Moreover, as we saw above, the index of each finite singular of X is
equal to 1. Since the points (0, 0, 1) and (0, 0,−1) of the Poincaré
Sphere are finite singular points of p(X ) (corresponding to the singular
point (0, 0) of X ), each of them with index 1, it follows from Theorem 7
that p(X ) does not have others finite singular points and all the infinite
singular points have index 0.

We claim that p(X ) either does not have infinite singular points or
if it does, they are formed by two degenerated hyperbolic sectors. In-
deed, from statement (b) of Theorem 6, if an infinite singular point
of p(X ) has a non-degenerated hyperbolic sector, then X /∈ Gn,m, a
contradiction.

Now we shall prove that the boundary of the period annulus P of
the centre of p(X ) located at (0, 0, 1) is the equator S1 of H+. This
of course will show that the centre (0, 0) of X is global, finishing our
proof. Since there are no finite singular points in H+, except the centre
in (0, 0, 1), and there are either no infinite singular points, or all the
infinite singular points are formed by two degenerate hyperbolic sectors,
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it follows that the boundary of the period annulus P is either a finite
periodic orbit γ or it is S1.

If it is S1, we are done. If not, we consider the Poincaré map π
defined in a transversal section S through γ. Since the vector field
p(X ) is analytic, it follows that π is also analytic. Hence as π is the
identity map in S ∩ P , it must be the identity in S ∩ (H+ \ P). But
then the orbits in S ∩ (H+ \ P) near P are also periodic, and γ is not
the boundary of P , a contradiction.

We finish this section with a characterization for the validity of the
real Jacobian conjecture in the plane.

Corollary 9. Let F = (f, g) : R2 → R2 be a polynomial map such that
det DF is nowhere zero and F (0, 0) = (0, 0). Then F is injective if
and only if the vector field X = (−ffy − ggy, ffx + ggx) has no infinite
singular points or each of them is formed by two degenerated hyperbolic
sectors.

Proof. If there exists an infinite singular point of X having a non-
degenerated hyperbolic sector, then it is clear that the centre (0, 0)
of X is not global. Hence from Theorem 5, it follows that F is not
injective. On the other hand, if there are no infinite singular points or
each of them is formed by two degenerated hyperbolic sectors, then it
follows from the proof of Theorem 1 that F is injective. �

4. On the equivalence between Theorem 1 and the main
result of [7]

We saw in the introduction section that Theorem 1 does not imply
the mentioned result of [7]. Up to now we do not know if [7] implies
Theorem 1. More precisely, we have the following.

Open question: Let F = (f, g) : R2 → R2 be a polynomial map such
that det DF is nowhere zero in R2 and F (0, 0) = (0, 0). Set wh = (1, 1).
If the system of equations (ffx + ggx)wh

(x, y) = (ffy + ggy)wh
(x, y) =

0 has only the trivial solution, then is there a weight w = (w1, w2) such
that the system of equations fw(x, y) = gw(x, y) = 0 has only the trivial
solution?

If this question has positive answer, then [7] implies Theorem 1.

We begin with the following result.

Lemma 10. Let f : R2 → R be a polynomial map of degree m such that
∇f(x, y) ̸= (0, 0) for all (x, y) ∈ R2. Then the equation fm(x, y) = 0
has nontrivial real solutions.
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Proof. We consider the vector field X = (−fy, fx). From hypoth-
esis, X has no finite singular points. Thus by the Poincaré-Hopf
Theorem (Theorem 7), X must have infinite singular points. Since
a polynomial vector field (P, Q) of degree k = max{deg P, deg Q}
has infinite singular points if and only if there are nontrivial solu-
tions of −yPk(x, y) + xQk(x, y) = 0, it follows that mfm(x, y) =
−y(−fmy(x, y)) + xfmx(x, y) annihilates for some (x, y) ̸= (0, 0). �

The following result shows that the previous open question has af-
firmative answer if we suppose that the Jacobian determinant of F is
a non-zero constant.

Proposition 11. Let F = (f, g) : R2 → R2 be a polynomial map
such that det DF is a constant different from zero and F (0, 0) = (0, 0).
For wh = (1, 1), if the only solution of the system of equations (ffx +
ggx)wh

(x, y) = (ffy + ggy)wh
(x, y) = 0 is x = y = 0, then the same is

true for the system fwh
(x, y) = gwh

(x, y) = 0.

Proof. Without loss of generality, we can assume that m = deg f ≥
deg g = n.

We suppose on the contrary that fwh
(x, y) = gwh

(x, y) = 0 has non-
trivial solutions. We claim that fmx = 0 or fmy = 0. Indeed, if both
these polynomial are not zero, then

(ffx + ggx)wh
= fmfmx + gmgmx, (ffy + ggy)wh

= fmfmy + gmgmy.

With our assumptions we cannot have, for instance, fmfmx + gmgmx =
0, otherwise (f 2

m + g2
m)x = 0, and thus, since we are dealing with

polynomials, fmx = gmx = 0. If n = m, then since we are assum-
ing that the system of equations fm(x, y) = gm(x, y) = 0 has non-
trivial solutions, it follows that the system (fmfmx + gmgmx) (x, y) =(
fmfmy + gmgmy

)
(x, y) = 0 also has nontrivial solutions, a contra-

diction with the hypothesis. On the other hand, if n < m, then
(ffx + ggx)wh

and (ffy + ggy)wh
have the factor fm in common. Since

from hypothesis, f is a submersion, it follows that fm has real factors as
divisors from Lemma 10. Then we reach to a contradiction, concluding
the proof of the claim.

By changing x by y and dividing F by a constant, if necessary, we
can assume that fm = xm. If n = m, the same arguments show that
gmx = 0 or gmy = 0. Since we are supposing that the system fm(x, y) =
gm(x, y) = 0 has nontrivial solutions, it follows that gm = bm0x

m, for
some bm0 ̸= 0.

Thus we suppose from now on that fm = xm and gm = bm0x
m

(bm0 ̸= 0 or not).
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This means that (ffx + ggx)wh
= m(1 + b2

m0)x
2m−1. Therefore, from

the hypothesis, we have that x does not divide (ffy + ggy)wh
. We

observe that up to now we have not yet used the hypothesis on the
Jacobian determinant.

Now since the Jacobian deteminant of F is constant, it follows that
all the non constant homogeneous terms of the polynomial det DF (x, y)
are zero.

The higher possible homogeneous terms of ffy +ggy and det DF are
the following, respectively,

xm
(
(fm−1)y + bm0gm−1y

)
, mxm−1

(
gm−1y − bm0fm−1y

)
.

Thus fm−1y = gm−1y = 0. After that, the higher possible homogeneous
terms of ffy + ggy and det DF are the following

xm
(
(fm−2)y + bm0gm−2y

)
, mxm−1

(
gm−2y − bm0fm−2y

)
,

respectively. Thus fm−2y = gm−2y = 0. Continuing in this way, it
is clear that we reach fmy = gmy = fm−1y = gm−1y = · · · = f1y =
g1y = 0, and then fy = gy = 0, which gives that det DF = 0, a
contradiction. �

To show that the above open question has a negative answer, we need
examples where for any weight w = (w1, w2), fw(x, y) = gw(x, y) = 0
always have a nontrivial solution, and such that with wh = (1, 1),
(ffx + ggx)wh

(x, y) = (ffy + ggy)wh
(x, y) = 0 has only the solution

x = y = 0.
By making calculations with Mathematica, we have shown that there

are no such examples if max{deg f, deg g} ≤ 17.
Bellow we present a step-by-step idea to construct such an example.

(1) We assume m = deg f ≥ deg g = n.
(2) By Proposition 11, we have to assume that det D(f, g)(x, y) is

not constant, say det D(f, g)(x, y) > 0.
(3) By the first part of the proof of Proposition 11, we can also

assume that fm = xm and gm = bm,0x
m (bm,0 ̸= 0 or not).

(4) Thus the homogeneous term of higher degree of ffx + ggx is

m(1 + b2
m,0)x

2m−1,

and hence we have to look for f and g such that the homo-
geneous term of higher degree of ffy + ggy does not have the
factor x.

(5) Analyzing det DF (x, y), we observe its homogeneous term of
higher possible degree is m(gm−1y − bm,0fm−1y)x

m−1. This has
degree 2m−3, an odd number. Thus in order to have det DF >
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0, we must have gm−1y − bm,0fm−1y = 0. On the other hand,
the homogeneous term of higher possible degree of ffy + ggy

is (fm−1y + bm,0gm−1y)x
m. From (4) we must have fm−1y +

bm,0gm−1y = 0, and consequently, fm−1y = gm−1y = 0. This

means we have to assume fm−1 = am−1,0x
m−1 and gm−1 =

bm−1,0x
m−1.

(6) Therefore, it follows that the higher homogeneous term that
ffy + ggy can have is (fm−2y + bm,0gm−2y)x

m. Thus again from
(4), we can always suppose fm−2y = −bm,0gm−2y.

(7) Now the higher homogeneous term of det DF (x, y) is m(1 +
b2
m,0)gm−2yx

m−1. Hence in order to have det DF > 0, we have

to suppose gm−2yx
m−1 ≥ 0.

(8) Using similar arguments used in steps (3) to (7), we see that
if gm−2y = 0, then we will have fm−3y = gm−3y = 0 and
fm−4y = −bm,0gm−4y. Moreover, in this case, we have to sup-

pose gm−4yx
m−1 ≥ 0.

This gives the idea of an induction procedure to prove that
there is not a such example: the idea would be to prove that
gm−2y = 0. Then fm−2y = 0 and fm−3y = gm−3y = 0. Moreover,
fm−4y = −bm,0gm−4y. Then we would prove that gm−4y = 0,
and hence gm−6y = 0, and so on.

(9) Consider the weight w = (m − 2,m). We have fw(x, y) =
xm − bm,0b0,m−2y

m−2 and gw(x, y) = bm,0x
m + b0,m−2y

m−2. Since
fw(x, y) = gw(x, y) = 0 has nontrivial solutions it follows that
b0,m−2 = 0.
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