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ISOCHRONICITY FOR TRIVIAL QUINTIC AND SEPTIC
PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS

FRANCISCO BRAUN, JAUME LLIBRE AND ANA C. MEREU

ABSTRACT. In this paper we completely characterize trivial isochronous
centers of degrees 5 and 7. Precisely, we provide formulas, up to linear
change of coordinates, for the Hamiltonian H of the isochronous centers
such that H = (f7 4+ f3) /2 has degrees 6 and 8, and f = (f1, f2) : R> —
R? is a polynomial map with det Df = 1 and £(0,0) = (0,0).

1. INTRODUCTION

Let P(z,y) and Q(x,y) be real polynomials in the variables z and y.
We say that a polynomial vector field X = (P,Q) has degree n when
max{deg P,deg Q} = n. Given a polynomial Hamiltonian H : R?> — R
of degree n + 1, the associated polynomial Hamiltonian system of degree n
is

(1) T = _Hy(xay)a y:Hx(xvy)
System (1) has a center at (0,0) if there is a neighbourhood of the origin
filled of periodic orbits except the origin. The maximum connected set
filled of periodic orbits having in its inner boundary the origin is called the
period annulus of the center localized at the origin. If the period annulus is
R2\{(0,0)}, we call the center global. We say that a polynomial Hamiltonian
system has an isochronous center at the origin if (0,0) is a center of (1) and
all the orbits in the period annulus of the center have the same period.
The following characterization of the polynomial Hamiltonian systems
possessing an isochronous center at the origin was given in [6]. The polyno-
mial Hamiltonian system (1) has an isochronous center of period 27 at the

origin if and only if
fi(@,y)* + fo(z,y)?
8 H(a,y) = DOV L@

for all (x, %) in a neighborhood Ny of the origin, where f = (f1, f2) : No — R?
is an analytic map with Jacobian determinant det Df constant and equal
to 1, and f(0,0) = (0,0). We observe that this characterization still holds
for analytic Hamiltonians. When f can be taken polynomial, we say that
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the polynomial Hamiltonian isochronous center is trivial. In this case, it is
clear that f will be defined in all R%. From [8], when the center is trivial,
it is a global center if and only if f is globally injective. Thus the problem
of knowing whether a trivial polynomial Hamiltonian isochronous center is
global or not is equivalent to the Jacobian conjecture in R?, which stands
that a polynomial map f : R? — R? with constant Jacobian determinant
is globally injective. We mention here that if the degrees of f; and fo are
less than or equal to 101 then f is globally injective (see [7] and, for other
results on the Jacobian conjecture, see [3]). Thus all the trivial polynomial
Hamiltonian isochronous centers of degree less than or equal to 201 are global
ones.

In [2] it was proved that all isochronous centers of cubic polynomial Hamil-
tonian systems are trivial (and hence global) and after a linear change of
coordinates the Hamiltonian can be written as

H(z,y) = (k12)? + (kay + ks + ksa?)?,

where k1, ko, k3, ks € R and ki1ky # 0. We also mention that there are no
polynomial Hamiltonian isochronous centers of degree 4, see [4]. Moreover,
it was proved in [5] that there are no polynomial Hamiltonian isochronous
centers of even degree for which the analytical function f of the Hamiltonian
(2) is defined in the whole plane. In particular, there are no trivial polyno-
mial Hamiltonian isochronous centers of even degree. On the other hand,
there are examples of non-trivial polynomial Hamiltonian isochronous cen-
ters of degree 6k + 1 for all £ > 1, see section 3. We point out that in these
examples the map f is defined in the whole plane. The following are thus
natural questions.
Open question 1: Are there non-trivial quintic polynomial Hamiltonian
isochronous centers?
Open question 2: Are there non-trivial polynomial Hamiltonian isochro-
nous centers with Hamiltonian (2) such that f is not analytical in the whole
plane R??

We observe that if the open question 2 has a negative answer, then by [5]
there are no polynomial Hamiltonian isochronous centers of even degree.

Our main result is the characterization of the quintic and the septic trivial
polynomial Hamiltonian isochronous centers, see theorems 4 and 5 respec-
tively, where we provide formulas for the Hamiltonian of these systems. We
also give an alternative formula for the Hamiltonian of the cubic polyno-
mial isochronous centers (with a trivial proof), using that these centers are
trivial, see Proposition 3.

2. TRIVIAL POLYNOMIAL HAMILTONIAN ISOCHRONOUS CENTERS
We shall use the following technical result.

Lemma 1. Let p,q: R? = R be homogeneous polynomials of degree m and
n respectively such that det D(p,q) = 0. Let also d = ged(m,n), we define
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m' = m/d and n' = n/d. Then there exists a homogeneous polynomial

: R? —> R of degree d and constants cp,cq € R such that p = cpr™ and
q= Cq

Proof. 1t is enough to prove that the rational function f = p™/¢™ is constant.
In order to do that, it is enough to show that f, = f, = 0. We have

pnfl m—1 pnfl m—1
fo = = gm— (nape = mpGe) = 5y (Pey ~ Gapy) = 0,

where in the second equality above we used the Euler’s Theorem for homo-
geneous maps. The proof that f, = 0 is analogous. U

We address the reader to [1] for a much more general version of Lemma
1.

In the proofs of the results of this section, we will have to solve partial
differential equations of the form

Pz + Bpy = h,

where p, h : R> = R are homogeneous polynomials of degrees k and k — 1,
respectively, and 3 € R. By defining ¢ : R? — R by

(3) p(x,y) = q(x,y — fz) = q(x1,31),

the original equation turns to

1 — h(xlayl + B$1)a

and hence there is ¢ € R such that q(z1,y1) fo (s,y1+ Bs)ds+ cy’f, and
p is given by (3). For further references, we enunciate this procedure in the
following result.

Lemma 2. Let p,h : R? — R be homogeneous polynomials of degrees k and
k —1, respectively, satisfying p, + Bpy = h, with § € R. Then there is c € R

such that p(x,y) = q(z,y — px) where q(x1,y1) fo (5,91 + Bs)ds + cyt.

We begin with Proposition 3, where we give an alternative characteriza-
tion of the cubic polynomial Hamiltonian isochronous centers using the fact
that they are trivial (recall the mentioned result of [2]). Right after the
proof, we relate the formula of Proposition 3 and the one presented in [2].

Proposition 3. Assume that the polynomial Hamiltonian system (1) has
degree 3 and has an isochronous center of period 2w at the origin. Then up
to a linear change of variables, the Hamiltonian can be written as
P?+ (y+A\P)?

2 )
with P = x + coy?, co, A\ € R and ¢y # 0.

H =
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Proof. Since the cubic polynomial Hamiltonian isochronous centers are triv-
ial, there exists f = (f1, f2) : R> — R? a polynomial map of degree 2 with
det Df =1 and f(0,0) = (0,0) such that H = (f% + f2) /2. After a linear
change of variables, it is clear that we can write

fi=xz+p2, fo=y+a,

with ps and g2 homogeneous polynomials of degree 2. Without loss of gen-
erality we can assume that py # 0 (otherwise we change the roles of f; and
f2 and of z and y). The hypothesis det Df =1 also gives that

(4) P2z + G2y =0,  P2,G2y — G2,p2,, = 0.

The second equation of (4) gives from Lemma 1 that there exists A # 0 such
that
q2 = Ap2.
Substituting this in the first equation of (4) we obtain pa, + Aps, = 0, which
solved for a homogeneous polynomial of degree 2 (by Lemma 2) determines
¢ € R such that
D2 = CQ(y - )\x)Qa

with co # 0. We then apply the change of variables (z,y) — (z,y — Ax),
finishing the proof. U

We observe that changing z to y and taking v/2k; = 1/v1 + X2, V2ky =
V1422, v2k3 = A\/V1 + A2 and v2ks = c2V/1 + A2, the formula of Proposi-
tion 3 satisfies the mentioned formula for the cubic polynomial Hamiltonian
isochronous centers of [2]. On the other hand, the change of coordinates
(z,y) — V2 (kay + ksz, k12) transforms the mentioned formula of [2] in
H(z,y) = (z + c2y®)* + y?) /2, with ¢o = ka/(V2k1), which is the formula
of Proposition 3 with A = 0. We observe that in [2] it was not assumed that
the isochronous center has period exactly 2.

For trivial polynomial Hamiltonian isochronous centers of degrees 5 and
7 we have similar formulas to the Hamiltonians, see the following theorems
4 and 5.

Theorem 4. Assume that the polynomial Hamiltonian system (1) has degree
5 and has a trivial isochronous center of period 27 at the origin. Then up
to a linear change of variables, the Hamiltonian can be written as

P2+ (y+ AP)°
2 )
with P = x + coy® + c3y3, co,c3, A €R and c3 # 0.
Proof. We consider H = (fl2 + f22) /2, with f = (f1, f2) a polynomial map

of degree 3 satisfying £(0,0) = (0,0) and det D f(x,y) = 1 for all (z,y) € R2.
It is clear that after a linear change of variables we can write

H:

fi=xz+p2+p3, fo=y+aq+ags,
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where p; and ¢; are homogeneous polynomials of degree ¢, i = 1,2. Without
loss of generality we can suppose that ps # 0. The assumption det Df =1
gives

P2z + a2y =0,

(5) D3y + Q3y + p2xq2y - q2xp2y = O’
p3xQ2y - q2mp3y +p2mq3y - q3xp2y = 0’

p3xq3y - q31p3y = 0

The last equation gives by Lemma 1 that there exists A € R such that
(6) q3 = Aps.

Substituting this in the third equation in (5), we obtain

(7) P3e (@2 — Ap2), — (@2 — Ap2), 3, = 0.

Here we have two possibilities: either go # Aps or go = Apo.
In the first one, equation (7) gives by Lemma 1 that there exist a, b, ca, c3 €
R, with cacz(a® + b?) # 0 such that

(8) G2 = Ap2 + 2 (ax +by)®,  ps = c3(ax +by)” .
Using then the first equation of (8) and the first one of (5), we obtain
P2, + Ap2, = —2bez (ax + by) .
From Lemma 2, we obtain do € R such that
p2 = —bea ((a+ 0Nz + 2b(y — Ax)) x + do(y — Az)*.

Then we substitute pa, (8) and (6) in the second equation of (5) and, after
dividing by ax + by and equating the coefficients of x and y to 0, we obtain

the system
a A 3(a+bX\)cs (0
b -1 4(b302 + (a + b/\)dg)CQ o 0 ’

If a + b\ = 0, it follows that b = 0 (since ca # 0), and hence a = 0, a
contradiction. On the other hand if a 4+ bA # 0, it follows that c3 = 0, which
is again a contradiction.
If now g = Ape, it follows from (6) and from the first and the second
equations in (5) that
p2. + Ap2, =0,  p3, + Ags, = 0.
Solving these equations for homogeneous polynomials of degrees 2 and 3 (see
Lemma 2), respectively, we obtain ¢, c3 € R such that
pr=ca(y—Az)®, py=cs(y—Az)’,
with c3 # 0. So
fi=z+c(y— ) +e3(y—x)?,

o= (e ly =3 4oy )
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Applying the linear change of variables (x,y) — (z,y — Az), we end the
proof of the theorem. O

The following is a characterization of trivial polynomial Hamiltonian iso-
chronous centers of degree 7.

Theorem 5. Assume that the polynomial Hamiltonian system (1) has degree
7 and has a trivial isochronous center of period 27 at the origin. Then up
to a linear change of variables the Hamiltonian H has one of the following
two forms:

P? + (Z/+/\P1)2

H = 5 , P =x+ 02y2 + 03y3 + C4y4,
P24 (Q+ APy)?
H = 2 (Q2 2) , P, =x+ BlQ + BZng

where Q =y + T'x?, ca,¢3, ¢4, B1, B2, \, T € R and c4fBoT # 0.

Proof. Let fi and f2 be polynomials of degree 4 such that det D(fi, fo) =1
and f1(0,0) = f2(0,0) = 0. After a linear change of variables, it is clear we
can write

9) fi=x+p2+ps+ps, fo=y+a+g+as,

where p; and ¢; are homogeneous polynomials of degree ¢ for i = 2,3,4.
Moreover, since the homogeneous terms of positive degrees of the Jacobian
determinant of (fi, f2) are zero, we obtain the following equations:

10) P2z + 424 = 0,

(

(11) D3z T @3y + P2,92y — G202 = 0,
(12) Pag + Qay + P2,03y — 3202y + D302y — 42:P3y = 0,
(13) P2,94y — Q4gD2y + Pagq2y — Q25P4y + P35G3y — 43503y = 0,
(14) D324y — Q4gD3y + P15q3y — G304y = 0,
(15) PazGay — qazPay = 0.
Equation (15) and Lemma 1 give that

(16) qa = Apa.

Substituting this in equation (14) yields
Pag (a3 — Ap3), — (g3 — Ap3), pa, = 0.

We have two possibilities, either

(17) q3 = Ap3
or, from Lemma 1, there exist a, b, c3, c4 € R such that
(18) Py = ca(az +by)*, g3 = Aps + c3 (az + by)?

with (a2 + b%)czeq # 0.



ISOCHRONICITY FOR QUINTIC AND SEPTIC HAMILTONIAN SYSTEMS 7

Assuming (17), we obtain from (13) that
Pag (g2 — Ap2), — pay (g2 — Ap2), = 0.
We have then another two possibilities, either
(19) 42 = Ap2

or, from Lemma 1 there exist a, b, ¢, co, c4 € R such that
(20)  ps = c4 (az® + 2bzy + 03/2)2 . @ =Ap2+ o (az® + 2bzy + cy?)
with (a? + b% + ¢%)cacq # 0.

Assuming (19), it follows from (16) and (17) that equations (10), (11)
and (12) turn to

D2 + >‘p2y = 07 D3z + >‘p3y = 07 Dag + >‘p4y = 07
respectively. Solving these equations for homogeneous polynomials of de-
grees 2, 3 and 4, we obtain that
pr=ca(y—Ax)®,  ps=c3(y—Ax)’,  pa=caly—Ax)t.

By applying the linear change of coordinates (x,y) — (z,y — Az) in (9), we
obtain the first Hamiltonian of the theorem.
Now if we assume (17) and (20), equation (10) turns to

P2y + Ap2y + 2¢2(bx + cy) = 0.

Using Lemma 2, we obtain ds € R such that
(21) p2 = —ca(bx + cy + ey — A\v))x + da(y — Az)?.
Substituting this in (11), using (17) and (20), we obtain a partial differential
equation of the form p3, + Ap3, = h, with

h(z,y + Az) = 4(b* — ac)cia? + deg(beey + ady + bda ) + L)y + 4caLy?,
where
(22) L = c%ca +da(b+ ).
Then from Lemma 2, we obtain ds € R such that

4
p3 = gcg(b2 — ac)x® + 2ca(beeg + adg + bda ) + L) 22 (y — Ax)

+dcoLa(y — Ax)? + ds(y — Az)3.

We finally substitute (21) and (23), and also (16), (17) and (20) in equation
(12), obtaining an identically zero homogeneous polynomial of degree 3.
Recalling that (a? + b + c?)cacq # 0, we will divide the analysis in two
cases: either b = —c\ or b+ ¢\ # 0.

In the first possibility, the coefficient of y3 of the polynomial is 8cc3L.
Since L = c?cy, it follows that ¢ = 0 (and thus L = 0). Then the coefficient
of zy? turns to —6acyds, which gives that d3 = 0, and hence the coefficient

(23)
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of 2 gives that ¢4 = c3dy. In particular, dy # 0. With these information, it
follows from (21), (23) and (20) that

pe =da(y — Azx)?,  p3 =2acadex®(y — Ax), ps = a’cidaz?,

and ¢o, g3 and g4 are given by (20), (17) and (16), respectively. Then by
applying the change of coordinates (x,y) — (x,y— A\z) in (9), it follows that
in the new variables

fi = 2 + do(y* + 2acex’y + a*cax?),

fo=y+A (:L‘ + do(y? + 2acox®y + a203m4)) + acox®.
By defining B2 = da, I' = acy and Q = y+'z?, we clearly obtain the second
Hamiltonian of the theorem with 87 = 0.
Now we analyze the second possibility b 4+ ¢\ # 0. The coefficients of 33
and zy? of the polynomial defined by equation (12) give the following linear
system (recall that L is given by (22))

s\ —8cc3L
(24) 4 < ds ) N ( 8¢5 ((b* — ac)da + 3cAL) ) ’
where
A de (b4 ) —6¢2 (b+ cA)
T\ 4(3b(b+ cA) +ac—b*) —6ca (a — bA — 2cA?)

The determinant of A is 48¢; (b + ¢A\)® # 0. Thus ¢4 and ds are given by
inverting A in (24). We substitute them in the coefficients of 3 and z%y
and obtain (using (22)), respectively, that

4c3(b* — ac)?(26% 4 ac + 3bcA) 0 12¢c3(b? — ac)? 0
(b+cN)3 - (b+ech)2 7
which gives that ¢ # 0 and a = b?/c. We finally obtain
0 ﬁ o 3L _ 2ceoL
T by PN
with Le(b+cA) # 0. Now from (23) and from (20) (after some calculations)
202L
=—=" (b 20y =\
ps c(ngcA)( z + cy)*(y — Az),
L
(25) __ Gt b 4
P ag oy )

c
@ = Aps+ f(bx + cy)?.

We consider the change of variables (z,y) — ((bz + cy)/(b+ c)),y — Az),
whose inverse is the transformation (z,y) — (2 — cy/(b+ cX), Az + by /(b +
c)\)). Observe that the determinant of the change is 1. By applying the
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transformation in (21) and in (25), we obtain that

_ 2 2
p2 = —ca(b+ch)x +b+c)\y’
202(b-|—c)\)L 2
D3 :fl’ Y,
(26) A+ AL
yZ! :702 x=,
b+ c)\)?
G =gyt 20T o
Therefore
L co(b+eN)? L\
= —co(b+ N2+ ——— = g2
(27) P2+ p3+pa ca(b+ch)x +b+c)\ <y+ p x

= —ca(b+ c\)z? + B2,

with B3 = L/(b+c)) and Q = y+T'x?, where I' = ca(b+c))?/c. Then from
(9), in the new variables,

fi=x— bfc)\y*CQ(b+C>\)x2 + B2Q?
_.._ ¢ 2

Similarly, substituting the last equation of (26) and equations (17), (16) and
(27) in (9), we get that in the new variables

2
fa= berCAy c2(b+cd) 2+ X (z — ca(b+ eN)z® + fQ7)
_Q+/\<$_ZHCC)\Q+/82Q2>~

By defining 81 = —c¢/(b + c\), we obtain that the above f; and fo satisfy
the second Hamiltonian of the theorem (now with f; # 0).

We have yet to analyze possibility (18). The remaining part of the proof
will be to show that if we assume this possibility we get a contradiction. We
will treat this analyzing two cases: a = —bA and a + b\ # 0.

In the first case, we consider new c3 and ¢4 not zero in order that (18)
turn to

(28) pa=caly — )t g3 =Aps+c3(y— M),

We take the change of coordinates (x,y) — (x,y — Az). Then using (28) we
write equations (10), (11), (12) and (13) in these new variables, where we
denote p;(z,y) = pi(z,y — Az) and ¢;(z,y) = Gi(z,y — Az), i = 2,3, 4

Doy + (G2 — AD2)y = 0,

D3y + P2ylzy — G2, P2y + 3c3y” = 0,

P3,(q2 — AD2)y — (@2 — AP2)abs, + 3e3Pa,y” =0,
(—4ca(@y — NP2)2y + 3c3Ps,) y* = 0.

(29)
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Integrating the fourth equation of (29) in y, we obtain d3 € R such that

_ deq

= —(Gy — \P dsi?.
P3 363(% Do)y + dsy

On the other hand, defining py = a12? + 2a22y + azy? and integrating in y
the first equation of (29), we obtain a4 € R such that

Ty = agz® 4+ 2 (a2 — a1) zy + (az) — az) y°.

Then we substitute the above g, and p; in the second and in the third
equations of (29), obtaining two identically zero homogeneous polynomials
of degrees 2 and 3, respectively. We denote this by he = 0 and hs = 0,
respectively. The coefficient of y? of hg is —8cs(as — a1\)?/(3¢3). Since
cs # 0, it follows that ay = a;\. Then the coefficient of x? of hy turns to
—4a?, and hence a; = 0. Finally, the coefficients of y? and y3 of hy and hg,
respectively, are —4a% + 3cs and 6agcs, implying that as = c3 = 0, which is
a contradiction.

In the second case we consider the change of variables (z,y) — (ax +
by,y — /\x) and write p; and @;, ¢ = 2, 3,4 the maps p; and ¢; in these new
variables, i.e. p;(z,y) = Di(ax + by,y — A\x), ¢i(z,y) = Gi(ax + by, y — A\z).
Then denoting the new variables by (z,y) again, it follows that p, = cax?,
Gy = APy and G5 = A\ps + ¢33, and equations (10), (11), (12) and (13) turn,
respectively, to

apr - )‘ﬁQy + ban + ng = 07
(a+bA) (Bs, + Pasa, — GaPay ) + Bbesa® = 0,
(30) (@ 0) (Pao(@2 — A2)y — (@ — AB2)aBs, + deaz®
_3C3ﬁ2yx2> = 07
(a+bA) (464(@2 — ADg)y® — 303ﬁ3y) 22 =0.

The second and the fourth equations of (30) give, respectively, that

_ L o 3bcs _ dey _
(31)  p3, = _(pQ;pQQy - QQxPQy) - m$27 b3y = %(QQ — ADa)y -
Substituting (31) in the third equation of (30), we obtain that

o o dey _ 3bcs _ _
(32) <p2xq2y — Da2ylay + 373(@ — APg)a + — n bAﬂ:Q) (@2 — ADa)y

—4C4$3 + 363ﬁ2y$2 =0.

Then defining py = a12? + 2a22y + azy? the first equation of (30) will be
a differential equation in g,. Solving it for a homogeneous polynomial of
degree 2 (now it is similar to Lemma 2, but we apply the change of variables
x +— x — by instead and integrate in y), it follows that there exists ay € R
such that

@y = as(z — by)* — 2(aa1 — az))(z — by)y — (a(az + a1d) — (a3 + azb)A) y*.
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Substituting the above p3 and g in (32) we obtain an identically zero ho-
mogeneous polynomial of degree 3. The coefficient of 23 of this polynomial
gives that

2 b
—4eq — g(am + asb — az)) (8a404 + e ) =0.

C3 a+ b

Now we substitute p; and gz in the equation ps,, — Pp3,, = 0 given by (31)

and obtain an identically zero homogeneous polynomial of degree 1. The

coefficient of x of this polynomial gives that
16¢4 (aay + agb — ag\)

= 0.
3c3

Combining the last two equations, we obtain that ¢4 = 0, a contradiction.
O

We observe that the two hamiltonians that appear in Theorem 5 can not
be transformed in each other using a linear change of coordinates. This is so
because applying the linear change (x,y) — (ax + by, cx + dy) in the second
Hamiltonian, the only way to make the monomial z® disappear is to take
a = 0. Then to make the monomial z* disappear, we have to take ¢ = 0.
But then we no longer have a change of coordinates.

We also observe that our results give formulas (up to linear change of
coordinates) for all the polynomial maps f = (fy, f2) : R? — R? such that
det Df =1, f(0,0) = (0,0) and degree of f is 2, 3 or 4. Using these formulas
it is very simple to see that such maps are injective.

3. EXAMPLES OF POLYNOMIAL HAMILTONIAN ISOCHRONOUS CENTERS

The following example shows that there exist non trivial polynomial
Hamiltonian isochronous centers of degree 6k + 1, for all k € {1,2...}.

Example 6. Let A € R and k € {1,2...}. Let f = (f1, f2) : R? = R? be
defined by

x + MyF (& + M%)+ (1+ (2 + 252y
fi= fo= )

V1 (2 + MgF)? 1+ (z + AyF)2
It follows that the Jacobian determinant of f is constant and equal to 1.

Moreover, taking H = (f12 + f22) /2, it is simple to see that 2H is the poly-
nomial

3
(z 4+ MF)? + 2y (z 4+ MyF)? (1 + (z + /\y’f)Q) + 32 (1 + (z + /\y’“)Q) ,

which clearly has degree 6k+2 if A # 0 (and degree 8 if A = 0). Thus system
(1) with Hamiltonian H has an isochronous center of degree 6k + 1 at the

origin if X\ # 0 (degree 7 if A\ =0).

Lemma 7. The isochronous center presented in Example 6 is non-trivial.
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Proof. Suppose on the contrary that the center is trivial. Then there exists a
polynomial map g = (go, g2) : R?> — R? with det Dg = 1 and g(0,0) = (0,0)
such that g7 + g5 = 2H. The map h = go T, with T'(x,y) = (z — \y*,y) is
also polynomial, det Dh = 1, h(0,0) = (0,0) and

i— R +h3 x4 2yx?(1+ 2?) + (1 + 2?)?
2 2

is a polynomial of degree 8. Thus system (1) with Hamiltonian H has a
trivial isochronous center at the origin. Since h is globally injective (by the
mentioned result of [7] or by Theorem 5), it follows from the mentioned
result of [8] that this center is global. This is not possible, because the level
curve H = 1/2 is not bounded (it is formed by the curves y = —1/(1 + x?)
and y = (1 — 22)/(1 + 22)?). O

Example 6 with A = 0 has already appeared in [2].

The following example provide trivial isochronous centers for all even
degrees.

Example 8. Let k € {2,3,...,}, A\ca,...,cx € R, with ¢, # 0 and f =
(f1, f2) : R? = R? be defined by

h=z+ey’+ - +ay, fa=y+If

It is clear that f(0,0) = (0,0) and det Df = 1. Thus system (1) with the
Hamiltonian given by H = (f2+ £2)/2 has a trivial polynomial Hamiltonian
isochronous center of degree 2k — 1 at the origin. Since f is clearly injective,
this center is global.
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