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Abstract. In this paper we completely characterize trivial isochronous
centers of degrees 5 and 7. Precisely, we provide formulas, up to linear
change of coordinates, for the Hamiltonian H of the isochronous centers
such that H =

(
f2
1 + f2

2

)
/2 has degrees 6 and 8, and f = (f1, f2) : R2 →

R2 is a polynomial map with det Df = 1 and f(0, 0) = (0, 0).

1. Introduction

Let P (x, y) and Q(x, y) be real polynomials in the variables x and y.
We say that a polynomial vector field X = (P, Q) has degree n when
max{deg P, deg Q} = n. Given a polynomial Hamiltonian H : R2 → R
of degree n + 1, the associated polynomial Hamiltonian system of degree n
is

(1) ẋ = −Hy(x, y), ẏ = Hx(x, y).

System (1) has a center at (0, 0) if there is a neighbourhood of the origin
filled of periodic orbits except the origin. The maximum connected set
filled of periodic orbits having in its inner boundary the origin is called the
period annulus of the center localized at the origin. If the period annulus is
R2\{(0, 0)}, we call the center global. We say that a polynomial Hamiltonian
system has an isochronous center at the origin if (0, 0) is a center of (1) and
all the orbits in the period annulus of the center have the same period.

The following characterization of the polynomial Hamiltonian systems
possessing an isochronous center at the origin was given in [6]. The polyno-
mial Hamiltonian system (1) has an isochronous center of period 2π at the
origin if and only if

(2) H(x, y) =
f1(x, y)2 + f2(x, y)2

2
,

for all (x, y) in a neighborhood N0 of the origin, where f = (f1, f2) : N0 → R2

is an analytic map with Jacobian determinant det Df constant and equal
to 1, and f(0, 0) = (0, 0). We observe that this characterization still holds
for analytic Hamiltonians. When f can be taken polynomial, we say that
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the polynomial Hamiltonian isochronous center is trivial. In this case, it is
clear that f will be defined in all R2. From [8], when the center is trivial,
it is a global center if and only if f is globally injective. Thus the problem
of knowing whether a trivial polynomial Hamiltonian isochronous center is
global or not is equivalent to the Jacobian conjecture in R2, which stands
that a polynomial map f : R2 → R2 with constant Jacobian determinant
is globally injective. We mention here that if the degrees of f1 and f2 are
less than or equal to 101 then f is globally injective (see [7] and, for other
results on the Jacobian conjecture, see [3]). Thus all the trivial polynomial
Hamiltonian isochronous centers of degree less than or equal to 201 are global
ones.

In [2] it was proved that all isochronous centers of cubic polynomial Hamil-
tonian systems are trivial (and hence global) and after a linear change of
coordinates the Hamiltonian can be written as

H(x, y) = (k1x)2 +
(
k2y + k3x + k4x

2
)2

,

where k1, k2, k3, k4 ∈ R and k1k2 ̸= 0. We also mention that there are no
polynomial Hamiltonian isochronous centers of degree 4, see [4]. Moreover,
it was proved in [5] that there are no polynomial Hamiltonian isochronous
centers of even degree for which the analytical function f of the Hamiltonian
(2) is defined in the whole plane. In particular, there are no trivial polyno-
mial Hamiltonian isochronous centers of even degree. On the other hand,
there are examples of non-trivial polynomial Hamiltonian isochronous cen-
ters of degree 6k + 1 for all k ≥ 1, see section 3. We point out that in these
examples the map f is defined in the whole plane. The following are thus
natural questions.
Open question 1: Are there non-trivial quintic polynomial Hamiltonian
isochronous centers?
Open question 2: Are there non-trivial polynomial Hamiltonian isochro-
nous centers with Hamiltonian (2) such that f is not analytical in the whole
plane R2?

We observe that if the open question 2 has a negative answer, then by [5]
there are no polynomial Hamiltonian isochronous centers of even degree.

Our main result is the characterization of the quintic and the septic trivial
polynomial Hamiltonian isochronous centers, see theorems 4 and 5 respec-
tively, where we provide formulas for the Hamiltonian of these systems. We
also give an alternative formula for the Hamiltonian of the cubic polyno-
mial isochronous centers (with a trivial proof), using that these centers are
trivial, see Proposition 3.

2. Trivial polynomial Hamiltonian isochronous centers

We shall use the following technical result.

Lemma 1. Let p, q : R2 → R be homogeneous polynomials of degree m and
n respectively such that det D(p, q) ≡ 0. Let also d = gcd(m,n), we define
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m′ = m/d and n′ = n/d. Then there exists a homogeneous polynomial

r : R2 → R of degree d and constants cp, cq ∈ R such that p = cpr
m′

and

q = cqr
n′

.

Proof. It is enough to prove that the rational function f = pn/qm is constant.
In order to do that, it is enough to show that fx = fy = 0. We have

fx =
pn−1qm−1

q2m
(nqpx − mpqx) =

pn−1qm−1

q2m
y (pxqy − qxpy) = 0,

where in the second equality above we used the Euler’s Theorem for homo-
geneous maps. The proof that fy = 0 is analogous. �

We address the reader to [1] for a much more general version of Lemma
1.

In the proofs of the results of this section, we will have to solve partial
differential equations of the form

px + βpy = h,

where p, h : R2 → R are homogeneous polynomials of degrees k and k − 1,
respectively, and β ∈ R. By defining q : R2 → R by

(3) p(x, y) = q(x, y − βx) = q(x1, y1),

the original equation turns to

qx1 = h(x1, y1 + βx1),

and hence there is c ∈ R such that q(x1, y1) =
∫ x1

0 h(s, y1 +βs)ds+ cyk
1 , and

p is given by (3). For further references, we enunciate this procedure in the
following result.

Lemma 2. Let p, h : R2 → R be homogeneous polynomials of degrees k and
k − 1, respectively, satisfying px +βpy = h, with β ∈ R. Then there is c ∈ R
such that p(x, y) = q(x, y − βx) where q(x1, y1) =

∫ x1

0 h(s, y1 + βs)ds + cyk
1 .

We begin with Proposition 3, where we give an alternative characteriza-
tion of the cubic polynomial Hamiltonian isochronous centers using the fact
that they are trivial (recall the mentioned result of [2]). Right after the
proof, we relate the formula of Proposition 3 and the one presented in [2].

Proposition 3. Assume that the polynomial Hamiltonian system (1) has
degree 3 and has an isochronous center of period 2π at the origin. Then up
to a linear change of variables, the Hamiltonian can be written as

H =
P 2 + (y + λP )2

2
,

with P = x + c2y
2, c2, λ ∈ R and c2 ̸= 0.
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Proof. Since the cubic polynomial Hamiltonian isochronous centers are triv-
ial, there exists f = (f1, f2) : R2 → R2 a polynomial map of degree 2 with
det Df = 1 and f(0, 0) = (0, 0) such that H =

(
f2
1 + f2

2

)
/2. After a linear

change of variables, it is clear that we can write

f1 = x + p2, f2 = y + q2,

with p2 and q2 homogeneous polynomials of degree 2. Without loss of gen-
erality we can assume that p2 ̸= 0 (otherwise we change the roles of f1 and
f2 and of x and y). The hypothesis det Df = 1 also gives that

(4) p2x + q2y = 0, p2xq2y − q2xp2y = 0.

The second equation of (4) gives from Lemma 1 that there exists λ ̸= 0 such
that

q2 = λp2.

Substituting this in the first equation of (4) we obtain p2x +λp2y = 0, which
solved for a homogeneous polynomial of degree 2 (by Lemma 2) determines
c2 ∈ R such that

p2 = c2(y − λx)2,

with c2 ̸= 0. We then apply the change of variables (x, y) 7→ (x, y − λx),
finishing the proof. �

We observe that changing x to y and taking
√

2k1 = 1/
√

1 + λ2,
√

2k2 =√
1 + λ2,

√
2k3 = λ/

√
1 + λ2 and

√
2k4 = c2

√
1 + λ2, the formula of Proposi-

tion 3 satisfies the mentioned formula for the cubic polynomial Hamiltonian
isochronous centers of [2]. On the other hand, the change of coordinates
(x, y) 7→

√
2 (k2y + k3x, k1x) transforms the mentioned formula of [2] in

H(x, y) =
(
x + c2y

2)2 + y2
)
/2, with c2 = k4/(

√
2k1), which is the formula

of Proposition 3 with λ = 0. We observe that in [2] it was not assumed that
the isochronous center has period exactly 2π.

For trivial polynomial Hamiltonian isochronous centers of degrees 5 and
7 we have similar formulas to the Hamiltonians, see the following theorems
4 and 5.

Theorem 4. Assume that the polynomial Hamiltonian system (1) has degree
5 and has a trivial isochronous center of period 2π at the origin. Then up
to a linear change of variables, the Hamiltonian can be written as

H =
P 2 + (y + λP )2

2
,

with P = x + c2y
2 + c3y

3, c2, c3, λ ∈ R and c3 ̸= 0.

Proof. We consider H =
(
f2
1 + f2

2

)
/2, with f = (f1, f2) a polynomial map

of degree 3 satisfying f(0, 0) = (0, 0) and det Df(x, y) = 1 for all (x, y) ∈ R2.
It is clear that after a linear change of variables we can write

f1 = x + p2 + p3, f2 = y + q2 + q3,
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where pi and qi are homogeneous polynomials of degree i, i = 1, 2. Without
loss of generality we can suppose that p3 ̸= 0. The assumption det Df = 1
gives

(5)

p2x + q2y = 0,
p3x + q3y + p2xq2y − q2xp2y = 0,

p3xq2y − q2xp3y + p2xq3y − q3xp2y = 0,
p3xq3y − q3xp3y = 0.

The last equation gives by Lemma 1 that there exists λ ∈ R such that

(6) q3 = λp3.

Substituting this in the third equation in (5), we obtain

(7) p3x (q2 − λp2)y − (q2 − λp2)x p3y = 0.

Here we have two possibilities: either q2 ̸= λp2 or q2 = λp2.
In the first one, equation (7) gives by Lemma 1 that there exist a, b, c2, c3 ∈

R, with c2c3(a
2 + b2) ̸= 0 such that

(8) q2 = λp2 + c2 (ax + by)2 , p3 = c3 (ax + by)3 .

Using then the first equation of (8) and the first one of (5), we obtain

p2x + λp2y = −2bc2 (ax + by) .

From Lemma 2, we obtain d2 ∈ R such that

p2 = −bc2 ((a + bλ)x + 2b(y − λx))x + d2(y − λx)2.

Then we substitute p2, (8) and (6) in the second equation of (5) and, after
dividing by ax + by and equating the coefficients of x and y to 0, we obtain
the system

(
a λ
b −1

) (
3 (a + bλ) c3

4
(
b3c2 + (a + bλ)d2

)
c2

)
=

(
0
0

)
.

If a + bλ = 0, it follows that b = 0 (since c2 ̸= 0), and hence a = 0, a
contradiction. On the other hand if a+ bλ ̸= 0, it follows that c3 = 0, which
is again a contradiction.

If now q2 = λp2, it follows from (6) and from the first and the second
equations in (5) that

p2x + λp2y = 0, p3x + λq3y = 0.

Solving these equations for homogeneous polynomials of degrees 2 and 3 (see
Lemma 2), respectively, we obtain c2, c3 ∈ R such that

p2 = c2 (y − λx)2 , p3 = c3 (y − λx)3 ,

with c3 ̸= 0. So

f1 = x + c2 (y − λx)2 + c3 (y − λx)3 ,

f2 = y + λ
(
c2 (y − λx)2 + c3 (y − λx)3

)
.
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Applying the linear change of variables (x, y) 7→ (x, y − λx), we end the
proof of the theorem. �

The following is a characterization of trivial polynomial Hamiltonian iso-
chronous centers of degree 7.

Theorem 5. Assume that the polynomial Hamiltonian system (1) has degree
7 and has a trivial isochronous center of period 2π at the origin. Then up
to a linear change of variables the Hamiltonian H has one of the following
two forms:

H =
P 2

1 + (y + λP1)
2

2
, P1 =x + c2y

2 + c3y
3 + c4y

4,

H =
P 2

2 + (Q + λP2)
2

2
, P2 =x + β1Q + β2Q

2,

where Q = y + Γx2, c2, c3, c4, β1, β2, λ,Γ ∈ R and c4β2Γ ̸= 0.

Proof. Let f1 and f2 be polynomials of degree 4 such that det D(f1, f2) = 1
and f1(0, 0) = f2(0, 0) = 0. After a linear change of variables, it is clear we
can write

(9) f1 = x + p2 + p3 + p4, f2 = y + q2 + q3 + q4,

where pi and qi are homogeneous polynomials of degree i for i = 2, 3, 4.
Moreover, since the homogeneous terms of positive degrees of the Jacobian
determinant of (f1, f2) are zero, we obtain the following equations:

p2x + q2y = 0,(10)

p3x + q3y + p2xq2y − q2xp2y = 0,(11)

p4x + q4y + p2xq3y − q3xp2y + p3xq2y − q2xp3y = 0,(12)

p2xq4y − q4xp2y + p4xq2y − q2xp4y + p3xq3y − q3xp3y = 0,(13)

p3xq4y − q4xp3y + p4xq3y − q3xp4y = 0,(14)

p4xq4y − q4xp4y = 0.(15)

Equation (15) and Lemma 1 give that

(16) q4 = λp4.

Substituting this in equation (14) yields

p4x (q3 − λp3)y − (q3 − λp3)x p4y = 0.

We have two possibilities, either

(17) q3 = λp3

or, from Lemma 1, there exist a, b, c3, c4 ∈ R such that

(18) p4 = c4(ax + by)4, q3 = λp3 + c3 (ax + by)3 ,

with (a2 + b2)c3c4 ̸= 0.
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Assuming (17), we obtain from (13) that

p4x (q2 − λp2)y − p4y (q2 − λp2)x = 0.

We have then another two possibilities, either

(19) q2 = λp2

or, from Lemma 1 there exist a, b, c, c2, c4 ∈ R such that

(20) p4 = c4

(
ax2 + 2bxy + cy2

)2
, q2 = λp2 + c2

(
ax2 + 2bxy + cy2

)
,

with (a2 + b2 + c2)c2c4 ̸= 0.
Assuming (19), it follows from (16) and (17) that equations (10), (11)

and (12) turn to

p2x + λp2y = 0, p3x + λp3y = 0, p4x + λp4y = 0,

respectively. Solving these equations for homogeneous polynomials of de-
grees 2, 3 and 4, we obtain that

p2 = c2(y − λx)2, p3 = c3(y − λx)3, p4 = c4(y − λx)4.

By applying the linear change of coordinates (x, y) 7→ (x, y − λx) in (9), we
obtain the first Hamiltonian of the theorem.

Now if we assume (17) and (20), equation (10) turns to

p2x + λp2y + 2c2(bx + cy) = 0.

Using Lemma 2, we obtain d2 ∈ R such that

(21) p2 = −c2

(
bx + cy + c(y − λx)

)
x + d2(y − λx)2.

Substituting this in (11), using (17) and (20), we obtain a partial differential
equation of the form p3x + λp3y = h, with

h(x, y + λx) = 4(b2 − ac)c2
2x

2 + 4c2(bcc2 + ad2 + bd2λ + Lλ)xy + 4c2Ly2,

where

(22) L = c2c2 + d2(b + cλ).

Then from Lemma 2, we obtain d3 ∈ R such that

(23)
p3 =

4

3
c2
2(b

2 − ac)x3 + 2c2(bcc2 + ad2 + bd2λ + Lλ)x2(y − λx)

+4c2Lx(y − λx)2 + d3(y − λx)3.

We finally substitute (21) and (23), and also (16), (17) and (20) in equation
(12), obtaining an identically zero homogeneous polynomial of degree 3.
Recalling that (a2 + b2 + c2)c2c4 ̸= 0, we will divide the analysis in two
cases: either b = −cλ or b + cλ ̸= 0.

In the first possibility, the coefficient of y3 of the polynomial is 8cc2
2L.

Since L = c2c2, it follows that c = 0 (and thus L = 0). Then the coefficient
of xy2 turns to −6ac2d3, which gives that d3 = 0, and hence the coefficient
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of x3 gives that c4 = c2
2d2. In particular, d2 ̸= 0. With these information, it

follows from (21), (23) and (20) that

p2 = d2(y − λx)2, p3 = 2ac2d2x
2(y − λx), p4 = a2c2

2d2x
4,

and q2, q3 and q4 are given by (20), (17) and (16), respectively. Then by
applying the change of coordinates (x, y) 7→ (x, y−λx) in (9), it follows that
in the new variables

f1 = x + d2(y
2 + 2ac2x

2y + a2c2
2x

4),

f2 = y + λ
(
x + d2(y

2 + 2ac2x
2y + a2c2

2x
4)

)
+ ac2x

2.

By defining β2 = d2, Γ = ac2 and Q = y +Γx2, we clearly obtain the second
Hamiltonian of the theorem with β1 = 0.

Now we analyze the second possibility b + cλ ̸= 0. The coefficients of y3

and xy2 of the polynomial defined by equation (12) give the following linear
system (recall that L is given by (22))

(24) A

(
c4

d3

)
=

(
−8cc2

2L
8c2

2

(
(b2 − ac)d2 + 3cλL

)
)

,

where

A =

(
4c (b + cλ) −6c2 (b + cλ)

4
(
3b(b + cλ) + ac − b2

)
−6c2

(
a − bλ − 2cλ2

)
)

.

The determinant of A is 48c2 (b + cλ)3 ̸= 0. Thus c4 and d3 are given by
inverting A in (24). We substitute them in the coefficients of x3 and x2y
and obtain (using (22)), respectively, that

4c3
2(b

2 − ac)2(2b2 + ac + 3bcλ)

(b + cλ)3
= 0,

12cc3
2(b

2 − ac)2

(b + cλ)2
= 0,

which gives that c ̸= 0 and a = b2/c. We finally obtain

a =
b2

c
, c4 =

c2
2L

b + cλ
, d3 =

2cc2L

b + cλ
,

with Lc(b+ cλ) ̸= 0. Now from (23) and from (20) (after some calculations)

(25)

p3 =
2c2L

c(b + cλ)
(bx + cy)2(y − λx),

p4 =
c2
2L

c2(b + cλ)
(bx + cy)4,

q2 = λp2 +
c2

c
(bx + cy)2.

We consider the change of variables (x, y) 7→
(
(bx + cy)/(b + cλ), y − λx

)
,

whose inverse is the transformation (x, y) 7→
(
x − cy/(b + cλ), λx + by/(b +

cλ)
)
. Observe that the determinant of the change is 1. By applying the
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transformation in (21) and in (25), we obtain that

(26)

p2 = −c2(b + cλ)x2 +
L

b + cλ
y2,

p3 =
2c2(b + cλ)L

c
x2y,

p4 =
c2
2(b + cλ)3L

c2
x4,

q2 = λp2 +
c2(b + cλ)2

c
x2.

Therefore

(27) p2 + p3 + p4 = −c2(b + cλ)x2 +
L

b + cλ

(
y +

c2(b + cλ)2

c
x2

)2

= −c2(b + cλ)x2 + β2Q
2,

with β2 = L/(b+ cλ) and Q = y +Γx2, where Γ = c2(b+ cλ)2/c. Then from
(9), in the new variables,

f1 = x − c

b + cλ
y − c2(b + cλ)x2 + β2Q

2

= x − c

b + cλ
Q + β2Q

2.

Similarly, substituting the last equation of (26) and equations (17), (16) and
(27) in (9), we get that in the new variables

f2 =
b

b + cλ
y +

c2(b + cλ)2

c
x2 + λ

(
x − c2(b + cλ)x2 + β2Q

2
)

= Q + λ

(
x − c

b + cλ
Q + β2Q

2

)
.

By defining β1 = −c/(b + cλ), we obtain that the above f1 and f2 satisfy
the second Hamiltonian of the theorem (now with β1 ̸= 0).

We have yet to analyze possibility (18). The remaining part of the proof
will be to show that if we assume this possibility we get a contradiction. We
will treat this analyzing two cases: a = −bλ and a + bλ ̸= 0.

In the first case, we consider new c3 and c4 not zero in order that (18)
turn to

(28) p4 = c4(y − λx)4, q3 = λp3 + c3 (y − λx)3 .

We take the change of coordinates (x, y) 7→ (x, y − λx). Then using (28) we
write equations (10), (11), (12) and (13) in these new variables, where we
denote pi(x, y) = pi(x, y − λx) and qi(x, y) = qi(x, y − λx), i = 2, 3, 4:

(29)

p2x + (q2 − λp2)y = 0,
p3x + p2xq2y − q2xp2y + 3c3y

2 = 0,

p3x(q2 − λp2)y − (q2 − λp2)xp3y + 3c3p2xy2 = 0,

(−4c4(q2 − λp2)xy + 3c3p3x) y2 = 0.
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Integrating the fourth equation of (29) in y, we obtain d3 ∈ R such that

p3 =
4c4

3c3
(q2 − λp2)y + d3y

3.

On the other hand, defining p2 = a1x
2 + 2a2xy + a3y

2 and integrating in y
the first equation of (29), we obtain a4 ∈ R such that

q2 = a4x
2 + 2 (a2λ − a1) xy + (a3λ − a2) y2.

Then we substitute the above q2 and p3 in the second and in the third
equations of (29), obtaining two identically zero homogeneous polynomials
of degrees 2 and 3, respectively. We denote this by h2 = 0 and h3 = 0,
respectively. The coefficient of y3 of h3 is −8c4(a4 − a1λ)2/(3c3). Since
c4 ̸= 0, it follows that a4 = a1λ. Then the coefficient of x2 of h2 turns to
−4a2

1, and hence a1 = 0. Finally, the coefficients of y2 and y3 of h2 and h3,
respectively, are −4a2

2 + 3c3 and 6a2c3, implying that a2 = c3 = 0, which is
a contradiction.

In the second case we consider the change of variables (x, y) →
(
ax +

by, y − λx
)

and write pi and qi, i = 2, 3, 4 the maps pi and qi in these new
variables, i.e. pi(x, y) = pi(ax + by, y − λx), qi(x, y) = qi(ax + by, y − λx).
Then denoting the new variables by (x, y) again, it follows that p4 = c4x

4,
q4 = λp4 and q3 = λp3 + c3x

3, and equations (10), (11), (12) and (13) turn,
respectively, to

(30)

ap2x − λp2y + bq2x + q2y = 0,

(a + bλ)
(
p3x + p2xq2y − q2xp2y

)
+ 3bc3x

2 = 0,

(a + bλ)
(
p3x(q2 − λp2)y − (q2 − λp2)xp3y + 4c4x

3

−3c3p2yx
2
)

= 0,

(a + bλ)
(
4c4(q2 − λp2)yx − 3c3p3y

)
x2 = 0.

The second and the fourth equations of (30) give, respectively, that

(31) p3x = −(p2xq2y − q2xp2y) − 3bc3

a + bλ
x2, p3y =

4c4

3c3
(q2 − λp2)yx.

Substituting (31) in the third equation of (30), we obtain that

(32)

(
p2xq2y − p2yq2x +

4c4

3c3
(q2 − λp2)xx +

3bc3

a + bλ
x2

)
(q2 − λp2)y

−4c4x
3 + 3c3p2yx

2 = 0.

Then defining p2 = a1x
2 + 2a2xy + a3y

2 the first equation of (30) will be
a differential equation in q2. Solving it for a homogeneous polynomial of
degree 2 (now it is similar to Lemma 2, but we apply the change of variables
x 7→ x − by instead and integrate in y), it follows that there exists a4 ∈ R
such that

q2 = a4(x − by)2 − 2(aa1 − a2λ)(x − by)y − (a(a2 + a1b) − (a3 + a2b)λ) y2.
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Substituting the above p2 and q2 in (32) we obtain an identically zero ho-
mogeneous polynomial of degree 3. The coefficient of x3 of this polynomial
gives that

−4c4 − 2

3
(aa1 + a4b − a2λ)

(
8a4c4

c3
+

9bc3

a + bλ

)
= 0.

Now we substitute p2 and q2 in the equation p3xy − p3yx = 0 given by (31)
and obtain an identically zero homogeneous polynomial of degree 1. The
coefficient of x of this polynomial gives that

16c4 (aa1 + a4b − a2λ)

3c3
= 0.

Combining the last two equations, we obtain that c4 = 0, a contradiction.
�

We observe that the two hamiltonians that appear in Theorem 5 can not
be transformed in each other using a linear change of coordinates. This is so
because applying the linear change (x, y) 7→ (ax+ by, cx+ dy) in the second
Hamiltonian, the only way to make the monomial x8 disappear is to take
a = 0. Then to make the monomial x4 disappear, we have to take c = 0.
But then we no longer have a change of coordinates.

We also observe that our results give formulas (up to linear change of
coordinates) for all the polynomial maps f = (f1, f2) : R2 → R2 such that
det Df = 1, f(0, 0) = (0, 0) and degree of f is 2, 3 or 4. Using these formulas
it is very simple to see that such maps are injective.

3. Examples of polynomial Hamiltonian isochronous centers

The following example shows that there exist non trivial polynomial
Hamiltonian isochronous centers of degree 6k + 1, for all k ∈ {1, 2 . . .}.

Example 6. Let λ ∈ R and k ∈ {1, 2 . . .}. Let f = (f1, f2) : R2 → R2 be
defined by

f1 =
x + λyk

√
1 + (x + λyk)2

, f2 =

(
x + λyk

)2
+

(
1 + (x + λyk)2

)2
y√

1 + (x + λyk)2
.

It follows that the Jacobian determinant of f is constant and equal to 1.
Moreover, taking H =

(
f2
1 + f2

2

)
/2, it is simple to see that 2H is the poly-

nomial

(x + λyk)2 + 2y(x + λyk)2
(
1 + (x + λyk)2

)
+ y2

(
1 + (x + λyk)2

)3
,

which clearly has degree 6k+2 if λ ̸= 0 (and degree 8 if λ = 0). Thus system
(1) with Hamiltonian H has an isochronous center of degree 6k + 1 at the
origin if λ ̸= 0 (degree 7 if λ = 0).

Lemma 7. The isochronous center presented in Example 6 is non-trivial.
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Proof. Suppose on the contrary that the center is trivial. Then there exists a
polynomial map g = (g2, g2) : R2 → R2 with det Dg = 1 and g(0, 0) = (0, 0)
such that g2

1 + g2
2 = 2H. The map h = g ◦ T , with T (x, y) = (x − λyk, y) is

also polynomial, det Dh = 1, h(0, 0) = (0, 0) and

H̃ =
h2

1 + h2
2

2
=

x2 + 2yx2(1 + x2) + y2(1 + x2)3

2

is a polynomial of degree 8. Thus system (1) with Hamiltonian H̃ has a
trivial isochronous center at the origin. Since h is globally injective (by the
mentioned result of [7] or by Theorem 5), it follows from the mentioned
result of [8] that this center is global. This is not possible, because the level
curve H = 1/2 is not bounded (it is formed by the curves y = −1/(1 + x2)
and y = (1 − x2)/(1 + x2)2). �

Example 6 with λ = 0 has already appeared in [2].

The following example provide trivial isochronous centers for all even
degrees.

Example 8. Let k ∈ {2, 3, . . . , }, λ, c2, . . . , ck ∈ R, with ck ̸= 0 and f =
(f1, f2) : R2 → R2 be defined by

f1 = x + c2y
2 + · · · + cky

k, f2 = y + λf1.

It is clear that f(0, 0) = (0, 0) and det Df = 1. Thus system (1) with the
Hamiltonian given by H = (f2

1 +f2
2 )/2 has a trivial polynomial Hamiltonian

isochronous center of degree 2k−1 at the origin. Since f is clearly injective,
this center is global.
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