d esd

http://www.gsd.uab.cat

This is a preprint of: “Analytic reducibility of nondegenerate centers: Cherkas systems”,

Giné, Jaume Llibre, Electron. J. Qual. Theo., vol. 49, 1-10, 2016.
DOI: [doi:10.14232/ejqtde.2016.1.49]

ANALYTIC REDUCIBILITY OF NONDEGENERATE
CENTERS: CHERKAS SYSTEMS

JAUME GINE! AND JAUME LLIBRE?

ABSTRACT. In this paper we study the center problem for poly-
nomial differential systems and we prove that any center of an an-
alytic differential system is analytically reducible. We also study
the centers for the Cherkas polynomial differential systems

T =y, y = Py(z) + Pi(z)y + Pa(2)y?,

where P;(x) are polynomials of degree n, Py(0) = 0 and Pj(0) < 0.
Computing the focal values we find the center conditions for such
systems for degree 3, and using modular arithmetics for degree 4.
Finally we do a conjecture about the center conditions for Cherkas
polynomial differential systems of degree n.

1. INTRODUCTION

The well-known polynomial Liénard equation
(1) i+ f(z)i+g(z) =0,

where f(x) and g(z) are polynomials, which we can be rewritten as the
differential system in the plane

(2) t=y, y=-—g) —yf(r),

can be generalized into what we call the polynomial Cherkas polynomial
differential equation

(3) i+ h(x)i* + f(z)i + g(x) =0,

where now f(x), g(z) and h(z) are polynomials. This Cherkas equation
can be also transformed into the differential system in the plane

(4) =y,  y=—g()—yfx) - y*h(z).
System (4) has associated the differential equation

_dy _ —9(x) —yf) — y*h(x)

dx Y
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which can be written as

(5) vy = —g(@) = yf(z) — y*h(z).
Systems (2) and (4) arise frequently in the study of various mathemat-
ical models of physical, chemical, biological, physiological, economical
and other processes, see for instance [16, 18] and references therein.
For the Liénard system (2) Cherkas [1] was the first in give necessary
and sufficient conditions for the existence of a center at the origin.
Christopher [4] extended this result and obtained global conditions on
the form of f and g to have a center. In fact the Liénard systems (2)
with a center are time-reversible (see below the definition) through an
analytic invertible transformation followed by a rescalling of time. This
type of symmetry after transformation is called generalized symmetry.

Cherkas in [1] was the first in study differential equation (5) that he
wrote into the form yy' = P(z) + Q(x)y* + R(z)y* having a singular
point at the origin with purely imaginary eigenvalues and where P, )
and R are real rational functions. Cherkas gave necessary and sufficient
conditions for the existence of a center at the origin of equation (5).
Later on Cherkas in [2, 3] considered the more general case

(6) T = P3(x)y, y = Py(x) + Pi(z)y + Py(z)y?,

where here Pj(x) are polynomials, with P3;(0) # 0, Py(0) = 0 and
P3(0)P;(0) < 0. Such systems include the so-called reduced Kukles
systems (Kukles systems with a; = 0), see [19, 24] and also [14] with
references therein.

In [6] it is shown that the centers of system (6) arise either from a
Darboux first integral of the form

(7) H = exp(D/E) [] €,

where D, E and the C; are polynomials in C[x,y] and «; € C, or from
a simple form of algebraic reversibility (see definition below).

In [5], at the end of chapter 5 of the part I, it is noted that the same
results can be obtained for more general systems of the form

(8) = Py(x)y, § = Py(z) + Pi(x)y + Pa(x)y® + P3(2)y?,

where P; are polynomial. It is claimed without proof that the results are
essentially the same i.e., either there is a Darboux first integral, or there
is an algebraic reversibility with an algebraic symmetry. We recall that
system (8) include the Kukles systems, see [19, 24, 14]. Unfortunately
this claim is not strictly correct because there are centers in the Kukles
family with a Liouvillian first integral which is not a Darboux first
integral, see [19, 24]. However the general idea that the results must



ANALYTIC REDUCIBILITY AND CHERKAS SYSTEMS 3

be essentially the same seems be true with extending the first integrals
to the Liouvillian ones. Nevertheless up to know no proof is known.

These results permit to check if a particular system of the form (2),
(4), (6), and (8) has a center at the origin. However, in practice from
the conditions obtained it is not easy to get the explicit form of the
families with center even for systems of small degree.

2. PRELIMINARY RESULTS

A center for a real analytic differential system in the plane is an iso-
lated singularity p for which there exist a neighborhood U such that
U\ {p} is filled with periodic orbits. A singularity is nondegenerate
if the eigenvalues of its linear part are purely imaginary. To detect
nodegenerate center is a very classical problem in qualitative theory of
differential equations, see for instance [11, 20, 21, 23]. For a nonde-
generate singularity (either a focus or a center) a theorem of Poincaré-
Liapunov [23] says that this singularity is a center if, and only if, the
system has a nonconstant analytic first integral in a neighborhood of
it.

It seems natural to think that this analytic first integral must be of
algebraic nature if the differential system is polynomial attending to
the algebraic nature of the necessary conditions to have a center. This
is true for lower degree (quadratic and cubic symmetric systems) where
the first integral of each family of centers are Darboux first integrals
of the form (7). However for general cubic system this is not true and
more general mechanisms for producing centers must be introduced,
see [6].

The first mechanism is the generalization of the Darboux first in-
tegrals to Liouville first integrals which in fact is a straightforward
generalization because all these systems have a Darboux integrating
factor of the form (7), see [12] and references therein. Nevertheless
there are centers of polynomial differential systems without a Liouville
first integral. For instance the polynomial Liénard system

(9) i.:y_’_wA? g:_$7

has neither any invariant algebraic curve, nor an integrating factor of
the form (7) and consequently is not Liouvillian integrable, see [9].
System (9) is invariant by the symmetry (z,y,t) — (—=,y, —t) hence
the phase portrait is symmetric respect to the y axis what is called a
time-reversible system. This example leads immediately to the second
mechanism to produce centers. This mechanism, which is of algebraic
nature also, produces centers by pulling back a nonsingular differential
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system via an algebraic map which allows to obtain a symmetric dif-
ferential system. For system (9) the map is polynomial (Z,7) — (2%, y)
and we obtain the nonsingular differential system

£:2(g+j2)7 g:_lv

that is, a differential system without singular points.

This second mechanism is called algebraic reducibility, see [6]. Also
in [6] it is mentioned the algebraic reversible mechanism. This method
consists in to find an algebraic map that transforms our original sys-
tem into a time-reversible system. In [26] it is introduced the rationally
reversibility mechanism, which is a particular case of the algebraic re-
versible mechanism because in this case the map is assumed rational.
However any algebraic reversible system or rational reversible system
is also algebraic reducible, see [6].

In [6] it is proved that these two general mechanisms 1) by finding
a first integral using Darboux methods, and 2) by producing a system
with the help of a pull-back of a nonsingular differential system along
a map of algebraic nature are the two general methods that give all the
centers of the Liénard and Cherkas polynomial differential systems, i.e.,
systems (2) and (4) respectively. The main result proved in [6] is the
following.

Theorem 1. System (6) with Py(0) = 0, P3(0) > 0 and P;(0) < 0
has a center at the origin if and only if it satisfies one of the following
(possibly overlapping) conditions.

(i) The system is algebraic reducible via the map (z,y) — (z,y?)
and thus it has a symmetry with respect to the x-axis.

(ii) The system is algebraic reducible via the map (x,y) — (M (z)"/,
yR(z)Y9), where M and R are rational functions in x over R
with r,q € Z and M(x)'/" of order 2 at x =0 (i.e. M(x)"/" =
O(z?)) and R(0) # 0.

(iii) There is a local first integral of Darbouz type.

However these two mechanisms, Liouville integrability and algebraic
reducibility are both of algebraic nature because in the first case the
map is algebraic and in the second case the system has an integrating
factor of the form (7) and both methods can be unified in a unique way
as the following result shows.

3. STATEMENT OF THE MAIN RESULTS

The next result summarizes the results obtained up to now for poly-
nomial differential (2) and (4). The following result was proved in
1, 6].
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Theorem 2. Any center of a polynomial differential system (2) or (4)
15 Liouville integrable or algebraic reducible.

Here reducible means that the polynomial differential system with a
center is the pull-back of a nonsingular differential system via a map
of algebraic nature. We note that Theorem 2 is a particular case of the
next result where both mechanisms are unified. This is due, first to
the fact that all the centers of systems (2) or (4) which are algebraic
reducible are analytical reducible, and second the centers of systems
(2) or (4) which are Liouville integrable can be written in the Poincaré
normal form and following the steps of the proof of Theorem 3 it follows
that they analytical reducible.

Theorem 3. Any nondegenerate center of an analytic differential sys-
tem is analytically reducible.

The most important in Theorem 2 with respect to Theorem 3 is its
applicability, because once we know that the centers of Theorem 2 can
be Liouville integrable we can look for their invariant algebraic curves
and their exponential factors, and using the Darboux theory of integra-
bility (see for more details Chapter 8 of [8]) find an integrating factor
for those systems, and after the Liouvillian first integral associated to
this integrating factor. On the other hand Theorem 3 is difficult to
apply because in general we only can compute some of the terms of
the Taylor series of the analytic change for writing the system into its
Poincaré normal form and actually we do not know the analytic change,
see for more for instance [11].

Given a differential system we can propose a transformation to the
Poincaré normal form and find the necessary conditions but it never
gives you the sufficient conditions. However the algebraic nature of the
algebraic reducibility, or of the Liouville integrability allows to find, in
general, the transformation to the nonsingular differential system, or
to the Liouville first integral providing the sufficient conditions. Hence
Theorem 2 can be used to classify the centers of a family of differential
systems when we have found the necessary conditions, see for instance
the next Theorems 4 and 5.

An open question is: Are there nondegenerate centers of polynomial
differential systems which are neither Liouville integrable, nor algebraic
reducible?
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In this paper we give the center conditions for systems of the form
(4) with f, g and h of degree < 4, that is, a system of the form

T =y,
(10) y=—z— box? — b3x® — byt — (@ + ag® + azz® + asxt)y,
— (11 + co2® + 33 + cqxt)y?,
where a;, b; and ¢; € R.

The next two theorems are the main results of this paper.

Theorem 4. Cherkas polynomial differential systems (10) with a4y =
by = ¢4 = 0 have a center if and only if one of the following conditions
holds.

= a3 = s
(C az = aibs, az = abs, co = c1by, c3 = c1bs.

In [13] were found necessary and sufficient conditions for the origin
of system (10) with ¢; = ¢o = ¢3 = ¢4 = 0 to be a center, i.e. the
Liénard systems where f and g are of degree < 4. In fact the Liénard
systems where f and g are of degree < 5 are classified.

Theorem 5. Cherkas polynomial differential systems (10) have a cen-
ter if one of the following conditions holds.

(a) a2262202:a4:b4:c4:0,

(b) a1 =ay =a3=a4 =0,

(¢) az = aiby, a3 = aibs, as = a1by, cy = c1by, c3 = c1bs, ¢4 = c1by.

Using modular arithmetics we have proved that with very high prob-
ability the unique center cases of system (4) when f, g and h are of
degree 4 are the given in Theorem 5. ;From the previous results and
other partial computations for bigger degree using modular arithmetics
we can establish the following conjecture.

Conjecture 6. Cherkas polynomial differential systems (4) with f, g
and h # 0 of degree n have a center if, and only if, one of the following
conditions holds.

(a) a; =b; =c; =0 fori even,

(b) a; =0 for all 1,

(¢) a; = a1b; and ¢; = c1b; fori > 2,

We have excluded from Conjecture 6 the Liénard systems that have
any other centers, see [4, 13]. For instance the conditions as = a1bs,
as = a4b5/b4, ay = a3b4/b3, b5 = 2b2b4/5, b4 = 5b2b3/3, a; = bl = 0 for
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i > 6 and ¢; = 0 for all 7 give a center for system (4) that indeed is a
center of a Liénard system because h = 0.

The proofs of Theorems 4 and 5 are given in sections 5 and 6 re-
spectively. In fact the Cherkas polynomial differential systems with a
center of fixed degree are more simple than the families with centers
described in Theorem 1 as you can see in section 6.

4. PROOF OF THEOREM 3

Poincaré [21] showed that for a nondegenerated center of an analytic
system there is always a local analytic change of coordinates of the
form u =z + o|(z,y)|), v =y + o(|(z,y)|) and an analytic function ¢
which transforms the analytic system into

(11) 0= —v(1+Pu* +v?)), v = u(l+P(u® + v?)).

Hence the Poincaré normal form of any center of an analytic differ-
ential system is analytically reversible because it is invariant under
the symmetry (u,v,t) — (—u,v, —t). Now doing a scaling of time we
obtain the linear system @ = —v and v = wu. This linear system is
reducible by the polynomial map (@, ) — (u?,v). Deriving we have
U = 2ui = —2uv = —2uv, and ¥ = u. Finally doing a scaling of
time we obtain the nonsingular differential equation

U= —20, v=1.

Consequently any analytic differential system with a non degenerate
center is analytically reducible in a neighborhood of this center be-
cause by an analytic change we arrive to the normal form
(11) and later via an algebraic map and a scaling of time we
reduce the system to a nonsingular differential equation.

5. PROOF OF THEOREM 4

In order to compute the necessary conditions we use the classical
method of construction of a formal first integral. In system (10) we
introduce the change of variables = rcosf and y = rsinf and we
propose the Poincaré power series

H(r,0) =Y H,(0)r™,

m=2

where Hy(0) = 1/2 and H,,(f) are homogeneous trigonometric poly-
nomials respect to 6 of degree m. Imposing that this power series is a
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formal first integral of the transformed system we obtain
H(’I‘, 9) = Z ‘/2kr2k7
k=2

where V5, are the focal values which are polynomials in the parameters
of system (10), see [15, 23]. The first nonzero focal value is V; =
—ag + a1be. The second nonzero focal value is

Ve = 4a%a2 — bay — 4ai’b2 + 10asby + 5a2b§ — 5alb§
+ 3@2[)3 — 13a1b2b3 + 6(1154 + 3@201 - 5@1()201 + 2@102.

The size of the next focal values sharply increases so we do not present
the other polynomials here but the reader can easily compute them.
Due to the Hilbert Basis theorem, the ideal J = (Vj, V4, ...) generated
by the focal values is finitely generated, i.e. there exist vy, vs,..., Vg
in J such that J = (vy,vq,...,u5). Such set of generators is a basis
of J and the conditions v; = 0 for j = 1,...,k provide a finite set
of necessary and sufficient conditions to have a center for system (10).
We compute a certain number of focal values thinking that inside these
number there is the set of generators. We decompose this algebraic set
into its irreducible components using a computer algebra system. The
computational tool used is the routine minAssGTZ [7] of the computer
algebra system SINGULAR [17] which is based on the Gianni-Trager-
Zacharias algorithm [10]. The computations have been completed in
the field of rational numbers so we know that the decomposition of the
center variety is complete.

To verify if the number of focal values computed a priori is enough
to generate the full ideal B := (Vo : k € N) we proceed as follows:

Let B; be the ideal generated only by the first ¢ focal values, i.e., B; =
(Vi, ..., Vo). We want to determine s so that V(B) = V(B;), being
V' the variety of the ideals B and By, respectively. Using the Radical
Membership Test [23] we can find when the computation stabilizes in
the sense that /B,_; C /By but VB, = \/By.1. It is clear that
V(B) C V(B;s). However to verify the opposite inclusion we need to
obtain the irreducible decomposition of the variety of V(B;) (given by
the cases presented in the statement of the theorem) and check that
any point of each component corresponds to a system having a center
at the origin.

As all the centers are particular cases of Theorem 5 the proof of the
sufficient conditions can be followed in the proof of Theorem 5 given
in the next section.
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6. PROOF OF THEOREM 5

For statement (a) we have that system (10) with ay = by = a4 =
by = ag = bg = 0 is invariant by the symmetry (x,y,t) — (—z,y, —t)
and therefore the phase portrait is symmetric respect to a line passing

through the origin and consequently it has a center at the origin.
Under the assumptions of statement (b) system (10) becomes
T =Y,
12) . b2 g 3 4 2 3 4y, 2
Y =—1x—byx® — b3z’ — by — (1@ + cox” + c32° + cqx”) Y7,

which is invariant by the symmetry (z,y,t) — (x, —y, —t) and therefore
it has a center at the origin.
Under the assumptions of statement (c) system (10) takes the form

T =y,

13
(13) g =—x(1 + byw 4 bsa® + bya®) (1 + ary + c19?),

which is a system that defines an equation of separable variables and
has a first integral of the form

a1+2cqy

—_a2
4cq ay

60 aq arctan
c1(302%+20by2° +15b3 2 +12b42%) — i —a? 2130
o
H(z,y)=e T (I4aytay’)”

if 4c; — af # 0 and if 4¢; — af = 0 it has a first integral of the form

222 (30420byz+15b322 +12bg )+ 5239
H(a:,y) :ealz( +20b22+15b3x+12bg )+2+a1y(2+a1y)240.

Both first integrals are well-defined in a neighborhood of the origin,
and then system (10) has a center at the origin.

7. NECESSARY CONDITIONS FOR SYSTEM (10)

Due to its complexity, we are not able to compute the decomposition
of the ideal generated only by the first ¢ focal values B; over the rational
field for system (10). Hence we use modular arithmetics. In fact the
decomposition is obtained over characteristic 32003. We go back to the
rational numbers using the rational reconstruction algorithm of Wang
et al. [25].

Because we have used modular arithmetics we must check if the de-
composition is complete and no component is lost. In order to do
that let P; denotes the polynomial defining each component. Us-
ing the instruction intersect of Singular we compute the intersec-
tion P = M;P; = (p1,...,pm). By the Strong Hilbert Nullstellensatz
(see for instance [23]) to check whether V(B;) = V(P) it is suffi-
cient to check if the radicals of the ideals are the same, that is, if
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\/Fj = /P. Computing over characteristic 0 reducing Grébner bases
of ideals (1 — wVay, P : Vo, € B;) we find that each of them is {1}. By
the Radical Membership Test this implies that \/E C v/P. To check
the opposite inclusion, v P C \/FJ it is sufficient to check that

(14) (1—wpy,Bj:k=1,...,m)=(1).

Using the Radical Membership Test to check if (14) is true, we were
not able to complete computations working in the field of characteristic
zero. However we have checked that (14) holds in several polynomial
rings over fields of finite characteristic. It means that (14) and conse-
quently V(B;) = V(P) holds with high probability, see [22].

We have performed the same computations for higher-degree Cherkas
polynomial differential systems with restrictions in the parameters get-
ting the same results which has led us to establish Conjecture 6.
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