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Abstract. In this paper we give a new upper bound for the degree of a class of transver-

sal to infinity invariant algebraic curves for polynomial Kukles systems of arbitrary de-

gree. Moreover, we prove that a quadratic Kukles system having at least one transversal
to infinity invariant algebraic curve is integrable.

1. Introduction

Darboux in 1878 published his seminal works [4] and [5], where he showed that a planar
polynomial differential system with a sufficient number of invariant algebraic curves has a
first integral. Since that time, the research and computation of invariant curves in planar
polynomial vector fields has been intensive. See [2,3,6–8] and references there in. However,
to determine whether a concrete planar polynomial system has invariant algebraic curves
or not, as well as the properties of such curves: degree, connected components, etc. can be
extremely difficult problems.

In this work, we consider real Kukles systems of the form

ẋ = −y, ẏ = Q(x, y), (1)

where Q(x, y) is a real polynomial of degree at least two and without y as a divisor.
Our main result is next.

Theorem 1. Let {F = 0} be a transversal to infinity invariant algebraic curve of degree
n of the Kukles system (1) of degree d ≥ 2. Supposes that x is not a divisor of the higher
degree homogeneous part of F . Then

(1) If d ≤ 3, then n ≤ 2.
(2) If d ≥ 4, then n ≤ d− 2.

Theorem 1 is an improvement of the following result: if a Kukles system of degree d ≥ 2
admits a transverse to infinity invariant algebraic curve, then the degree of the curve is at
most d. This assertion was showed in [1] and we will give an elementary proof in Section 3.

We also study the roll that transverse to infinity algebraic curves plays in the integrability
of Kukles systems. We prove the following result.
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2 O. OSUNA, S. REBOLLO–PERDOMO, AND G. VILLASEÑOR

Theorem 2. Any quadratic Kukles system supporting one transversal to infinity invariant
algebraic curve is integrable.

The paper is organized as follows. In Section 2 we recall some basic definitions. Theorem
1 will be proved in Section 3. Finally, Section 4 is devoted to quadratic Kukles systems and
we will prove Theorem 2.

2. preliminaries

As usual we denote by R[x, y] the ring of the polynomials in the real variables x and y
with real coefficients. We recall that an algebraic curve of degree n is the zero-locus

{F = 0} := {(x, y) ∈ R2 |F (x, y) = 0}
of a polynomial F ∈ R[x, y] of degree n, and that a polynomial vector field X of degree d in
R2 is an expression of the form

X = P
∂

∂x
+ Q

∂

∂y
, (2)

where P,Q ∈ R[x, y], and d = max{deg(P ),deg(Q)}. Thus, each polynomial differential
system

ẋ = P (x, y), ẏ = Q(x, y), (3)

has associated a polynomial vector field X = P ∂
∂x + Q ∂

∂y .

An invariant algebraic curve of system (3) or equivalently of the vector field (2) is an
algebraic curve {F = 0} such that the polynomial F satisfies the linear partial differential
equation

PFx + QFy = KF, (4)

for some K ∈ R[x, y]. Here Fx and Fy denote the partial derivatives of F respect to x and
y, respectively.

The left-hand side of (4) is the scalar product between X and the gradient of F . As the
gradient of F is orthogonal to {F = 0} and the right-hand side of (4) vanishes on {F = 0},
then X is tangent to {F = 0}, this fact implies that {F = 0} is invariant by the flow of X .
This property justifies that {F = 0} be called an invariant curve.

The polynomial K is called the cofactor of {F = 0}. From (4) we have that if X has
degree d, then each invariant algebraic curve has cofactor of degree at most d− 1.

An important tool that connects integrability and limit cycles of a vector field is the
inverse integrating factor. Recall that a function V : U ⊂ R2 → R is said to be an inverse
integrating factor of system (3) or equivalently of X if it is of class C1(U), it is not locally
null, and it satisfies the following partial differential equation:

X V = PVx + QVy = V divX , (5)

where divX := ∂P
∂x + ∂Q

∂y is the divergence of the vector field X .

The name “inverse integrating factor” for the function V comes from the fact that its
reciprocal 1/V is an integrating factor for system (1) on U \ V −1(0).
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INVARIANT ALGEBRAIC CURVES FOR KUKLES SYSTEMS 3

2.1. Homogeneous decomposition of invariant algebraic curves. Recall that each
polynomial F ∈ R[x, y] of degree n can be written as

F =

n∑

i=0

Fi

where Fi means the homogeneous part of degree i of F . By writing

P =

d∑

i=0

Pi, Q =

d∑

i=0

Qi, and K =

d−1∑

i=0

Ki,

the equation (4) becomes

d+n−1∑

l=0




∑

i+j=l
i≤d, j≤n−1

Pi(Fj+1)x + Qi(Fj+1)y


 =

d+n−1∑

l=0




∑

i+j=l
i≤d−1, j≤n

KiFj


 . (6)

This equation (6) for the case l = d + n− 1 is

Pd(Fn)x + Qd(Fn)y = Kd−1Fn, (7)

which implies the following result.

Lemma 1. If (7) does not have a solution (Kd−1, Fn), then X does not have invariant
algebraic curves.

An algebraic curve {F = 0} is called transversal to infinity if Fn factors as a product of
n pairwise different linear forms. An algebraic curve {F = 0} is said to be non-singular if
there is not any point (x0, y0) such that F (x0, y0) = Fx(x0, y0) = Fy(x0, y0) = 0.

Lemma 2. Let H be a transversal to infinity homogeneous polynomial of degree n. Either
gcd(H,Hy) = 1 or gcd(H,Hy) = x.

Proof. Let ax + by be a linear factor of H such that ax + by |Hy. From the Euler identity
xHx + yHy = nH it follows that ax + by |xHx. Since gcd(Hx, Hy) = 1 because H is
transversal to infinity, ax + by |x. Hence, b = 0 and as H is transversal to infinity x have
multiplicity one. Therefore, gcd(H,Hy) = x otherwise gcd(H,Hy) = 1. �

3. Some general results of Kukles systems

A simple computation shows that equation (6) for a Kukles system (1) of degree d ≥ 2
can be written as

C0 +

n∑

l=1

(Cl − y(Fl)x) +

d+n−1∑

l=n+1

Cl =

d+n−1∑

l=0

Dl, (8)

where
Cl =

∑

i+j=l
i≤d, j≤n−1

Qi(Fj+1)y and Dl =
∑

i+j=l
i≤d−1, j≤n

KiFj .
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4 O. OSUNA, S. REBOLLO–PERDOMO, AND G. VILLASEÑOR

In particular, we have Cl = Dl for l = d + n− 1, d + n− 2, . . . , n + 1, that is,

Qd(Fn)y = Kd−1Fn

Qd−1(Fn)y + Qd(Fn−1)y = Kd−1Fn−1 + Kd−2Fn

...
Q2(Fn)y + · · ·+ Qd(Fn−d+2)y = Kd−1Fn−d+2 + · · ·+ K1Fn.

(9)

Our first result on the kind of invariant algebraic curves that a Kukles system can support
is the following.

Lemma 3. Let F be a transversal to infinity invariant algebraic curve of degree two of the
Kukles system (1) of degree d = 2, then x - F2, i.e., gcd(F2, (F2)y) = 1.

Proof. Suppose that F = xR1 + F1 + F0 is a transversal to infinity invariant curve of the
quadratic Kukles system with cofactor K of degree at most one. Direct computations on
the correspondig equation (4) yields R1 ≡ 0, contradiction. �

By following similar ideas we can prove the next result which is not new in this paper
since it follows from [1, Proposition 6], but we will give an elementary proof by using (9).

Proposition 1. If {F = 0} is a transversal to infinity invariant algebraic curve of degree
n of the Kukles system (1) of degree d ≥ 2, then n ≤ d.

Proof. By using the Euler identity x(Fn)x + y(Fn)y = nFn we can write the first identity in
(9) as

nQd(Fn)y = Kd−1(x(Fn)x + y(Fn)y)

or equivalently
(nQd − yKd−1)(Fn)y = (xKd−1)(Fn)x.

Since F is transversal to infinity, (Fn)x and (Fn)y does not have factors in common.
That implies that there exists a polynomial S such that xKd−1 = S(Fn)y and nQd −
yKd−1 = S(Fn)x. Moreover, we note that S is a non zero polynomial. Thus, n − 1 =
max{deg(Fn)x,deg(Fn)y} ≤ degQd = d. Hence n ≤ d + 1.

From Lemma 2 we have two cases: gcd(Fn, (Fn)y) = 1 or gcd(Fn, (Fn)y) = x. In the
first case the first equation in (9) holds if and only if there exists a polynomial S such that
Kd−1 = S(Fn)y and Qd = SFn. Hence, n = degF = degFn ≤ degQd = d.

To complete the proof we will prove that if gcd(Fn, (Fn)y) = x and n = d + 1, then
{F = 0} is not an invariant algebraic curve of (1).

Suppose F = F0 + F1 + · · · + Fd+1, Fd+1 = xRd, with Rd a homogeneous polynomial
of degree d which is transversal to infinity. Moreover, as Fd+1 is transversal to infinity it
follows from Lemma 2 that gcd(Rd, (Rd)y) = 1. From the first identity in (9) we get

Qd(Rd)y = Kd−1Rd.

Hence, there exists a nonzero constant c1 such that Qd = c1Rd and Kd−1 = c1(Rd)y. Thus,
Kd−1 = (Qd)y. From the second identity in (9) and using the previous expressions we obtain

Qd−1(x(Rd)y) + c1Rd(Fd)y = c1(Rd)yFd + Kd−2xRd,
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INVARIANT ALGEBRAIC CURVES FOR KUKLES SYSTEMS 5

which can be written as

(xQd−1 − c1Fd)(Rd)y = (xKd−2 − c1(Fd)y)Rd.

Since gcd(Rd, (Rd)y) = 1, there exists a constant c2 such that

xQd−1 − c1Fd = c2Rd and xKd−2 − c1(Fd)y = c2(Rd)y.

Thus, as Rd = Qd/c1 we get

Fd = −c2
c21

Qd +
x

c1
Qd−1, (Fd)y = −c2

c21
(Qd)y +

x

c1
Kd−2, and Kd−2 = (Qd−1)y.

By using these last expressions of Fd, (Fd)y, and Kd−2, as well as, the expressions of
Fd+1, (Fd+1)y, Kd−1, and Qd in the third identity of (9), and reordering terms we obtain

(
xQd−2 −

c2
c1

Qd−1 − c1Fd−1

)
(Rd)y =

(
xKd−3 −

c2
c1

(Qd−1)y − c1(Fd−1)y

)
Rd.

Again, since gcd(Rd, (Rd)y) = 1, the previous equation holds if and only if

Fd−1 = −c2
c21

Qd−1 +
x

c1
Qd−2, (Fd−1)y = −c2

c21
(Qd−1)y +

x

c1
Kd−3, and Kd−3 = (Qd−2)y.

By applying the same idea in the subsequent identities of (9) is easy to see that

Fi = −c2
c21

Qi +
x

c1
Qi−1, (Fi)y = −c2

c21
(Qi)y +

x

c1
Ki−2, and Ki−2 = (Qi−1)y

for i = 3, 4, . . . , d.
By replacing all these expressions in the case l = d+1 of (8) we get, after a straightforward

computation, the following

y(Fd+1)x +

(
xQ1 −

c2
c1

Q2 − c1F2

)
(Rd)y =

(
xK0 −

c2
c1

(Q2)y − c1(F2)y

)
Rd.

Since Fd+1 = xRd and x(Rd)x+y(Rd)y = dRd is homogeneous, (Fd+1)x = (d+1)Rd−y(Rd)y.
By replacing this in previous equation we obtain

(
xQ1 −

c2
c1

Q2 − c1F2 − y2
)

(Rd)y =

(
xK0 −

c2
c1

(Q2)y − c1(F2)y − (d + 1)y

)
Rd.

Hence, since gcd(Rd, (Rd)y) = 1, there exists a constant c3 such that

F2 = −c3
c1

Rd −
c2
c21

Q2 +
x

c1
Q1 −

1

c1
y2

and

(F2)y = −c3
c1

(Rd)y −
c2
c21

(Q2)y +
x

c1
K0 −

d + 1

c1
y2,

which is a contradiction because these two expressions are incompatible for d ≥ 2. We notice
that for the case d = 2 the constant c2 does not exists because in such a case (9) has only
one identity, and hence we can take c2 = 0 in the two previous equations. �



h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

6 O. OSUNA, S. REBOLLO–PERDOMO, AND G. VILLASEÑOR

Remark 1. There are differential systems of degree d having transversal to infinity invariant
algebraic curves of degree d + 1. For instance, the system

ẋ = 2x2 − 3xy − x− 2, ẏ = −2xy + y2 − 2x + y,

has the invariant algebraic curve {V (x, y) = −x2y + xy2 − x2 + xy + y + 1 = 0}, which is
transversal to infinity, with cofactor R = 2x− y.

3.1. Characterization of the Kukles systems. Next result gives some conditions on the
Kukles systems that have invariant algebraic curves which are transversal to infinity, as well
as, on the cofactors of the invariant curves.

Proposition 2. If F is a transversal to infinity invariant algebraic curve of degree 2 ≤ n ≤ d
for the Kukles system (1) of degree d such that x - Fn, then there are d − 1 homogeneous
polynomials S0 and S1, . . . , Sd−2 of degrees d−n and at most d−n−1, . . . ,−n+2, respectively,
such that for each s ∈ {0, . . . , d− 2} we have

Qd−s =
s∑

i=0

SiFn−s+i and Kd−1−s =
s∑

i=0

Si (Fn−s+i)y .

Proof. By assumption F is transversal to infinity and x - Fn, then Lemma 2 implies that
Fn and (Fn)y do not have common factors. Hence, from the first identity in (9) it follows
that there is a homogeneous polynomial S0 of degree d− n such that

Qd = S0Fn and Kd−1 = S0(Fn)y. (10)

Replacing in second identity in (9) we obtain

Qd−1(Fn)y + S0Fn(Fn−1)y = S0(Fn)yFn−1 + Kd−2Fn

which is equivalent to

(Qd−1 − S0Fn−1) (Fn)y = (Kd−2 − S0(Fn−1)y)Fn.

Again as Fn and (Fn)y do not have common factors there exists a homogeneous polynomial
S1 of degree at most d− n− 1 such that

Qd−1 − S0Fn−1 = S1Fn and Kd−2 − S0(Fn−1)y = S1(Fn)y.

Thus,
Qd−1 = S0Fn−1 + S1Fn and Kd−2 = S0(Fn−1)y + S1(Fn)y.

The rest of the proof follows by applying the previous idea in the subsequent equations in
(9). �
Corollary 1. If Kukles system (1) is of degree d and admits a transversal to infinity in-
variant algebraic curve of degree d, then Q is transversal to infinity.

Proof. Follows from (10) because S0 must be a non-zero constant. �
Remark 2. In Proposition 2 only we can guarantee that the polynomial S0 is non zero. The
rest of the polynomials Si maybe some or all of them could be zero.
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3.2. Proof of Theorem 1.

Proof of Theorem 1. Suppose that {F = 0} is a transversal to infinity invariant algebraic
curves of degree n of the Kukles system (1) of degree d such that x - Fn. The proof will
be split in two cases: d ≥ 3 and d ≥ 4. For these two cases, we will prove that the Kukles
system does not support transversal to infinity invariant algebraic curves of degree n = d
and n = d− 1, respectively. The proof follows from these two assertions and Proposition 1.
Case d ≥ 3. Suppose n = d. From Proposition 2 it follows that S2 = · · · = Sn−1 = 0 and
S1 is a constant. Thus,

Qd = S1Fn, Qd−1 = S1Fn−1, . . . , Q2 = S1F2

and

Kd−1 = S1(Fn)y, Kd−2 = S1(Fn−1)y, . . . , K1 = S1(F2)y.

By replacing these expressions in the case l = n = d of (8) and reordering terms we obtain

(Q1 − S1F1)(Fd)y − y(Fd)x = (K0 − S1(F1)y)Fd.

On the other hand, since Fd is homogeneous we have

y(Fd)y + x(Fd)x = dFd

Hence, from these two last equations we get

(d(Q1 − S1F1)− (K0 − S1(F1)y)y) (Fd)y = (d y + (K0 − S1(F1)y)x) (Fd)x

Since (Fd)x and (Fd)y do not have common factors (F is transversal to infinity), there is a
polynomial T such that

d(Q1 − S1F1)− (K0 − S1(F1)y)y = T (Fd)x

and

d y + (K0 − S1(F1)y)x = T (Fd)y,

which is a contradiction because d y + (K0 − S1(F1)y)x is a linear polynomial and (Fd)y is
of degree at least two. Therefore, we have proved that n ≤ d− 1.

Case d ≥ 4. Suppose n = d−1. From Proposition 2 it follows that S3 = · · · = Sn−1 = 0, S1

is a polynomial of degree 1 and S2 is a constant. Thus,

Qd = S1Fn, Qd−1 = S1Fn−1 + S2Fn, . . . , Q3 = S1F2 + S2F3 (11)

and

Kd−1 = S1(Fn)y, Kd−2 = S1(Fn−1)y + S2(Fn)y, . . . , K2 = S1(F2)y + S2(F3)y. (12)

By replacing these expressions in the case l = d = n + 1 of (8), and following same ideas
as in previous case we get

[Q2 − S1F1 − S2F2](Fd−1)y = [K1 − S1(F1)y − S2(F2)y]Fd−1.
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(Fd−1)y and (Fd−1) do not have common factors because F is transversal to infinity. More-
over, from the hypothesis, d− 1 ≥ 3. Thus, previous equation holds if and only if

Q2 = S1F1 + S2F2 and K1 = S1(F1)y + S2(F2)y. (13)

By replacing (11),(12), and (13) in the case l = n = d−1 of (8), and reducing and reordering
terms we have

[Q1 − S1F0 − S2F1](Fd−1)y − y(Fd−1)x = [K0 − S2(F1)y]Fd−1.

Since Fd−1 is homogeneous,

y(Fd−1)y + x(Fd−1)x = (d− 1)Fd−1.

Hence, from these two last equations we get

[(d− 1) (Q1 − S1F0 − S2F1)− y (K0 − S2(F1)y)] (Fd−1)y =

[(d− 1)y + x (K0 − S2(F1)y)] (Fd−1)x.

(Fd−1)x and (Fd−1)y are polynomials of degree at least two and do not have common factors.
Hence, by comparing degrees, previous equation is impossible. This proves that n ≤ d −
2. �

4. Kukles systems of degree two

In this section we will consider the Kukles systems of degree two

ẋ = −y, ẏ = Q(x, y), (14)

where Q = Q(x, y) = q00 + q10x + q01y + q20x
2 + q11yx + q02y

2 and y - Q.

Lemma 4. Each Kukles system (14) with Q transversal to infinity can be transformed in
one, and only one, of the following three systems

ẋ = −y, ẏ = q00 + q10x + q01y + q20x
2 + q11yx + y2, (15)

with q20 6= 0 and q211 − 4q20 6= 0;

ẋ = −y, ẏ = q00 + q10x + q11yx + y2, (16)

with q11 6= 0 and q200 + q210 > 0; or

ẋ = −y, ẏ = q00 + q10x + q20x
2 + yx, (17)

with q200 + q210 + q220 > 0.

Proof. If q02 6= 0 and q20 6= 0 in Q, then by using the linear transformation (x, y) →
(q02x, q02y) system (14) becomes (15). The condition q211 > 4q20 follows from the transver-
sality hypothesis on Q.

If q02 6= 0 and q20 = 0 in Q, then we must assume q11 6= 0, otherwise Q is no transversal
to infinity. Hence, by using the linear transformation (x, y) → ((q02(q11 + q01)/q11)x, q02y)
system (14) becomes (16). Finally, the condition q200 + q210 > 0 follows from y - Q.
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If q02 = 0 in Q, then q11 6= 0; otherwise Q is no transversal to infinity. By using the linear
transformation (x, y) → (q11x + q01, q11y) system (14) becomes (17). Again, the condition
q200 + q210 + q220 > 0 follows from y - Q. �

Proposition 3. A Kukles system (15) with q11 6= 0 has a transversal to infinity invariant
algebraic curves {F = 0} of degree 2 if and only if the following conditions hold:

(i) E := 2q01q20 − q10q11 − q11q20 = 0.
(ii) D := 4q00q20 − q210 + q220 = 0

Proof. We suppose that {F = 0} is a transversal to infinity invariant algebraic curve of
degree 2 of (15) and we will prove that (i) and (ii) hold.

From Lemma 3 and Proposition 2 we know that there is a nonzero constant S such that

Q2 = SF2 and K1 = S(F2)y.

By replacing these expressions in case l = 2 of (8) and reordering terms we get

(Q1 − SF1)(F2)y − y(F2)x = (K0 − S(F1)y)F2;

moreover, since F2 is homogeneous we have

y(F2)y + x(F2)x = 2F2.

Hence, by combining these two last equations we get

(2(Q1 − SF1)− y(K0 − S(F1)y)) (F2)y = (2 y + x(K0 − S(F1)y)) (F2)x.

Since F is transversal to infinity, (F2)x and (F2)y do not have common factors. Thus, there
exists a nonzero constant T such that

2(Q1 − SF1)− y(K0 − S(F1)y) = T (F2)x (18)

and

2 y + x(K0 − S(F1)y) = T (F2)y. (19)

We multiply (18) and (19) by x and y, respectively. The addition of the resulting expres-
sions yields

2x(Q1 − SF1) + 2y2 = 2TF2. (20)

The derivative of (19) with respect to y gives 2 = T (F2)yy. Since 2 = (Q2)yy = S(F2)yy,
T = S. Hence (20) becomes

x(Q1 − SF1) + y2 = Q2,

which, by using the expression of Q2, reduces to Q1 − SF1 = q20x + q11y, whence

F1 =
q10 − q20

S
x +

q01 − q11
S

y (21)

We now compute the derivative of (18) and (19) with respect to y and x, respectively.
As [T (F2)x]y = [T (F2)y]x we obtain

[2(Q1 − SF1)− y(K0 − S(F1)y)]y = [2 y + x(K0 − S(F1)y)]x ,
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that is

2[(Q1)y − S(F1)y]− (K0 − S(F1)y) = K0 − S(F1)y,

whence (Q1)y − S(F1)y = K0 − S(F1)y, which is equivalent to

K0 = (Q1)y.

The cases l = 1 and l = 0 of (8) are

Q0(F2)y + Q1(F1)y − y(F1)x = K0F1 + K1F0

and

Q0(F1)y = K0F0.

By using the expressions of F2, F1, K1, K0 and Q the previous two equations are equivalent
to

q00q11 + q01q20 − q10q11 − q11f00S = 0, (22)

2q00 − q10 + q20 − 2f00S = 0, (23)

and

q01(q00 − Sf00)− q00q11 = 0 (24)

We multiply (22) and (23) by 2 and −q11, respectively, then the addition of the resulting
equations is

2q01q20 − q10q11 − q11q20 = 0, (25)

which is condition (i) in the theorem. Now, we multiply (24) by 2 and by using (23) we
have

q01(q10 − q20)− 2q00q11 = 0.

Then we multiply last equation by 2q20, and by using (25) we obtain

−q11
(
4q00q20 − q210 + q220

)
= 0. (26)

Finally, since q11 6= 0, we obtain the condition (ii) given in the theorem.
For the converse, we consider the polynomials

F =
(q20 − q10)

2

4q20
− (q20 − q10)x− q11 (q20 − q10) y

2q20
+ q20x

2 + q11xy + y2

and

K =
q11 (q20 + q10)

2q20
+ q11x + 2 y.

A simple computation shows that XF −KF has the form

q11 (q10 − q20)D

8q202
+

q11Dx

4q20
+

(2Dq20 + E (q10 − q20) q11) y

4q202
+

q11Exy

2q20
+

Ey2

q20

Therefore, if (i) and (ii) hold, then {F = 0} is an invariant algebraic curve of X with
cofactor K. Moreover, F is transversal to infinity because q211 − 4q20 6= 0. This complete
the proof. �
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Corollary 2. A Kukles system (15) with q11 = 0 has a transversal to infinity invariant
algebraic curves {F = 0} of degree 2 if and only if q01 = 0.

Proof. The necessity part follows from (22).
Sufficiency. From (23) we get that

F = q00 −
q10
2

+
q20
2
− (q20 − q10)x + q20x

2 + y2

is an invariant algebraic curve of the system with cofactor K = 2 y. �

Proposition 4. A Kukles system (16) does not support transversal to infinity invariant
algebraic curves of degree two.

Proof. Suppose that {F = 0} is a transversal to infinity invariant algebraic curves of degree
two of (16). All equations obtained in the proof of previous proposition, except (26), can
be applied in this case. Hence, as in this case q20 = 0 and q11 6= 0, then from (25) we get
q10 = 0. Thus, (23) reduces to q00− f00S = 0. Therefore, from (24) we obtain q00 = 0. This
is a contradiction on the condition q200 + q210 > 0. �

Proposition 5. A Kukles system (17) does not support transversal to infinity invariant
algebraic curves of degree 2.

Proof. Any transversal to infinity invariant algebraic curve of a Kukles system must satisfy
(19). However, that equation does not hold under the conditions on system (17). �

4.1. Proof of Theorem 2.

Proof of Theorem 2. From Lemma 4, Proposition 3, Proposition 2, Proposition 4, and
Proposition 5 of previous section we obtain that a quadratic Kukles system with a transversal
to infinity invariant algebraic curve of degree two is of the form

ẋ = −y, ẏ =
q220 − q210

4q20
+ q10x +

q11(q20 + q10)

2q20
y + q20x

2 + q11yx + y2, (27)

with q11q20 6= 0 and q211 − 4q20 6= 0, or

ẋ = −y, ẏ = q00 + q10x + q20x
2 + y2, (28)

with q20 6= 0.
It follows from the proof of Proposition 3 that the zero locus of the polynomial

F1 =
(q20 − q10)

2

4q20
− (q20 − q10)x− q11 (q20 − q10) y

2q20
+ q20x

2 + q11xy + y2

is the unique invariant algebraic curve of (28), whose cofactor is

K =
q11 (q20 + q10)

2q20
+ q11x + 2 y.
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Analogously, from the proof of Proposition 2 it follows that the zero locus of the polynomial

F2 = q00 −
q10
2

+
q20
2
− (q20 − q10)x + q20x

2 + y2

is the unique invariant algebraic curve of (28), whose cofactor is K = 2 y.
If X denotes the vector field associated with system (27), then we see that K = divX ,

which implies that F1 is also an inverse integrating factor. Therefore, (27) is integrable.
Also, if X denotes the vector field associated with system (28), then we see that K = divX ,
which implies that F2 is also an inverse integrating factor. Therefore, (28) is integrable. �

Corollary 3. Any Kukles system (14) does not have quadratic limit cycles.

Proof. Each quadratic limit cycle of (14) must be a connected component, homeomorphic to
the unit circle, of a nonsingular invariant algebraic curve {V = 0} defined by a polynomial
V of degree two. We have two cases, either V is transversal to infinity or V takes the form
V = a0 + a1x + a2y + a3y

2 after a linear transformation if necessary. In the former, we
can suppose that V is one of the polynomials F1 or F2 given in previous proof. Thus, the
assertion follows because {F1 = 0} is singular and system (28) has the symmetry (x, y, t) 7→
(x,−y,−t). In the latter, {V = 0} does not have connected components homeomorphic to
the unit circle. �
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[1] J. Chavarriga, E. Sáez, I. Szántó, M. Grau, Coexistence of limit cycles and invariant algebraic

curves for a Kukles system, Nonlinear Analysis 59, (2004), 673–693.

[2] J. Chavarriga, H. Giacomini, M. Grau, Necessary conditions for the existence of invariant algebraic
curves for planar polynomial system, Bull. Sci. Math. 129, (2005), 99-126.

[3] C. Christopher, J. Llibre, C. Pantazi, X. Zhang, Darboux integrability and invariant algebraic

curves for planar polynomial systems, J. Phys. A: Math. Gen. 35 (2002), 2457-2476.
[4] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier
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