g5

http://www.gsd.uab.cat

This is a preprint of: “On a Class of Invariant Algebraic Curves for Kukles Systems”,

Osvaldo

Osuna, Salomén Rebollo-Perdomo, Gabriel Villasenor, Electron. J. Qual. Theo., vol. 2016(61),

1-12, 2016.
DOTI: [10.14232/ejqtde.2016.1.61]

ON A CLASS OF INVARIANT ALGEBRAIC CURVES FOR KUKLES
SYSTEMS

OSVALDO OSUNA, SALOMON REBOLLO-PERDOMO, AND GABRIEL VILLASENOR

[2010]primary 34C05; secondary 34C14, 37C10, 14H70
Kukles system, Invariant curve, Integrability, Limit cycle

ABSTRACT. In this paper we give a new upper bound for the degree of a class of transver-
sal to infinity invariant algebraic curves for polynomial Kukles systems of arbitrary de-
gree. Moreover, we prove that a quadratic Kukles system having at least one transversal
to infinity invariant algebraic curve is integrable.

1. INTRODUCTION

Darboux in 1878 published his seminal works [4] and [5], where he showed that a planar
polynomial differential system with a sufficient number of invariant algebraic curves has a
first integral. Since that time, the research and computation of invariant curves in planar
polynomial vector fields has been intensive. See [2,3,6-8] and references there in. However,
to determine whether a concrete planar polynomial system has invariant algebraic curves
or not, as well as the properties of such curves: degree, connected components, etc. can be
extremely difficult problems.

In this work, we consider real Kukles systems of the form

t=-y,  §=Q(xy), (1)

where Q(z,y) is a real polynomial of degree at least two and without y as a divisor.
Our main result is next.

Theorem 1. Let {F = 0} be a transversal to infinity invariant algebraic curve of degree
n of the Kukles system (1) of degree d > 2. Supposes that x is not a divisor of the higher
degree homogeneous part of F. Then

(1) If d < 3, then n < 2.

(2) If d > 4, thenn < d—2.

Theorem 1 is an improvement of the following result: if a Kukles system of degree d > 2
admits a transverse to infinity invariant algebraic curve, then the degree of the curve is at
most d. This assertion was showed in [1] and we will give an elementary proof in Section 3.

We also study the roll that transverse to infinity algebraic curves plays in the integrability
of Kukles systems. We prove the following result.
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Theorem 2. Any quadratic Kukles system supporting one transversal to infinity invariant
algebraic curve is integrable.

The paper is organized as follows. In Section 2 we recall some basic definitions. Theorem
1 will be proved in Section 3. Finally, Section 4 is devoted to quadratic Kukles systems and
we will prove Theorem 2.

2. PRELIMINARIES

As usual we denote by R[z,y| the ring of the polynomials in the real variables x and y
with real coefficients. We recall that an algebraic curve of degree n is the zero-locus

{F =0} :={(z,y) e R?| F(z,y) = 0}

of a polynomial F € R[z,y] of degree n, and that a polynomial vector field X of degree d in
R? is an expression of the form

) )
X =Py +Q5, 2)

where P,Q € R[z,y], and d = max{deg(P),deg(®)}. Thus, each polynomial differential
system

i:P(xay)a y:Q(xvy)v (3)
has associated a polynomial vector field X = P % + Qa%'

An invariant algebraic curve of system (3) or equivalently of the vector field (2) is an
algebraic curve {F = 0} such that the polynomial F satisfies the linear partial differential
equation

PF, +QF, = KF, (4)
for some K € Rz, y]. Here F, and F, denote the partial derivatives of F respect to = and
1y, respectively.

The left-hand side of (4) is the scalar product between X and the gradient of F'. As the
gradient of F is orthogonal to {F = 0} and the right-hand side of (4) vanishes on {F = 0},
then X is tangent to {F = 0}, this fact implies that {F = 0} is invariant by the flow of X.
This property justifies that {F = 0} be called an invariant curve.

The polynomial K is called the cofactor of {F = 0}. From (4) we have that if X has
degree d, then each invariant algebraic curve has cofactor of degree at most d — 1.

An important tool that connects integrability and limit cycles of a vector field is the
inverse integrating factor. Recall that a function V : U C R?2 — R is said to be an inverse
integrating factor of system (3) or equivalently of X if it is of class C''(U), it is not locally
null, and it satisfies the following partial differential equation:

XV =PV, +QV, = Vdivk, (5)
where divX := %—5 + % is the divergence of the vector field X

The name “inverse integrating factor” for the function V' comes from the fact that its
reciprocal 1/V is an integrating factor for system (1) on U \ V~1(0).
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2.1. Homogeneous decomposition of invariant algebraic curves. Recall that each
polynomial F € R[xz,y| of degree n can be written as

F=)"F
i=0
where F; means the homogeneous part of degree ¢ of F'. By writing
d d d—1
P=>"P, Q=) Q; and K=Y K,
i=0 i=0 i=0

the equation (4) becomes

d+n—1 d+n—1

> > PFi)e +QilFia)y | = D) > KiF|. (6)
1=0 itj=l 1=0 it+j=l
i<d,j<n—1 t<d—1,j<n
This equation (6) for the case I =d+mn—1is
Pd<Fn)m+Qd(Fn)y :delFﬁn (7)

which implies the following result.

Lemma 1. If (7) does not have a solution (Kq_1,Fy,), then X does not have invariant
algebraic curves.

An algebraic curve {F = 0} is called transversal to infinity if F;, factors as a product of
n pairwise different linear forms. An algebraic curve {F = 0} is said to be non-singular if
there is not any point (2o, yo) such that F(zo,yo) = Fz(z0,¥0) = Fy(z0,%0) = 0.

Lemma 2. Let H be a transversal to infinity homogeneous polynomial of degree n. FEither
gcd(H,Hy) =1 or ged(H, Hy) = x.

Proof. Let ax + by be a linear factor of H such that axz + by | H,. From the Euler identity
xHy + yH, = nH it follows that ax + by|zH,. Since gcd(H,, Hy) = 1 because H is
transversal to infinity, ax + by | z. Hence, b = 0 and as H is transversal to infinity = have
multiplicity one. Therefore, gcd(H, Hy) = x otherwise gcd(H, Hy) = 1. O

3. SOME GENERAL RESULTS OF KUKLES SYSTEMS

A simple computation shows that equation (6) for a Kukles system (1) of degree d > 2
can be written as

n d+n—1 d+n—1
Cot+Y (Ci—y(F))+ Y, Ci= Y D (8)
=1 I=n+1 =0
where
Cl = Z Qi(Fj_H)y and Dl = Z KiFj.
i+j=l i+j=l
i<d, j<n—1 i<d—1,j<n
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In particular, we have C; = D; forl =d+n—1,d+n—2,...,n+ 1, that is,

Qd(Fn)y = Kd—an
Qdfl(Fn)y +Qd(Fn71)y = deanfl +Kd72Fn (9)
Q2(Fn)y + -+ Qa(Frnay2)y = Ki1Fn aro+ -+ KiFy.

Our first result on the kind of invariant algebraic curves that a Kukles system can support
is the following.

Lemma 3. Let F be a transversal to infinity invariant algebraic curve of degree two of the
Kukles system (1) of degree d = 2, then x { Fy, i.e., ged(Fa, (Fa)y) = 1.

Proof. Suppose that F' = xRy + F; + Fp is a transversal to infinity invariant curve of the
quadratic Kukles system with cofactor K of degree at most one. Direct computations on
the correspondig equation (4) yields Ry = 0, contradiction. O

By following similar ideas we can prove the next result which is not new in this paper
since it follows from [1, Proposition 6], but we will give an elementary proof by using (9).

Proposition 1. If {F = 0} is a transversal to infinity invariant algebraic curve of degree
n of the Kukles system (1) of degree d > 2, then n < d.

Proof. By using the Euler identity z(F},); + y(Fy)y = nF, we can write the first identity in
(9) as

nQa(Fn)y = Ka-1(z(Fp)z +y(Fn)y)
or equivalently

(nQd - ydel)(Fn)y - (defl)(Fn)a:
Since F' is transversal to infinity, (Fy), and (F,), does not have factors in common.
That implies that there exists a polynomial S such that zK4 1 = S(F,), and nQq —
yKq—1 = S(F,).. Moreover, we note that S is a non zero polynomial. Thus, n — 1 =
max{deg(F,)s, deg(Fy)y} < degQq = d. Hence n < d + 1.

From Lemma 2 we have two cases: gcd(Fy, (Frn)y) = 1 or gcd(Fy, (Fp)y) = . In the
first case the first equation in (9) holds if and only if there exists a polynomial S such that
Kq_1=8(F,)y and Qq = SF,. Hence, n = deg F' = deg F, < degQq = d.

To complete the proof we will prove that if ged(F,, (F,),) = « and n = d + 1, then
{F = 0} is not an invariant algebraic curve of (1).

Suppose F' = Fy + Fy + -+ + Fyy1, Fagp1 = xRy, with R4 a homogeneous polynomial
of degree d which is transversal to infinity. Moreover, as Fjy41 is transversal to infinity it
follows from Lemma 2 that ged(Rq, (Rq)y) = 1. From the first identity in (9) we get

Qi(Ra)y = Kq_1Rq.

Hence, there exists a nonzero constant ¢; such that Qg4 = ¢1Rq and K41 = ¢1(Rg),. Thus,
K41 = (Qa)y. From the second identity in (9) and using the previous expressions we obtain

Qa-1(z(Ra)y) + c1Ra(Fq)y = c1(Ra)yFa + Kq—22Rq,
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which can be written as
(2Qa-1 — c1Fa)(Ra)y = (xKa—2 — c1(Fa)y)Ra-
Since ged(Rq, (Ra)y) = 1, there exists a constant ¢y such that
2Qq_1 —c1Fg=coRy and xKq_o — c1(Fa)y = c2(Ra)y-
Thus, as Ry = Qq/c1 we get
(&) x (6] x
Fo=—-5Qa+ —Qa1, (Fa)y=-75(Qa)y+ —Kao, and Kj o= (Qi 1)y
1 C1 1 (6]

By using these last expressions of Fy, (Fg)y, and Kq_o, as well as, the expressions of
Fat1, (Fas1)y, Kq—1, and Qg in the third identity of (9), and reordering terms we obtain

c c
(ﬁde - ;Qdfl - Cle1> (Ra)y = (deg - f(Qdfl)y - Cl(Fdl)y> R,.
1 1
Again, since ged(Rg, (Rq)y) = 1, the previous equation holds if and only if
c T c T
Fi_1 = _%Qd—l +—Qa—2, (Fa_1)y= —%(Qd—l)y-i- —Kq-3, and Ky 3= (Qi-2)y-
] c1 1 C1
By applying the same idea in the subsequent identities of (9) is easy to see that
c x c T
F; = —%Qi +—Qi—1, (Fi)y = _%(Qi)y + —Kip, and K; 2= (Qi-1)y
cy c1 1 C1

fori=3,4,...,d.
By replacing all these expressions in the case [ = d+1 of (8) we get, after a straightforward
computation, the following

Y(Fat1)s + <IQ1 - ng - C1F2> (Ra)y = (»TKO - %(Qﬁy - cl(F2)y) Ry.

Since Fyy1 = ¢Rq and 2(Rq) o +y(Ra)y = dRq is homogeneous, (Fyt1)z = (d+1)Rg—y(Ra)y-
By replacing this in previous equation we obtain

c c
(501 = 2~ 1 = 7 (o), = (i~ 2(@a), - 1(F2), ~ @+ 1y ) R
1 1
Hence, since gcd(Rq, (Ra)y) = 1, there exists a constant ¢z such that
C1

c c x 1
Fy=—"Ry— %QQ +=Q1 — —v°
CT C1 C1

and
d+1 4
v,
C1

C3 C9 x
(FZ)y = **(Rd)y - 7(Q2)y +—Ko -
Cc1 ] C1

which is a contradiction because these two expressions are incompatible for d > 2. We notice
that for the case d = 2 the constant ¢, does not exists because in such a case (9) has only
one identity, and hence we can take co = 0 in the two previous equations. O
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Remark 1. There are differential systems of degree d having transversal to infinity invariant
algebraic curves of degree d + 1. For instance, the system

i:2x273xy7x72, y:f2xy+y272m+y,
has the invariant algebraic curve {V (x,y) = —xy + xy? — 2% + 2y + y + 1 = 0}, which is
transversal to infinity, with cofactor R = 2x — y.
3.1. Characterization of the Kukles systems. Next result gives some conditions on the

Kukles systems that have invariant algebraic curves which are transversal to infinity, as well
as, on the cofactors of the invariant curves.

Proposition 2. If F' is a transversal to infinity invariant algebraic curve of degree 2 < n < d
for the Kukles system (1) of degree d such that x { F,,, then there are d — 1 homogeneous
polynomials So and S1, ...,Sq_o of degrees d—n and at most d—n—1, ..., —n—+2, respectively,
such that for each s € {0,...,d — 2} we have

Qd—s = Z SiFn—s+i and Kd—l—s = Z Sz (Fn—s+i)y .

i=0 i=0
Proof. By assumption F' is transversal to infinity and z t F,,, then Lemma 2 implies that

F,, and (F,), do not have common factors. Hence, from the first identity in (9) it follows
that there is a homogeneous polynomial Sy of degree d — n such that

Qa=SoF, and Kg_1 = So(Fn)y. (10)
Replacing in second identity in (9) we obtain
Qa-1(Fn)y + SoFn(Fpn-1)y = So(Fpn)yFn-1+ Kq—2F,
which is equivalent to
(Qa—1 = SoFn-1) (Fn)y = (Ka—2 = So(Fn-1)y) Fn.

Again as F,, and (F,,)y do not have common factors there exists a homogeneous polynomial
S1 of degree at most d — n — 1 such that

Qa—1— SoFn_1=51F, and Kg_o— So(Fn-1)y = S1(Fn)y-

Thus,
Qa—1=SoF_1 +51F, and Kg o= So(Fn_1)y+ S1(Fn)y-
The rest of the proof follows by applying the previous idea in the subsequent equations in

9). O

Corollary 1. If Kukles system (1) is of degree d and admits a transversal to infinity in-
variant algebraic curve of degree d, then @ is transversal to infinity.

Proof. Follows from (10) because Sy must be a non-zero constant. 0

Remark 2. In Proposition 2 only we can guarantee that the polynomial Sy is non zero. The
rest of the polynomials S; maybe some or all of them could be zero.
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3.2. Proof of Theorem 1.

Proof of Theorem 1. Suppose that {F = 0} is a transversal to infinity invariant algebraic
curves of degree n of the Kukles system (1) of degree d such that x 1 F,,. The proof will
be split in two cases: d > 3 and d > 4. For these two cases, we will prove that the Kukles
system does not support transversal to infinity invariant algebraic curves of degree n = d
and n = d — 1, respectively. The proof follows from these two assertions and Proposition 1.

Case d > 3. Suppose n = d. From Proposition 2 it follows that So = --- = 5,1 = 0 and
S is a constant. Thus,
Qd = Sana Qdfl = Sanfh cee QZ = SIFZ
and
Kig1=581(Fn)y, Ki—a=81(Fnzi)y, ..., Ki = 51(F2)y.

By replacing these expressions in the case [ = n = d of (8) and reordering terms we obtain
Q1= S1F1)(Fa)y — y(Fa)e = (Ko = S1(F1)y) Fa-
On the other hand, since Fy is homogeneous we have
Y(Fa)y + (Fa)s = d Fy
Hence, from these two last equations we get
(d(Q1 — S1F1) — (Ko — S1(F1)y)y) (Fa)y = (dy + (Ko — S1(F1)y)2) (Fa)a
Since (Fy), and (Fg), do not have common factors (F is transversal to infinity), there is a
polynomial T such that
d(@Q1 — S1F1) — (Ko — S1(F1)y)y = T(Fa)s
and
dy + (Ko — S1(F1)y)z = T(Fa)y,

which is a contradiction because dy + (Ko — S1(F1)y)x is a linear polynomial and (Fy), is
of degree at least two. Therefore, we have proved that n < d — 1.

Case d > 4. Suppose n = d— 1. From Proposition 2 it follows that S3 =---=5,_1 =0, S;
is a polynomial of degree 1 and S is a constant. Thus,
Qi=5S1F,, Qi—1=51F,_1+52F,, ..., Qs = 51F+ S2F3 (11)
and
Kig1=581(Fn)y, Ki—o=51(Fn1)y+S2(Fn)y, .., Ko = S1(Fa)y + Sa2(F3)y.  (12)

By replacing these expressions in the case I = d =n+ 1 of (8), and following same ideas
as in previous case we get

Q2 — S1F1 — SoF5](Fy—1)y = [K1 — S1(F1)y — S2(F)y|Fa-1.
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(Fg—1)y and (Fy—1) do not have common factors because F is transversal to infinity. More-
over, from the hypothesis, d — 1 > 3. Thus, previous equation holds if and only if

Q2 = S1F1 + SoFy and K= Sl(Fl)y + SQ(FQ)y. (13)

By replacing (11),(12), and (13) in the case I = n = d—1 of (8), and reducing and reordering
terms we have

[Q1— S1Fy — SoF1](Fy—1)y — y(Fa—1)e = Ko — S2(F1)ylFa_1.
Since Fy_1 is homogeneous,
Y(Fag—1)y + o(Fy—1)z = (d—1) Fy_1.
Hence, from these two last equations we get
[(d—1)(Q1— S1Fy — S2F1) — y (Ko — S2(F1)y)] (Fa-1)y =
[(d =Dy + z (Ko — S2(F1)y)] (Fi-1)e-
(Fg—1)5 and (Fy_1), are polynomials of degree at least two and do not have common factors.
Hence, by comparing degrees, previous equation is impossible. This proves that n < d —
2. O
4. KUKLES SYSTEMS OF DEGREE TWO
In this section we will consider the Kukles systems of degree two
i=-y,  §=Q(zy), (14)
where Q@ = Q(z,y) = qoo + q10 + qo1¥ + g202° + q11yx + qo2y® and y 1 Q.

Lemma 4. Each Kukles system (14) with @ transversal to infinity can be transformed in
one, and only one, of the following three systems

T =—y, ¥ = qoo + q10% + go1y + ¢207> + qriyz + 97, (15)
with gao # 0 and g7y — 4g20 # 0;
i=-y,  §=qoo+qor+quyr+y> (16)

with q11 # 0 and g3y + ¢2y > 0; or
T = —y, ¥ = qoo + qi0T + g202” + Yz, (17)
with g5y + q3o + a30 > 0.

Proof. If gp2 # 0 and ¢o9 # 0 in @, then by using the linear transformation (x,y) —
(qo2T, go2y) system (14) becomes (15). The condition ¢?; > 4qog follows from the transver-
sality hypothesis on Q.

If o2 # 0 and go9 = 0 in @, then we must assume ¢1; # 0, otherwise @ is no transversal
to infinity. Hence, by using the linear transformation (z,y) — ((go2(g11 + 901)/911)%, Go2y)
system (14) becomes (16). Finally, the condition ¢3, + ¢, > 0 follows from y { Q.
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If goo = 0in @, then ¢11 # 0; otherwise @ is no transversal to infinity. By using the linear
transformation (z,y) — (g112 + qo1, ¢11y) system (14) becomes (17). Again, the condition
@y + @3 + 439 > 0 follows from y 1 Q. O

Proposition 3. A Kukles system (15) with q11 # 0 has a transversal to infinity invariant
algebraic curves {F = 0} of degree 2 if and only if the following conditions hold:
(i) E := 2901920 — 10911 — q11q20 = 0.
(it) D :=4qo0q20 — qip + 430 = 0
Proof. We suppose that {F = 0} is a transversal to infinity invariant algebraic curve of
degree 2 of (15) and we will prove that (¢) and (i¢) hold.
From Lemma 3 and Proposition 2 we know that there is a nonzero constant S such that
Q2 :SF2 and Kl :S(Fg)y
By replacing these expressions in case | = 2 of (8) and reordering terms we get
(Q1 = SF1)(Fy)y — y(F2)e = (Ko — S(F1)y) Fo;
moreover, since F5 is homogeneous we have
Y(Fa)y + 2(Fy)z = 2 Fo.
Hence, by combining these two last equations we get
(2(Q1 = SF1) —y(Ko — S(F1)y)) (F2)y = 2y + 2(Ko — S(F1)y)) (F2)a-

Since F is transversal to infinity, (F3), and (F»), do not have common factors. Thus, there
exists a nonzero constant 7" such that

2(Qr — SFy) —y(Ko — S(F1)y) = T(F2)s (18)
and
2y + x(Ko — S(F1)y) = T(F2)y. (19)
We multiply (18) and (19) by = and y, respectively. The addition of the resulting expres-
sions yields
22(Q1 — SFy) + 2y = 2T F,. (20)
The derivative of (19) with respect to y gives 2 = T'(Fy)yy. Since 2 = (Q2)yy = S(F2)yy,
T = S. Hence (20) becomes
2(Q1— SF) +y* = Qs
which, by using the expression of @2, reduces to @1 — SF; = g0z + q11y, whence

d10 — 920 do1 — 411
S * s Y (1)
We now compute the derivative of (18) and (19) with respect to y and z, respectively.

As [T(F»).], = [T(F2)yls we obtain
2(Q1 — SF1) — y(Ko — S(F1)y)], = 2y + =(Ko — S(F1)y)],, »

Fy
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that is
2[(Q1)y - S(Fl)y] — (Ko — S(Fl)y) =Ko — S(Fl)w
whence (Q1)y — S(F1)y = Ko — S(F1)y, which is equivalent to
Ko = (Q1)y-
The cases [ =1 and [ = 0 of (8) are
Qo(F2)y + Q1(F1)y — y(F1)z = KoF1 + K1 Fy
and
Qo(F1)y = KoFyp.

By using the expressions of Fy, F}, K1, Ky and () the previous two equations are equivalent
to

400911 + 01920 — q10911 — q11.fo0S = 0, (22)
2g00 — q10 + q20 — 2f00S = 0, (23)

and
go1(go0 — Sfoo) — qoog11 =0 (24)

We multiply (22) and (23) by 2 and —q11, respectively, then the addition of the resulting
equations is

2901920 — Q10911 — Q11920 = 0, (25)
which is condition (7) in the theorem. Now, we multiply (24) by 2 and by using (23) we
have

q01(q10 — 920) — 2qoog11 = 0.
Then we multiply last equation by 2¢s0, and by using (25) we obtain

—qu1 (4q00g20 — @30 + @30) = 0. (26)
Finally, since g11 # 0, we obtain the condition (i) given in the theorem.
For the converse, we consider the polynomials

2
o (@20 —q0)” (420 — quo) & — 222 (920 — q10) ¥ + ga0r? + gy + o
4q20 2q20
and
+
K — q11 (Q20 Cho) tgnz+2v.

2¢20
A simple computation shows that XY F' — K F' has the form

q11 (g0 —q20) D quuDx  (2Dga0 + E (q10 — q20) q11)y | quFExy | Ey?

; - i + + =

8q20 4g20 4q20 2g20 720
Therefore, if (i) and (#i) hold, then {F = 0} is an invariant algebraic curve of X with
cofactor K. Moreover, F is transversal to infinity because ¢%; — 4go0 # 0. This complete
the proof. O
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Corollary 2. A Kukles system (15) with g11 = 0 has a transversal to infinity invariant
algebraic curves {F = 0} of degree 2 if and only if go1 = 0.

Proof. The necessity part follows from (22).
Sufficiency. From (23) we get that

qi0 | 420
F = qoo — 5t — (q20 — q10) = + g0 + ¥°
is an invariant algebraic curve of the system with cofactor K = 2y. O

Proposition 4. A Kukles system (16) does not support transversal to infinity invariant
algebraic curves of degree two.

Proof. Suppose that {F' = 0} is a transversal to infinity invariant algebraic curves of degree
two of (16). All equations obtained in the proof of previous proposition, except (26), can
be applied in this case. Hence, as in this case g0 = 0 and ¢11 # 0, then from (25) we get
g10 = 0. Thus, (23) reduces to goo — fooS = 0. Therefore, from (24) we obtain ggp = 0. This
is a contradiction on the condition ¢3, + ¢%, > 0. O

Proposition 5. A Kukles system (17) does not support transversal to infinity invariant
algebraic curves of degree 2.

Proof. Any transversal to infinity invariant algebraic curve of a Kukles system must satisfy
(19). However, that equation does not hold under the conditions on system (17). O

4.1. Proof of Theorem 2.

Proof of Theorem 2. From Lemma 4, Proposition 3, Proposition 2, Proposition 4, and
Proposition 5 of previous section we obtain that a quadratic Kukles system with a transversal
to infinity invariant algebraic curve of degree two is of the form

2 2
: , - +
&= —y, §= 420 — 410 + oz + q11(g20 + q10)
4g20 2¢20

Y+ g + quyr + 9>, (27)
with ¢11g20 # 0 and ¢3; — 4ga0 # 0, or
T = —y, ¥ = qoo + q10% + g207” + ¥, (28)

with q20 7é 0.
It follows from the proof of Proposition 3 that the zero locus of the polynomial

_ (g20 — (]10)2 _qu (920 — q10) y
4q20 2420

is the unique invariant algebraic curve of (28), whose cofactor is

Fy — (g20 — quo) = + q207® + qrizy + y°

q11 (g20 + q10)
2q20

K = +qux+2y.
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Analogously, from the proof of Proposition 2 it follows that the zero locus of the polynomial

F> = qoo — q% _‘_q% — (q20 — q10) * + q202” + ¥°
is the unique invariant algebraic curve of (28), whose cofactor is K = 2y.

If X denotes the vector field associated with system (27), then we see that K = divX,
which implies that F; is also an inverse integrating factor. Therefore, (27) is integrable.
Also, if X' denotes the vector field associated with system (28), then we see that K = divX,
which implies that F3 is also an inverse integrating factor. Therefore, (28) is integrable. O

Corollary 3. Any Kukles system (14) does not have quadratic limit cycles.

Proof. Each quadratic limit cycle of (14) must be a connected component, homeomorphic to
the unit circle, of a nonsingular invariant algebraic curve {V = 0} defined by a polynomial
V of degree two. We have two cases, either V is transversal to infinity or V' takes the form
V = ap + a1x + asy + asy? after a linear transformation if necessary. In the former, we
can suppose that V is one of the polynomials F; or F5 given in previous proof. Thus, the
assertion follows because {F} = 0} is singular and system (28) has the symmetry (z,y,t) —
(z,—y,—t). In the latter, {V = 0} does not have connected components homeomorphic to
the unit circle. ([
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