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Highlights:

• ASS2324 is a hybrid compound resulting from the juxtaposition of donepezil and the

propargylamine PF9601N

• ASS2324 is a multi-target directed propargylamine able to bind to all the AChE/BuChE

and MAO A/B enzymes

• ASS2324 shows antioxidant, neuroprotective and suitable permeability properties

• ASS2324 restores the scopolamine-induced cognitive impairment to the same extent

as donepezil, and is less toxic

• ASS2324 prevents β-amyloid induced aggregation in the cortex of double transgenic

mice

• ASS2324 is the most advanced anti-Alzheimer agent for pre-clinical studies that we

have identified in our laboratories

The complex nature of Alzheimer’s disease (AD) has prompted the design of

Multi-Target-Directed Ligands (MTDL) able to bind to diverse biochemical targets

involved in the progress and development of the disease. In this context, we

have designed a number of MTD propargylamines (MTDP) showing antioxidant,

anti-beta-amyloid, anti-inflammatory, as well as cholinesterase and monoamine oxidase

(MAO) inhibition capacities. Here, we describe these properties in the MTDL ASS234,

our lead-compound ready to enter in pre-clinical studies for AD, as a new multipotent,

permeable cholinesterase/monoamine oxidase inhibitor, able to inhibit Aβ-aggregation,

and possessing antioxidant and neuroprotective properties.
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INTRODUCTION

Alzheimer’s disease (AD) is themost common neurodegenerative
disease in the elderly (Karlawish, 2011). AD is characterized
by progressive neuronal death resulting in severe cognitive
impairment. Two distinctive hallmarks of AD are the presence
of accumulated beta-amyloid (Aβ) plaques (Hamley, 2012) and
hyperphosphorylated tau protein in the form of intracellular
neurofibrillary tangles (NFT) (Wang et al., 2013). Although
the precise etiology of AD is not yet known, there is a
large consensus in describing it as a complex disorder caused
by many factors, including loss of cholinergic transmission,
protein misfolding and Aβ aggregation, oxidative stress, free
radical formation (Rosini et al., 2014), and metal dyshomeostasis
(Huang et al., 2004). AD pathology also involves dysfunctional
neurotransmittters and synapse loss (Aisa et al., 2010; Villemagne
and Chételat, 2016).

In the following sections we describe the currently accepted
AD hypotheses, and our recent contribution to the development
of new multipotent propargylamines for AD therapy.

ALZHEIMER’S DISEASE HYPOTHESES

Cholinergic Hypothesis
Cholinergic neurotransmission modulates both cognitive
function and cortical plasticity (Arendt and Bigl, 1986) and
plays a significant role in the control of cerebral blood flow
(Biesold et al., 1989), cortical activity (Détári et al., 1999),
learning and memory (Deutsch, 1971). The first physiological
evidence of the involvement of the cholinergic system in AD
pathology was a reduction of the neurotransmitter acetylcholine
(ACh), which constitutes the basis of the cholinergic hypothesis
of AD (Deutsch, 1971), used to discover the first anti-AD
agents. Acetylcholinesterase (AChE) is expressed in cholinergic
neurons, its primary function being the rapid breakdown of
ACh during the cholinergic neurotransmission. In addition to
rapid breakdown by AChE, ACh can also be metabolized by
butyrylcholinesterase (BuChE) (Mesulam et al., 2002) but with
different kinetic behavior. Whereas AChE pre-dominates in
neurons and exhibits high affinity for ACh, BuChE is present in
endothelia, glia and neuronal cells with low affinity for ACh and
high KM values (Soreq and Seidman, 2001).

β-Amyloid Cascade Hypothesis
The amyloid hypothesis postulates that neurodegeneration in AD
is caused by abnormal accumulation of Aβ plaques in various
areas of the brain (Evin and Weidemann, 2002). The Aβ senile
plaques contain Aβ peptides with 39–43 amino acid residues,
proteolytically derived from the sequential enzymatic action of β-
and γ-secretases of transmembrane APP (Coulson et al., 2000).
Within plaques, Aβ peptides in β-sheet conformation assemble
and polymerise into fibrillar, protofibers and polymorphic
oligomers (Selkoe, 1994). In vitro, the Aβ aggregation process
is highly susceptible to pH, ionic strength of the solvent,

Abbreviations: AD, Alzheimer’s Disease; AChE, acetylcholinesterase; MAO,
monoamine oxidase; MTDL, multi-target directed ligand.

purification process and temperature. Distinct oligomerization
and assembly processes between Aβ1−40 and Aβ1−42 have been
described (Bitan et al., 2003). While dimers and trimers are
the most toxic forms of Aβ1−42, Aβ1−40 reaches equilibrium
from monomers to tetramers. Recent findings have shown that
soluble oligomeric species were able to disrupt synaptic function
(Lambert et al., 1998) and support the belief that soluble dimeric
species are highly toxic (Jin et al., 2011). However, direct Aβ-
peptide neurotoxicity has been difficult to prove in animalmodels
(Serrano-Pozo et al., 2013). Since the postulation of the amyloid
hypothesis, a number, but a number of unsuccessful efforts have
been undertaken in clinical research in order to develop novel
drugs based on this concept.

Oxidative Stress
Increased production of Reactive Oxygen Species (ROS) have
been observed in AD (Praticò, 2008) and, consequently, elevated
levels of oxidative markers including damage to proteins, lipids,
carbohydrates, and nucleic acids. Antioxidant enzymes were also
found to be increased in specific AD brain regions (Sultana et al.,
2011). Not surprisingly, the oxidative stress (OS) hypothesis of
AD has emerged as a key event in the progress of the disease.
In addition, evidence suggests that secretion and deposition of
Aβ within the neurons are compensatory measures taken by cells
in effort to protect themselves against damage triggered by OS
(Hayashi et al., 2007).

Cellular oxidative damage has also been linked to tau
hyperphosphorylation and formation of NFTs (Lee et al., 2004).
As a consequence, cells succumb to neurodegeneration exhibiting
the distinctive cognitive impairment observed in AD patients
(Zhu et al., 2007). Altogether, the primary role of OS in AD has
been overwhelmingly confirmed, offering the chance to develop
specific disease-modifying antioxidant approaches to cure or
prevent the development of the disease.

Biometal Hypothesis
The increased levels of ROS are reflected in a deregulated content
of biometals such as iron, copper and zinc in the brain of AD
patients. Recent findings point to brain OS as one of the earliest
changes in AD pathogenesis that might play a central role in
the disease progression (Lee et al., 2010). Redox-active metals
are capable of stimulating free radical formation via the Fenton
reaction. Biometals have also been shown to mediate Aβ toxicity
in AD (Duce et al., 2010). It has been shown that Aβ peptide
itself is a strong redox-active metalloprotein able to directly
produce hydrogen peroxide and OH− in the presence of copper
or iron, which, in turn, are enriched in the amyloid cores of
senile plaques (Huang et al., 1999). Also, biometals can interact
directly with Aβ peptide enhancing its self-aggregation and
oligomerization at low physiological concentrations or at mildly
acidic conditions (Huang et al., 1999). Moreover, metals can
promote tau hyperphosphorylation and subsequent formation
of NFTs inducing its aggregation upon interaction with Aβ

(Yamamoto et al., 2002).
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DRUGS FOR AD THERAPY

To date, only five drugs have ever been approved for AD therapy.
Tacrine, rivastigmine, galantamine and donepezil are AChEI,
whereas memantine is a NMDA receptor antagonist.

Tacrine, a competitive AChEI and the first drug to be approved
for use in AD by the FDA in 1993, was withdrawn from
the market in 2013 due to the high incidence of side effects,
mostly derived from hepatotoxicity (Qizilbash et al., 1998).
Rivastigmine, a non-selective pseudoreversible ChE inhibitor
(Bullock and Lane, 2007), has been reported to have less side
effects as well as positive benefit after administration to mild-
to-moderate AD patients (Birks and Grimley Evans, 2015).
Galantamine, a weak competitive reversible AChEI (Greenblatt
et al., 1999) is also a potent allosteric modulator of nicotinic
acetylcholine receptors—α4β2, α7/5-HT3, α3β4, and α6β4—
in certain areas of the brain, and potentiates the effects of
orthoesteric agonists (Dajas-Bailador et al., 2003; Akk and
Steinbach, 2005). Donepezil is a brain-permeable reversible non-
competitive ChE inhibitor approved for use in AD (Birks and
Harvey, 2006) and currently the most widely prescribed drug
for the treatment of this disease. Donepezil is highly selective
for AChE over BuChE activity (405:1) (Nochi et al., 1995).
Compared to other approved AChEI, donepezil is similarly
effective in ameliorating cognitive and functional decline in AD
with comparable safety and tolerability (Doody et al., 2014).

Memantine is a glutamatergic agent, the first and only NMDA
receptor antagonist approved by FDA in 2003 for the treatment
of moderate-to-severe AD and dementia. Memantine binds to
NMDA receptors with a low-micromolar IC50 value, exhibits
neuroprotective activities against Aβ toxicity (Hu et al., 2007), tau

phosphorylation (Song et al., 2008), neuroinflammation (Willard
et al., 2000), and oxidative stress (Figueiredo et al., 2013).

In the face of general neuronal loss, monoamine oxidase
(MAO) inhibitors are used to preserve remaining levels of
catecholamine neurotransmitters by inhibiting MAO A in
neurons or MAO B in serotonergic neurons, glia and astrocytes.
Since MAO B activity is increased in AD, MAO B inhibitors
may be of potential therapeutic interest both to maintain
neurotransmitter levels and to decrease hydrogen peroxide
production (Mandel et al., 2005). For example, rasagiline and
selegiline are propargylamines that irreversibly inhibit brain
MAO B, but also show neuroprotective activities mainly due to
their propargyl moiety (Zindo et al., 2015).

The lack of therapeutic effectiveness of the current drugs
based on the single-target paradigm (León et al., 2013) for the
treatment of AD prompted the search of MTDL, designed by
molecular hybridization of different pharmacophoric moieties
from well-known bioactive molecules, able to bind to multiple
targets associated with AD. As a result, a number of standard
natural or synthetic compounds, including donepezil, tacrine
or rivastigmine (Samadi et al., 2011), curcumin (Malar and
Devi, 2014), berberine (Jiang et al., 2011) or 8-hydroxyquinoline
(Gomes et al., 2014) have been used for this purpose.

Based on this background, we have designed several MTD
propargylamines (MTDP) for the potential treatment of AD. All
these compounds bear the N-benzylpiperidine group present in
donepezil and theN-propargylaminemotif present in L-deprenyl
(used in Parkinson’s disease) and in PF9601N (Figure 1), a
potent and selective MAO B inhibitor with neuroprotective effect
demonstrated in vitro and in vivo using different experimental
models (Pérez et al., 1999). The donepezil motif gives inhibition

FIGURE 1 | Structure of compounds donepezil, PF9601N, ASS234, and JMC1-4.
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of the cholinesterases as well as the ability to inhibit the
aggregation of Aβ via the acetylcholinesterase peripheral site,
whereas the propargylamine inhibits MAO enzymes and also
gives neuroprotection. Both scaffolds were linked by different
heterocyclic ring systems, such as pyridine, indole or 8-
hydroxyquinoline, affording diverse MTDP as promising drugs
to be used in AD therapy (Figure 1). This strategy led to
ASS234 (Figure 1) with the anti-cholinergic activity of donepezil,
selective MAO A inhibition and neuroprotective properties
(Bolea et al., 2011).

Next, with the aim of searching for improved MTDLs,
two series of novel structurally derived compounds from
ASS234 as multipotent donepezil-pyridyl and donepezil-indolyl
hybrids were designed and pharmacologically assessed. Thus,
the donepezil-pyridyl compound JMC1 (Figure 1) was identified
as a very potent hAChE inhibitor (IC50 = 1.1 nM) and
a moderate hBuChE inhibitor (IC50 = 0.6 µM) with total
selectivity toward human MAO B (hMAO B) (Bautista-Aguilera
et al., 2014b). The donepezil-indole JMC2 (Figure 1) exhibited
the most interesting profile as a potent MAO A inhibitor (IC50

= 5.5 nM) moderately able to inhibit MAO B (IC50 = 150
nM), AChE (IC50 = 190 nM), and BuChE (IC50 = 830 nM)
(Bautista-Aguilera et al., 2014a). Moreover, the kinetic analysis
showed that JMC2 is a mixed-type AChE inhibitor able to span
both the catalytic and peripheral sites (CAS and PAS) of this
enzyme, a fact further confirmed by molecular modeling studies.
Propargylamines JMC3 (Wang et al., 2014) and JMC4 (Wu et al.,
2015) bear a N-benzylpiperidine moiety from donepezil and a 8-
hydroxyquinoline group (Figure 1). JMC3 (Figure 1) was further
characterized as an irreversible MAO and mixed-type ChE
inhibitor in low micromolar range, and, in addition, it strongly
complexed Cu (II), Zn (II), and Fe (III) (Wang et al., 2014).
From theoretical ADMET analyses, JMC3 exhibited proper drug-
likeness properties and good brain penetration suitable for CNS
activity. JMC4 (Figure 1) showed similar inhibitory behavior as
dual ChE/MAO inhibitor (Wu et al., 2015).

The propargylamine ASS234 (Figure 1), deserves further
discussion. ASS234 is a very potent human MAO A and MAO
B inhibitor with a IC50 values of 5.44 ± 1.74 and 177 ±

25 nM, respectively, inhibiting also both ChEs (IC50 (human
AChE) = 0.81 ± 0.06 µM; IC50 (human BuChE) = 1.82 ± 0.14
µM) (Esteban et al., 2014) (Figure 2). In contrast, the reference
compounds had only their single expected activity: donepezil
was ineffective at inhibiting MAO activities, and PF9601N,
while potently and selectively inhibiting MAO B displayed no

interaction with the ChEs (Bolea et al., 2011). To sum up,
ASS234 combines the best properties of donepezil and PF9601N,
simultaneously inhibiting ChE to boost cholinergic transmission
and MAO to raise catecholamine levels (Bolea et al., 2013).

Although ASS234 is a reversible inhibitor of both ChEs with
micromolar affinity, it is a highly potent irreversible MAO A
inhibitor, similar to clorgyline. Although the initial reversible
binding parameter (Ki value of 0.4 µM) indicated that ASS234
has a lower affinity for MAO A than clorgyline (Ki value of
0.02 µM), and this was also reflected in the higher KI for the
irreversible reaction, the full inactivation of MAO A was rapid.
The crystal structure of hMAO B after inactivation by ASS234

highlighted the formation of a covalent adduct with the flavin
N5 atom which, based on the spectral changes, occurs also
with the MAO A cofactor (Esteban et al., 2014). Although the
N-benzylpiperidine moiety is not fully visible in the electron
density in the crystal structure at 1.8 Å resolution, the mass
determinations demonstrate that ASS234 binds as the intact
molecule to the MAO B active site, which rules out the possibility
that the inhibitor may undergo degradation in the cellular
context (Esteban et al., 2014).

Next, the presumed therapeutic potential of ASS234 was
evaluated following its administration to a rat model of vascular
dementia based on the permanent bilateral occlusion of the
common carotid arteries with experimental vascular dementia to
determine its impact on brain neurotransmitter systems. In this
rat model, the administration of ASS234 for 5 days resulted in
a potent and selective inhibition of MAO A activity in brain as
well as a concurrent increase in concentrations of serotonin and
the catecholamines, dopamine and noradrenaline (Stasiak et al.,
2014). All these findings allow us to conclude that ASS234 is able
to bind to multiple targets identifying it as an interesting MTDL
molecule to be considered for therapeutic development against
AD.

The mechanism by which ASS234 plays a neuroprotective
role in AD pathology remains unclear. Recent evidence suggests
that the Wingless-Type MMTV Integration Site (Wnt) signaling
pathway is important in neuroprotection (Toledo et al., 2008),
so we investigated whether ASS234 activated the Wnt signaling
pathway (del Pino et al., 2014). Total RNA was extracted
from SH-SY5Y cells incubated with ASS234 (5 µM) for 24 h
and gene expression evaluated for some members of the
Wnt1 class signal (Wnt1, Wnt2b, Wnt3a) which represent the
“canonical” Wnt/β-catenin pathway, and for some members
of the Wnt5a class signal (Wnt6, Wnt5a) which represent

FIGURE 2 | Structure and IC50 values for the inhibition of ChEs and MAO enzymes by ASS234.
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the “non-canonical” Wnt/PCP and Wnt/Ca2+ pathways. In
ASS234-treated cells, gene expression of Wnt2b, Wnt5a, and
Wnt6 was significantly increased. Ingenuity pathways analysis
(IPA) identified a number of downstream genes regulated by
the Wnt canonical pathways. One of these genes, PPARδ, a
key gene related to neuroprotective effects against AD, was
significantly increased by ASS234 treatment. From these results,
we concluded thatASS234 induced canonical and non-canonical
Wnt pathways, which presents another possible mechanism
through which this compound can mediate its protective action.
Knowing that the activation of Wnt signaling rescues memory
loss and improves synaptic dysfunction in transgenic mice model
of AD amyloid pathology, these findings indicate that ASS234
could be a novel promising drug for AD therapy.

In order to ascertain the suitability of MTDL ASS234 for
pre-clinical studies, the obvious, preliminary and necessary
“proof of concept” was assessed. First of all, we investigated the
effect of a single-dose of ASS234 (0.62 mg/Kg) on cognition
using the scopolamine test. Not surprisingly, scopolamine
significantly decreased the exploratory preference for a novel
object in the retention trial. Scopolamine-induced cognitive
deficit is assessed as a decreased recognition index (RI) in
comparison with non-treated and vehicle control groups. After
a single dose of ASS234, a significant increase of the RI was
observed, indicating reversal of memory impairment induced
by scopolamine. Thus, the scopolamine-induced amnesia was
reversed by concomitant administration of ASS234 (0.12
mM/kg) which in fact significantly improved the cognitive
performance about 13.1%, suggesting that ASS234 exerts its
therapeutic effect by enhancing natural memory processes.

Some preliminary studies have been carried out to assess the
amyloid plaque burden and gliosis in the cortex of the ASS234
treated group of the transgenic AD model, APPswe/PS1∆E9 tg
mice. Daily administration of ASS234 for 16 weeks at a dose
of (0.62 mg/Kg) resulted in apparent reduction in the number
of neuritic plaques in the cerebral cortex and hippocampus in
comparison to vehicle treated mice. Cortical plaque deposition
was significantly decreased in tg mice given the ASS234

treatment compared to tg controls. As in the cortex, the Aβ

plaque load in tg mice treated with ASS234 also decreased in the
hippocampus, although statistical significance was not reached.
These findings indicate that ASS234 has a greater effect upon
plaque load in the cerebral cortex than in the hippocampus of
APPswe/PS11E9 tg mice.

Next, since microgliosis and astrocytosis, indicative of
neuroinflammation, are prominent aspects of this AD
mouse model, we proceed to identify the effect of ASS234

on neuroinflammation through the evaluation of the
immunohistochemical distribution of the astrocyte marker
protein GFAP and of the microglia/macrophage-specific protein
iba-1. Significantly decreased GFAP and iba-1 immunostainings
were observed in the cortex of the ASS234 treated tg mice
compared with that of controls, suggesting a beneficial effect of
ASS234 on neuroinflammation. All procedures with animals
were carried out in accordance with European Communities
Council Directive (2010/63/UE) on animal experiments under
a protocol approved by the Animal Welfare Committee of the

Cajal Institute (CSIC, Madrid, Spain) and by the Institutional
Animal Ethics Committee of the Spain Council for Scientific
Research (CSIC), adhering to the recommendations of the
European Council and Spanish Department of Health for
Laboratory Animals (R.D. 53/2013). A special effort was made to
reduce the number of animals used in the study, and the number
of animals assigned to each group was to be kept to a minimum
necessary to achieve enough significance.

The promising results described above led us to assess
the hepatotoxicity and metabolism of compound ASS234.
Preliminary toxicity studies of ASS234 along with donepezil
and tacrine were performed in parallel in the human cell line
HepG2. The results showed that all three compounds reduced
cell viability in a concentration-dependent manner, but at very
high concentrations (100 and 300 µM) ASS234 exhibited lesser
toxicity than the reference compounds, donepezil and tacrine.

CONCLUDING REMARKS

The results presented in this review strongly reinforce the
suitability of MTDLs as an appropriate pharmacological
approach to be used in AD therapy. Amongst all the compounds
tested, MTDL ASS234 particularly has emerged as an interesting
lead compound for the design of novel MTDL with a
good MAO/AChE inhibitory potency, a significant activity
against amyloid aggregation, neuroprotective and anti-apoptotic
properties, as well as potent antioxidant capacities, so may
have a potential disease-modifying role in the treatment of AD.
Given the strong correlation of neuroinflammation with amyloid
burden, our results showing that ASS234 considerably reduces
both amyloid burden and inflammation in the cerebral cortex
of treated tg mice underline the beneficial action of ASS234 in
slowing the progression of AD.

From the safety point of view, the affinity of compound
ASS234 for MAO A is of concern due to well known “cheese
effect,” which occurs when tyramine enters the circulation
and potentiates sympathetic cardiovascular activity by releasing
noradrenaline, and should be considered in future developments
of the molecule by analyzing tyramine potentiation and the
ASS234MAO selectivity in the brain. In sum,ASS234 has clearly
overcome the “proof of concept,” and remains our most advanced
anti-Alzheimer agent for pre-clinical studies targeted to find a
new therapy for this devastating disease.
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