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INTRODUCTION

Although relatively rare, pancreatic tumors are 
highly lethal. Over 80% of patients present with advanced 
disease at the time of diagnosis and the five year survival 
is only 7% [1, 2]. This disease is currently the third 
leading cause of cancer deaths in the United States, sixth 
in Europe and seventh worldwide [3-5]. In contrast to 
most other cancers, mortality rates for pancreatic cancer 
are not improving [6, 7]. In the U.S., it is predicted to 
become the second leading cause of cancer-related deaths 
by 2030 [7]. Pancreatic cancer risk has been associated 
with smoking, obesity, diabetes and pancreatitis [8]. A 

small fraction of the familial aggregation of pancreatic 
cancer can be accounted for by rare, moderately or highly 
penetrant mutations [9]. Furthermore, genome-wide 
association studies (GWAS) have identified common 
variants at 13 loci associated with risk of pancreatic cancer 
in European populations and at 5 loci in Asian populations 
(at the GWAS threshold of P < 5.0x10-8), or a total of 18 
loci [10-15]. 

Imputation has proven to be a powerful tool in 
genome-wide association studies (GWAS) by facilitating 
investigation of variants not directly assessed on 
genotyping arrays, the merging of GWAS datasets 
genotyped on different arrays, and fine-mapping of 
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ABSTRACT
Genome-wide association studies (GWAS) have identified common pancreatic 

cancer susceptibility variants at 13 chromosomal loci in individuals of European 
descent. To identify new susceptibility variants, we performed imputation based on 
1000 Genomes (1000G) Project data and association analysis using 5,107 case and 
8,845 control subjects from 27 cohort and case-control studies that participated in the 
PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an 
additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch 
(PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new 
pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) 
rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10-15), 
rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10-9) and rs35226131 at 5p15.33 (OR 
= 0.71, P = 1.70x10-8). These SNPs represent independent risk variants at previously 
identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and 
chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported 
susceptibility variants. We assessed expression of candidate genes at the three risk 
loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue 
samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the 
tumors (fold change -7.6, P = 5.7x10-8). This finding was validated in a second set of 
paired (n = 20) histologically normal and tumor derived pancreatic tissue samples 
(average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10-4-2.0x10-3). 
Our study has identified new susceptibility variants independently conferring 
pancreatic cancer risk that merit functional follow-up to identify target genes and 
explain the underlying biology.
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risk loci [16]. To discover additional pancreatic cancer 
susceptibility loci for individuals of European ancestry, we 
imputed three GWAS datasets including a total of 5,107 
cases and 8,845 controls (PanScan I-III, Stage I) [12]. 
For replication of promising signals, we first genotyped 
an additional 1,912 cases and 3,763 controls (PANDoRA; 
Replication 1), and then further assessed promising signals 
in a second set of 4,164 cases and 3,792 controls (PanC4; 
Replication 2). We identified three new susceptibility 
signals that achieved genome-wide significance for 
pancreatic cancer risk.

RESULTS

We conducted imputation of three published 
pancreatic cancer GWAS datasets performed in individuals 
of European ancestry, PanScan I, II and III [10-12] using 
the 1000G (Phase 1, version 3) reference dataset [17]. 
We included 9,132,527 genotyped or imputed SNPs with 
an imputation information (INFO) score >0.5 and minor 
allele frequency (MAF) >0.01, and performed a fixed 
effects meta-analysis to combine association results for a 
total of 5,107 pancreatic cancer cases and 8,845 control 
subjects [10-12]. Little evidence of systematic inflation 
due to population stratification was observed (λ = 1.02 for 
PanScan I+II and λ = 1.07 for PanScan III). We attempted 
replication of promising findings in two stages. In the first 
replication stage, we genotyped 15 promising variants in 
1,912 pancreatic cancer cases and 3,763 control subjects 
from the PANcreatic Disease ReseArch (PANDoRA) 
consortium, a case-control consortium including studies 
from eight European countries [18]. In the second 
replication stage, we assessed the three most significant 
variants based on the meta-nanalyses results for PanScan 
I+II, PanScan III and PANDoRA using 4,164 pancreatic 
cancer cases and 3,792 controls from the Pancreatic 
Cancer Case-Control Consortium (PanC4), including 
studies from the U.S., Canada, Europe and Australia [15]. 
In total, the discovery and replication stages included 
11,183 cases and 16,400 controls (Supplementary Table 
1).

In the meta-analysis of PanScan I-III (Stage I), two 
new variants were identified at genome-wide significance 
(P < 5.0x10-8), one on chromosome 1q32.1 (rs2816938: 
P = 1.71x10-10, OR = 1.23 95% CI 1.15-1.31) and one on 
8q24.21 (rs10094872, P = 3.55x10-8, OR = 1.18 95% CI 
1.11-1.25) (Table 1, Supplemental Table 2). After adjusting 
the analysis on 1q32.1 for the previously reported GWAS 
SNP rs3790844 (r2 = 0.097 in 1000G EUR populations) 
[11], the association for rs2816938 remained statistically 
significant (PConditional = 3.06x10-6, OR = 1.17). This was 
also true for the signal at 8q24.21, marked by rs10094872, 
after adjusting for the GWAS SNP rs1561927 (r2 = 0.01 in 
1000G EUR) [12] (PConditional = 1.09x10-7, OR = 1.16). The 
signal at 1q32.1 is located ~11 kb upstream of NR5A2, 
a gene that encodes a nuclear transcription factor known 

to play important roles in multiple aspects of pancreatic 
development and function [19, 20]. The SNP at 8q24.21 
is located ~28 kb upstream of MYC, in a susceptibility 
locus previously reported for bladder cancer (tagged by 
rs9642880; r2 = 0.64 in 1000G EUR) [21-23] and ~850 
kb upstream of a previously reported pancreatic cancer 
susceptibility locus [12]. 

A total of 15 promising variants (P < 5.0x10-6) were 
selected for replication in 1,912 pancreatic cancer cases 
and 3,763 control subjects from the European PANDoRA 
case-control consortium [18]. After a meta-analysis of 
PanScan I, II and III and PANDoRA results, the three most 
promising variants (Supplemental Table 2) were carried 
forward to replication in PanC4 [15]. The meta-analysis of 
PanScan I-III with PANDoRA and PanC4 confirmed the 
signals on chr1q32.1 (P = 4.88x10-15, OR = 1.20 95% CI 
1.15-1.25) and chr8q24.21 (P = 3.22x10-9, OR = 1.15 95% 
CI 1.10-1.20). In addition, a new signal in the multicancer 
region on chr5p15.33, upstream of TERT, was detected 
(rs35226131, P = 1.70x10-8, OR = 0.71 95% CI 0.63-0.80) 
(Table 1). After conditioning the analysis in PanScan I, II 
and III on the two reported pancreatic cancer susceptibility 
loci at 5p15.33, rs36115365 [24] (tagging the fine-mapped 
signal for rs401681 [11] in CLPTM1L) and rs2736098 
[12] (tagging the signal in TERT), the signal was still near 
GWAS significant (PUnconditional = 1.80x10-7, OR = 0.64; 
PConditional = 3.43x10-7, OR = 0.66). This SNP (rs35226131) 
is located ~200bps upstream of the transcriptional start site 
(TSS) of TERT, and marks the least common of the three 
loci with a MAF of 0.036 in the 1000G EUR populations. 
The LD between rs35226131 and the previously reported 
signals is low (r2 = 0.009 for rs36115365 and r2 = 0.011 fo 
rs2736098) in 1000G EUR.

Bioinformatic analysis of susceptibility alleles and 
differential expression analysis

In order to take the first steps towards understanding 
the functional ramifications at these three new 
susceptibility signals, we conducted in silico bioinformatic 
analyses using HaploReg and RegulomeDB [25, 26]. 
Supporting evidence for putative regulatory function on 
gene expression was seen for the three loci, particularly 
for chr1q32.1 and 5p15.33, with open chromatin, modified 
histones and transcription factor binding in multiple 
tissues, including those derived from the pancreas and 
other gastrointestinal tissues (Supplemental Table 3). At 
chr5p15.33, one of the four variants highly correlated 
with rs35226131 is a missense variant in the second exon 
of TERT (rs61748181: r2 = 1, D’ = 1 in 1000G EUR) 
whereby the minor allele, associated with reduced risk of 
pancreatic cancer, changes amino acid 279 from alanine to 
threonine (A279T). 

We assessed expression quantitative trait loci 
(eQTL) for the three variants in GTEx [27] and the 
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nearest genes (NR5A2 for 1q32.1; TERT and CLPTM1L 
for 5p14.33; MYC and PVT1 for 8q24.21; Supplementary 
Table 4) in histologically normal post-mortem pancreatic 
tissue samples (n = 149). The minor allele of the SNP 
that marks the signal on 8q24.21 (rs10094872) and was 
associated with increased risk of pancreatic cancer, was 
associated with decreased PVT1 expression (β = -0.23, P 
= 0.0053) (Supplemental Figure 1). Nominally significant 
eQTLs (P < 0.05) were not seen for MYC (P = 0.29) or for 
the SNPs on chr5p15.33 (P = 0.91 for CLPTM1L; TERT 
was not expressed) or 1q32.1 (P = 0.68 for NR5A2). We 
furthermore assessed differential expression of the same 
genes in pancreatic cell lines (n = 9) and pancreatic ductal 
adenocarcinoma (PDAC) samples (n = 8) as compared 
with histologically normal pancreatic tissue samples 
(n = 10) by RNAseq [28] (Supplemental Tables 5-7). 
The most notable differences were seen for NR5A2 on 
chr1q32.1 where mRNA expression was markedly lower 
in pancreatic tumor samples (average fold change -7.6, P 
= 5.7x10-8) and cell lines (average fold change -32.7, P = 
1.5x10-14) than in histologically normal pancreatic tissue 
samples (Supplemental Table 7). We further validated 
this finding in an independent set of paired histologically 
normal and tumor derived (PDAC) pancreatic tissue 
samples from 20 individuals by RT-qPCR for three NR5A2 

isoforms and noted decreased expression in tumors for 
the majority of pairs (average fold change for paired 
samples was -78.5 for isoform 1, P = 2.0x10-3; -95.7 fold 
for isoform 2, P = 7.5x10-4; -31.3 fold for isoform 3, P = 
1.5x10-3) (Figure 2).

Technical validation of imputed SNPs

To assess imputation quality, we performed TaqMan 
genotyping in 678 samples from PanScan I and III (see 
Materials and Methods). The correlation (r2) between 
the imputed genotypes and those measured by TaqMan 
was 0.98 for rs2816938 (1q32.1), 0.90 for rs10094872 
(8q24.21) and 0.37 for rs35226131 (5p15.33). Due to the 
lower correlation between imputed and directly assayed 
genotypes for rs35226131, we performed a second 
validation in an additional 875 samples, including both 
rs35226131 as well as the perfectly correlated coding 
SNP on 5p15.33 mentioned above, rs61748181. The 
imputed-genotyped r2 for rs35226131 improved to 0.44 in 
the second validation set, and was 0.55 for rs61748181. 
Genotype concordance for the most likely imputed 
genotypes and directly assayed genotypes (see Materials 
and Methods) for rs35226131 improved from 86.4% in 
the first validation set to 94.4% in the second set, and was 

Table 1: Association results for three new pancreatic cancer susceptibility signals 

Results are shown from an unconditional logistic regression of the genotypes generated in PanScan I, II and III as well as the 
two replication studies. aClosest RefSeq gene(s). bPosition of SNP in NCBI genome build 37 (Hg19). cMinor and major alleles. 
dQuality of imputation metric. eMinor allele frequencies (MAF) are not listed for meta-analysis results. f1 d.f. score test; Chr: 
chromosome and band; OR, per-allele OR for the minor allele adjusted for for age, sex, study, arm and significant principal 
components for PanScan I+II; per-allele OR adjusted for age, sex, geographic region and significant principal components 
for PanScan III; per-allele OR adjusted for age, sex and study for PANDoRA; per-allele OR adjusted for age, sex, study and 
significant principal components for PanC4. The number of case and control subjects in the combined set of PanScan I, II, III, 
PANDoRA and PanC4 were: rs2816938 (11,158/16,343), rs10094872 (9,269/12,635) and rs35226131 (11,143/16,308). Text 
in bold indicates the combined meta-analysis results. NA: Note that the TaqMan assay for rs10094872 on chr8q24.21 failed 
manufacturing and was therefore not attempted in the PANDoRA samples. 
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96.2% for rs61748181 in the second set. Since rs61748181 
was directly genotyped in one of the replication studies 
(PanC4), we performed a meta-analysis of PanScan I-III 
(OR = 0.62 95% CI 0.52-0.75, P = 5.37x10-7) and PanC4 
(OR = 0.67 95% CI 0.55-0.85, P = 1.91x10-4) data. This 
revealed a highly significant association for rs61748181 
(OR = 0.64 95% CI 0.56-0.74, P = 1.28x10-10) that was 
stronger than that seen for rs35226131 (OR = 0.68 95% 
CI 0.59-0.79, P = 1.91x10-8). These results suggest that 
the association results at this potentially new pancreatic 
cancer risk locus are reliable. 

DISCUSSION

In this study, we performed imputation across three 
pancreatic cancer GWAS datasets, namely PanScan I, II 
and III [10-12], using 1000G reference data. Through 

replication of promising variants in individuals from two 
independent pancreatic cancer case-control consortia, 
PANDoRA and PanC4, we identified three new GWAS 
significant risk signals for pancreatic cancer. They are 
independent signals in previously established pancreatic 
cancer risk loci on chromosomes 1q32.1, 5p15.33 and 
8q24.21, as per conditional analysis, supporting their 
importance for pancreatic cancer risk. 

The signal on 1q32.1 is located in NR5A2, a gene 
that encodes nuclear receptor subfamily 5 group A 
member 2 (NR5A2), a transcription factor important for 
pancreatic development and adult function in the pancreas, 
liver, intestine and ovary, where it regulates cholesterol 
synthesis, bile acid homeostasis and steroidogenesis [19, 
20]. NR5A2 is an important regulator of exocrine function 
in the adult pancreas where it maintains homeostasis and 
promotes regeneration of acinar cells after inflammation 
caused by chemically induced pancreatitis, and protects 

Figure 1: Regional plots for three signals associated with pancreatic cancer risk. The −log10(P value) (Y left axis) for Stage 
I (PanScan I-III, in gray), PANDoRA (purple) and PanC4 (light blue) was plotted on the genomic coordinates (X axis; NCBI genome build 
37). Superimposed blue lines depicts likelihood ratio statistics (right Y axis) estimating putative recombination hotspots in the region. This 
was performed 5 times, each time utilizing 100 random EUR samples from the 1000 Genomes population (EUR, n = 503) (Y right axis). 
The combined data for Stage I, PANDoRA and PanC4 for three regions: panel A. rs2816938 (1q32.1), panel B. rs10094872 (8q24.21), and 
panel C: rs3226131 (5p13.33) are shown in red.
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the pancreas from KRAS driven pre-neoplastic changes 
[29-31]. Other studies have indicated a growth inducing 
role for NR5A2 in pancreatic cancer [32, 33]. Highly 
correlated variants (r2>0.7) span ~25 kb on chr1q32.1 
from ~11 kb upstream of the TSS to within the second 
intron of the gene. We observed significantly lower mRNA 
expression of NR5A2 in the majority of pancreatic tumors 
and cell lines tested compared with histologically normal 
pancreatic tissue samples, indicating a possible role for 
reduced NR5A2 expression in pancreatic cancer. Although 
an expression QTL was not observed in GTEx data, the 
relationship between the two currently known pancreatic 
cancer risk loci on 1q32.1 and NR5A2 expression remains 
to be studied in greater detail.

The tag SNP on 8q24.21 is located ~28 kb upstream 
of MYC at an established bladder cancer risk locus [21-
23] that is ~850 kb upstream of our previously reported 
pancreatic cancer susceptibility locus [12]. Multiple 

independent susceptibility loci on 8q24.21, distributed 
over a 2 Mb region, are known to influence risk of bladder, 
breast, prostate, colorectal, lung, ovarian, pancreatic, renal 
cancer, glioma and chronic lymphocytic leukemia (CLL) 
[34-38]. Deregulated expression of MYC, a transcription 
factor that regulates multiple aspects of cell growth 
and proliferation, occurs in a broad range of human 
tumors [39]. Although the proximity of rs10094872 
to MYC indicates that it may be the most likely target 
gene, 8q24.21 is known for long range chromosomal 
interactions, and additional candidate genes, including 
PVT1 (183 kb), POU5F1B (290 kb), CCAT2 (305 kb) and 
MIR1205-MIR1208 (253-442 kb), could be involved [40-
44]. Several of the 8q24.21 risk loci interact with the MYC 
and PVT1 promoters through long range chromosomal 
interaction, and allele-specific effects on gene expression 
have been reported for both genes [42, 45]. An expression 
QTL for MYC has been described for the bladder cancer 

Figure 2: Expression of three NR5A2 isoforms in paired histologically normal and tumor derived pancreatic tissue 
samples. Blue bars indicate expression in histologically normal samples and red in tumor derived samples. A. NR5A2 isoform 1, B. 
NR5A2 isoform 2 and C. NR5A2 isoform 3. Note that no expression was seen for isoform 1 in either the normal or tumor derived sample 
from Subject 3. Error bars represent standard deviation from four replicates.
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risk locus in histologically normal bladder samples from 
Chinese subjects, albeit from a very small set [46], but 
not in adipose or blood tissue samples from European 
subjects [22]. We noted an eQTL for rs10094872 and 
PVT1 expression in pancreatic tissue samples in GTEx, 
indicating that PVT1 may be a target gene for this locus. 
Replication of these findings is required in independent 
sample sets. PVT1 encodes a long noncoding RNA that is 
often amplified and upregulated along with MYC across 
multiple cancers. Recently, it has been shown to increase 
MYC protein levels and potentiate its activity [47]. In 
pancreatic cancer, PVT1 expression is associated with 
gemcitabine sensitivity in human pancreatic cancer cells 
and may be associated with poor prognosis [47-49].

The signal on chr5p15.33 lies in another multicancer 
susceptibility region reported by GWAS for bladder 
cancer, breast cancer, chronic lymphocytic leukemia, 
glioma, lung cancer, melanoma, non-melanoma skin 
cancer, ovarian cancer, pancreatic cancer, prostate cancer 
and testicular germ cell cancer [11, 12, 23, 37, 50-60]. 
For the 6 independent susceptibility loci that have been 
identified in the TERT-CLPTM1L gene region, the same 
alleles are associated with an increased risk for some 
cancers but decreased risk of others [24, 60, 61]. Two 
independent pancreatic cancer susceptibility loci have 
previously been identified on chr5p15.33 through GWAS 
[11, 12, 24]. The first one, described in PanScan II [11] 
was marked by an intronic SNP (rs401681) in CLPTM1L 
that has since been fine-mapped to rs451360 (and a set of 
highly correlated variants including rs36115365) [24]. A 
second independent signal on 5p15.33 was identified in 
PanScan III, tagged by a synonymous SNP (rs2736098) 
in the second exon of TERT [12]. Recently, a third risk 
locus, marked by rs2853677, was identified in this 
genomic region through a candidate gene analysis of the 
TERT and TERC genes [62]; however this variant did not 
attain GWAS significance in our study (PanScan I-III, P 
= 4.2x10-4). The TERT gene encodes the catalytic subunit 
of telomerase, known for its critical role in maintaining 
telomere ends and the increased telomerase activity 
frequently seen in human cancers [63-65]. Telomere-
independent functions for TERT include regulation of 
gene expression, cell survival, epithelial to mesenchymal 
transition (EMT) and mitochondrial function [66]. The 
neighboring gene encodes cleft lip and palate associated 
transmembrane 1 like (CLPTM1L) protein that promotes 
growth and survival in pancreatic and lung cancer, 
respectively, and is overexpressed in some cancers [67-
69]. The SNP (rs35226131) that marks the new risk 
signal on 5p15.33 reported here, and highly correlated 
variants, are located in the TERT promoter (~200-500 bp 
upstream of the TSS) and could potentially influence its 
expression. Additionally, it is perfectly correlated with a 
nonsynonomous variant in TERT (rs61748181, A279T) 
that was recently reported as a novel lung adenocarcinoma 
risk locus by deep sequencing and direct genotyping of 

5,164 cases and 5,716 controls of European ancestry [70]. 
The threonine substitution at this amino acid in TERT 
negatively influences telomere length and proliferation in 
esophageal cancer cell lines compared with alanine, and 
leads to reduced Wnt signaling through destabilization 
of complexes containing TERT, transcription activator 
BRG-1 and β-catenin [71]. As the TERT-279T variant is 
protective for pancreatic cancer in our study, and for lung 
cancer [70], the underlying mechanism at this locus may 
relate to increased TERT activity via canonical and/or non-
canonical TERT pathways. This hypothesis needs to be 
formally investigated by future molecular studies.

In conclusion, through imputation of three existing 
GWAS datasets and replication in two independent case-
control consortia, we identified three new susceptibility 
signals for pancreatic cancer in populations of European 
ancestry. They are located in genomic regions previously 
reported by GWAS of pancreatic cancer, further supporting 
their importance for pancreatic cancer risk. Further 
work is required to identify target genes and explain the 
underlying biological mechanisms.

MATERIALS AND METHODS

Study participants

Participants were drawn from the Pancreatic Cancer 
Cohort Consortium and the Pancreatic Cancer Case-
Control Consortium (PanC4) and include individuals 
from 17 cohort and 11 case-control studies genotyped 
in three previous GWAS phases, namely PanScan I, 
PanScan II and PanScan III [10-12]. Two replication 
cohorts were included, the PANDoRA consortium [18] 
(Replication I) and the Pancreatic Cancer Case-Control 
Consortium (PanC4) [15] (Replication 2). Cases were 
defined as individuals diagnosed with adenocarcinoma of 
the pancreas. 

Each study obtained informed consent from study 
participants and approval from its Institutional Review 
Board (IRB) including IRB certification permitting data 
sharing in accordance with the NIH Policy for Sharing of 
Data Obtained in NIH Supported or Conducted Genome-
Wide Association Studies (GWAS). The PanScan 
and PanC4 GWAS data are available through dbGAP 
(accession numbers phs000206.v5.p3 and phs000648.
v1.p1, respectively).

Genotyping, imputation and association analysis

GWAS genotyping was performed at the Cancer 
Genomics Research Laboratory (CGR) of the National 
Cancer Institute (NCI) of the National Institutes of 
Health (NIH) using the Illumina HumanHap series arrays 
(Illumina HumanHap550 Infinium II, Human 610-Quad) 
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for PanScan I-II, and the Illumina Omni series arrays 
(OmniExpress, Omni1M, Omni2.5 and Omni5M) for 
PanScan III [10-12]. The 1000 Genomes (1000G) Phase 
1, Release 3 [17] reference dataset was used to impute 
the PanScan I-III GWAS datasets using IMPUTE2 [72] as 
previously described [12, 24]. Due to the large overlap of 
variants on genotyping arrays for PanScan I and II, these 
datasets were imputed and analyzed together. The PanScan 
III data was imputed and analyzed separately. For quality 
control, variants were excluded based on: 1) completion 
rate < 90%; 2) MAF < 0.01; 3) Hardy-Weinberg 
Proportion P value < 1x10-6; 4) low quality imputation 
score (IMPUTE 2 INFO score < 0.5). After quality 
control, 9,132,527 SNPs in 5,107 pancreatic cancer cases 
and 8,845 controls of European ancestry were included 
in the analysis. The association analysis was performed 
using SNPTEST [73] based on probabilistic genotypes 
from IMPUTE2 [72] using the same adjustments for study, 
geographical region, age, sex and population substructure 
as were used in PanScan [10-12]. The score test of the 
log additive genetic effect was used. A meta-analysis of 
data from PanScan I & II with PanScan III was performed 
using the fixed-effects inverse-variance method based on 
β estimates and standard errors. Heterogeneity was not 
observed for the SNPs identified as GWAS significant or 
suggestive in the combined study (Pheterogeneity ≥0.30)

The estimated inflation of the test statistic, λ, 
was 1.02 for PanScan I+II and 1.07 for PanScan III, 
respectively (using variants with MAF>0.01 and 
INFO>0.5) [74].

Replication

Fifteen variants giving promising signals (P < 
5.0x10-6) were selected for replication in the PANDoRA 
consortium (Replication 1) [18]. Genotyping was 
performed by custom TaqMan genotyping assays (Applied 
Biosystems) at the German Cancer Research Center 
(DKFZ) in Heidelberg, Germany in 3,343 pancreatic 
cancer cases and 4,998 controls, of which 2,820 cases 
and 3,909 controls had complete demographic and 
clinical data and did not overlap with other study samples. 
Duplicate quality control samples (n = 541 pairs) showed 
99.67% genotype concordance. Samples on a few plates 
were not genotyped for all variants. Unfortunately these 
plates contained more cases than controls. We excluded 
908 cases and 146 controls, either with low genotyping 
completion rate ( < 80%) or not genotyped, resulting 
in a total of 1,912 cases and 3,763 controls in the final 
analyses. The association analysis for PANDoRA was 
adjusted for age, gender and study in the same manner as 
previously described [12]. 

Three variants from the meta-analysis of PanScan 
and PANDoRA were then selected for a second replication 
in the Pancreatic Cancer Case-Control Consortium 

(PanC4) [15] (Replication 2). Genotyping for PanC4 
had previously been performed at the Johns Hopkins 
Center for Inherited Disease Research (CIDR) using the 
IlluminaHumanOmniExpressExome-8v1 array followed 
by imputation using 100G Phase 3, version 1 [75] and 
IMPUTE2. Association analysis was performed in 4,164 
pancreatic cancer cases and 3,792 control subjects of 
European ancestry as previously described [15]. Variants 
at 3 chromosomal locations were extracted from the 
results and meta-analyses conducted as described above. 
Heterogeneity between studies was assessed using the 
Cochran’s Q-test. IMPUTE2 information scores were 0.78 
(rs2816938), 0.96 (rs10094872) and 0.87 (rs35226131) for 
the three reported variants. 

Recombination hotspots for association plots were 
generated as previously described using SequenceLDhot 
(10-12). The recombination hotspot inference was 
performed 5 times, each time utilizing a hundred random 
sampled EUR from the 1000 Genomes (EUR, n = 503). 
The linkage disequilibrium heatmap was prepared 
using the 1000 Genomes Phase 3 EUR data (n = 505, 
CEU+FIN+GBR+IBS+TSI), and snp.plotter R software 
package [76].

Validation of imputation accuracy

Imputation accuracy was assessed by direct TaqMan 
genotyping or Sanger sequencing. TaqMan genotyping 
assays (ABI, Foster City, CA) were optimized for three 
SNPs (rs2816938 on 1q32.1, rs35226131 on 5p15.33 and 
rs10094872 on 8q24.21) in the independent regions. In an 
analysis of 678 samples from PanScan I and III [10, 12, 
77], the allelic r2 measured between imputed and assayed 
genotypes [78] were 0.98, 0.37 and 0.90, respectively. 
A second validation in an additional 875 samples from 
PanScan I included two perfectly correlated SNPs on 
5p15.33, rs35226131 and rs61748181; the allelic r2 in 
this set was 0.44 and 0.55, respectively. We also assessed 
concordance between the most likely imputed genotypes 
and directly measured genotypes as follows: samples with 
imputed allelic dosage ranging from 0-0.5 were designated 
as being of the homozygous common genotype; samples 
ranging from 0.51-1.5 as being of the heterozygous 
genotype and samples ranging from 1.51-2.0 as being of 
the rare homozygous genotype.

Bioinformatic analysis of functional potential

HaploReg v4.1 (http://www.broadinstitute.
org/mammals/haploreg/haploreg.php) was used to 
annotate functional and regulatory potential of the most 
significant germline variants at each locus as well as 
highly correlated variants (r2>0.7) that mark each of the 
regions identified [25]. RegulomeDB (http://regulomedb.
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org/) was used to assess and score regulatory potential of 
variants in each locus [26]. Expression quantitative trait 
locus (eQTL) effects were assessed using the Genotype-
Tissue Expression Project (GTEx) database (http://www.
gtexportal.org/home/) for pancreatic tissues (n = 149 
samples) [27]. 

Analysis of gene expression

Gene expression was assessed for five genes that 
are closest to the reported variants on chromosomes 
1q32.1 (NR5A2), 5p15.33 (TERT and CLPTM1L), and 
8q24.21 (MYC and PVT1). We first assessed differential 
expression of these genes in pancreatic tumor samples 
(PDAC, n = 8), histologically normal (non-malignant) 
pancreatic tissue samples (n = 10), and pancreatic cell 
lines (n = 9) by RNA-sequencing as described previously 
[28]. We compared gene expression in tumors and cell 
lines to histologically normal pancreatic tissue samples by 
EdgeR analysis [28]. P-values represent an exact test of 
the differential expression of each gene in histologically 
normal and tumor derived samples using normalized read 
counts in EdgeR.

We also assessed the expression of one of these 
genes (NR5A2) in a second independent tissue sample set 
that included 20 fresh frozen paired histologically normal 
pancreatic samples (adjacent to tumor) and pancreatic 
ductal adenocarcinoma (PDAC) tumor samples. RNA 
samples were isolated from fresh frozen tissues and 
reverse transcribed to cDNA as previously described 
[28]. Three NR5A2 isoforms (isoform 1: NM_205860, 
isoform 2: NM_003822, and isoform 3: uc009wzh.3) were 
tested using TaqMan gene expression assays (Thermo 
Fisher Scientific, isoform 1: Hs00894632_m1, isoform2: 
Hs00892375_m1 and a custom assay, for isoform 3 
forward primer: 5’CTTTTCGCCGGAGTTGAAT3’; 
reverse primer: 5’GTCCGGAAGCCCAGCA3’; probe: 
5’ CTGTGCTGCCCGTGTCC3’) and a 7900HT system 
(ABI). Each reaction was run in triplicate and analyzed 
according to the ΔΔCt method using B2M (Hs99999907_
m1), GAPDH (Hs99999905_m1) and PPIA (Hs99999904_
m1) as housekeeping genes. P-values represent two-
sided T-tests of the difference in expression between 
histologically normal and tumor derived samples.

All tissue samples were obtained from the Mayo 
Clinic in Rochester, MN. The project was approved by the 
Institutional Review Boards of the Mayo Clinic and the 
NIH. Nine pancreatic cancer cell lines (AsPC-1, BxPC-3, 
Hs766T, SU.86.86, SW1990, CFPAC-1, Capan-1, PANC-
1, MIA PaCa-2) were purchased from ATCC and cultured 
as recommended (http://www.ATCC.com). The cell lines 
were tested for authentication with a panel of short tandem 
repeats (STR) using the Identifiler kit (Life Technologies) 
and compared with the ATCC and the DSMZ (German 
Collection of Microorganisms and Cell Cultures) STR 
Profile Databases. All cell lines matched the listed profiles. 
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