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Abstract
The theory of finite-size scaling explains how the singular behavior of thermodynamic quan-

tities in the critical point of a phase transition emerges when the size of the system becomes

infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly dem-

onstrate the existence of a finite-size scaling law for the Galton-Watson branching pro-

cesses when the number of offsprings of each individual follows either a geometric

distribution or a generalized geometric distribution. We also derive the corrections to scaling

and the limits of validity of the finite-size scaling law away the critical point. A mapping

between branching processes and random walks allows us to establish that these results

also hold for the latter case, for which the order parameter turns out to be the probability of

hitting a distant boundary.

1 Introduction: Finite-size scaling
Statistical mechanics provides a complete explanation of the thermodynamic (that is, macro-
scopic) properties of systems in terms of their microscopic laws when the so-called thermody-
namic limit is considered—the limit of infinite system size [1–3]. However, there is a natural
and increased interest in the properties of small systems [4, 5], i.e., systems whose size cannot
be considered infinite. What is finite and what is infinite is a relative matter, as systems display-
ing a continuous or second-order phase transition illustrate. The key issue is that the size of the
system needs to be measured in terms of its correlation length. For these systems a useful tool
to deal with finite-size effects near the critical point of the transition is finite-size scaling
[1, 2, 6, 7].

Let us consider a simple ferromagnetic system, whose thermodynamic variables are: the
magnetic moment per particle μ (proportional to magnetization), the absolute temperature T,
and the magnetic field H. It is convenient to rescale (and center) T by means of the critical tem-
perature Tc, yielding the reduced temperature τ = (T − Tc)/Tc, and to rescale H by kBT (with kB
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Boltzmann constant), yielding the reduced magnetic field h =H/(kBT). Additionally, one may
consider a system of units in which μ and h are dimensionless. The former, μ, will be the order
parameter, whereas h and τ are control parameters.

“Near” the critical point of the transition, defined by τ = h = 0, the equation of state fulfills a
scaling law, which gives μ as a function of τ and h as

m ¼ jhjb=DF̂�
t

jhj1=D
 !

; ð1Þ

where β and Δ are critical exponents, and F̂� represents two scaling functions, one (+) for
h> 0 and another one (−) for h< 0. The scaling law Eq (1) indicates the invariance of the
equation of state under appropriate scale transformations (which are linear transformations of
the axes μ, τ and h). By the universality property many different systems share the same values
of the critical exponents and the same scaling functions, and then the scaling law Eq (1) consti-
tutes a law of corresponding states [8].

For instance, for the mean-field theory or the Landau theory of the Ising model [9, 10], β =

1/2, Δ = 3/2, and the scaling function F̂� is given by the two real solutions of

x ¼ jF̂�ðxÞj�1 � jF̂�ðxÞj2=3, Ref. [11]. This yields

F̂�ðxÞ ¼
� ffiffiffiffiffiffiffiffiffi�3x
p

for x ! �1

� ffiffiffi
33

p
for x ¼ 0

�1=x for x ! 1

ð2Þ

8>>><
>>>:

and substituting into the scaling law Eq (1), one gets

m ¼
� ffiffiffiffiffiffiffiffiffi�3t
p

for t < 0 and h ! 0ffiffiffiffiffi
3h3

p
for t ¼ 0

h=t for t > 0 and h ! 0

ð3Þ

8>>><
>>>:

leading to the equation of the spontaneous magnetization, the critical-isotherm equation, and

the Curie-Weiss law, respectively [9]. As F̂�ðxÞ is a smooth function, it is only at the critical
point that a sharp transition emerges.

It is important that the correlation length ξ fulfills a scaling law analogous to Eq (1),

x ¼ jhj�n=DĜ�
t

jhj1=D
 !

; ð4Þ

with ν another critical exponent and Ĝ� another pair of scaling functions. Then the main fact
of critical phenomena is that ξ diverges (goes to1) right at the critical point (as ν and Δ are
positive). For instance, at the critical isotherm, τ = 0, one has ξ/ 1/|h|ν/Δ, whereas at zero field,
ξ/ 1/|τ|ν.

Strictly, all these equations are only valid in the thermodynamic limit. For a system of finite
size L (in all dimensions [1]) the correlation length cannot be infinite. When L is much larger
than the correlation length one does not expect that the finiteness of the system has any
influence on the behavior of the system; however, this is not the case when L becomes
smaller than the correlation length of the corresponding infinite system [1]. So, one can intro-
duce a phenomenological additional dependence on ξ/L in the equation of state [7], as
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m ¼ jhjb=DF̂�ðt=jhj1=D; x=LÞ; which, substituting the equation for ξ [Eq (4)], can be written as

m ¼ jhjb=D~F�ðt=jhj1=D; Ljhjn=DÞ; or, equivalently,

m ¼ L�b=nFðL1=nt; LD=nhÞ; ð5Þ

where the terms |h|β/Δ and τ/|h|1/Δ have been transformed to L−β/ν and L1/ν τ, respectively. The

previous equation constitutes a finite-size scaling law or ansatz, where now F̂�, ~F� and F
become bivariate scaling functions, with the latter unifying the positive and negative values of
h. The finite-size-scaling ansatz can be verified by plotting μLβ/ν versus τL1/ν and hLΔ/ν; if a data
collapse emerges, this gives the shape of the scaling function F. In this way, finite-size behavior
is determined from the critical exponents of the infinite system [1]. Although usually finite-size
scaling is derived in this phenomenological way, there have been exact derivations for particu-
lar systems [12].

Note that for a finite system with h = 0 the system size L plays a role similar to that of the
inverse of the magnetic field in an infinite system, or more precisely, L1/ν acts as 1/|h|1/Δ, and in
this way, one expects that the first argument of the scaling function F in Eq (5) behaves, quali-

tatively, as the scaling function F̂� in Eq (1). This implies that a sharp transition can only take
place for L!1, i.e., in the thermodynamic limit. There are numerous examples in the litera-
ture about the “smoothness” of phase transitions for finite systems, see for instance Ref. [13]

2 Introduction: Phase transition in the Galton-Watson process
The Galton-Watson process [14, 15] provides the simplest model for the growth (and
degrowth) of a biological population [16], but it is equally applicable to the growth of a nuclear
reaction [17], an earthquake [18], or mean-field self-organized critical processes in general
[18–21]. It belongs to a more general class of models known as branching processes. The Gal-
ton-Watson process starts with one single element that replicates, producing more elements,
called offsprings, which also replicate, producing more elements and so on. The model is sto-
chastic, as the (total) number of offsprings produced by each element is random, characterized
by a distribution that is the same for all elements and also independent of the number of off-
springs of the other elements.

In mathematical terms, the probability that the number of offsprings K of one element takes
the value k is given by P[K = k], with k taking discrete values from 0 to1. In this paper we will
consider that P[K = k] is given by the geometric distribution, or by the generalized geometric
distribution, but the model is totally general. The distribution P[K = k] completely defines the
model, as, we insist, the number of offsprings of each element are identically distributed and
independent. The initial element defines the 0–th generation, its offsprings are the first genera-
tion, and so on. An index t labels each generation. The model does not incorporate time, but
one can interpret t as a discrete time. An important auxiliary variable is Nt, which counts the
number of elements in each generation, starting with N0 = 1 (one single original element).

The key question to ask is if the process gets extinct, i.e., Nt = 0 at some t� 1, or not (where
it goes on forever). A fundamental result in the theory of branching processes [15, 18] is that
the probability of extinction Pext can be obtained from

Pext ¼ lim
t!1

P½Nt ¼ 0� ¼ lim
t!1

f tð0Þ; ð6Þ

where ft(s) is the t–th composition of the probability generating function f(s) of the random
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variable K, i.e., ft(s) = f(. . .f(f(s)). . .) (composed t times), with

f ðsÞ ¼
X1
k¼0

P½K ¼ k�sk: ð7Þ

As we iterate successive compositions of f(s) starting from s = 0, the limit is given by the small-
est fixed point s� of f(s) in the interval [0, 1]; so, s� necessarily satisfies s� = f(s�), but it is the
smallest value in [0, 1] verifying such relation.

Introducing the probability of survival, or probability of non extinction ρ, fulfilling Pext = s�

= 1 − ρ, the fixed-point condition becomes

1� r ¼
X1
k¼0

P½K ¼ k�ð1� rÞk: ð8Þ

From here, it is clear by normalization that ρ = 0 is a possible solution. Expanding the equation
up to second order in ρ using the binomial theorem one gets

1� r ’
X1
k¼0

P½K ¼ k� 1� krþ kðk� 1Þ
2

r2

� �
ð9Þ

¼ 1� hKirþ 1

2
hKðK � 1Þir2: ð10Þ

The solutions, in terms of the mean number of offsprings,m = hKi, and close tom = 1, are then

r ¼
(
0 for m � 1;

2s�2
c ðm� 1Þ for m � 1;

ð11Þ

where we have used that when ρ is close to zero (from above)m is close to one, and therefore
hKðK � 1Þi ¼ s2 þmðm� 1Þ ’ s2

c , where s
2
c is the variance of K when its mean is one. It can

be proved that there are no other fixed points than the two above [15, 18].
It is clear that the case in which the offspring distribution verifiesm = 1 is critical, in the

sense that it separates two very different “phases” of the system: extinction for sure ifm� 1
and non-sure extinction (and the possibility of a “demographic” explosion) form> 1. Even
more, this phase diagram is analogous to the spontaneous (zero-field) behavior of a magnetic
system, Eq (3), if we identifym − 1 with the control parameter τ and ρ with the order parameter
μ, and so we can talk about a phase transition in the Galton-Watson model [18] with critical
point atm =mc = 1. Note then that s2

c becomes the variance of the number of offsprings in the
critical case. There are, though, two quantitative differences: β = 1 (in contrast to β = 1/2 in the
magnetic example above) and that the ordered phase (non-zero order parameter) is above the
critical point now. Eq (11) also tell us that when the distance to the critical point,m − 1, is
rescaled by s2

c the behavior of the transition is universal, i.e., independent on the underlying
distribution of the number of offsprings K.

In this paper we investigate this phase transition for a finite number of generations, i.e.,
when the number of generations is limited by t� L. In a previous paper [22] we expanded
f(ft(0)) around the critical point s� to obtain a general finite-size-scaling law for the probability
of survival ρ. Here we follow a different, more direct approach, particularized for a geometric
distribution in the number of offsprings, which will allow us to obtain also the corrections to
scaling.

After the introduction to finite-size scaling in critical phenomena in the previous section
and the introduction to branching processes in this section, in Sec. 3 we analyze the finite-size
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effects in the critical properties of the Galton-Watson process when the offspring distribution
is given by the geometric distribution. Two different order parameters are explored, [ρ and ρ/(1
− ρ)], and the corrections to scaling and the range of validitity of the scaling law are obtained as
well. We generalize the finite-size scaling law for the so-called generalized geometric distribu-
tion in Sec. 5. Previously, in Sec. 4, we establish that our scaling law also describes the escape
probability of a simple one-dimensional random walk. An appendix gives some details of the
calculations of Secs. 3 and 5.

3 Finite-size scaling in the geometric Galton-Watson process
We consider the Galton-Watson model with a finite number of generations L, which means
that the process is stopped when it reaches the L–th generation, i.e., the elements of this genera-
tion are not allowed to replicate. Viewing the process as a branched tree, L becomes the height
of the tree and is therefore a measure of system size (more precisely, the height of the tree is
L + 1, counting the 0–th generation).

The extinction of this process is given by the event NL = 0, as extinction at any generation t
< L is included in the case NL = 0 (extinction is forever, as it is an absorbing state). In the same
way as for an unbounded system, the probability of extinction will be

PextðLÞ ¼ P½NL ¼ 0� ¼ f Lð0Þ ð12Þ
(we only make explicit the dependence on L, but a hidden dependence exists in the parameters
of the distribution of K, in particular onm). The probability of extinction is obtained then as
the L–th composition of the probability generating function of the distribution of the number
of offsprings, but note that as L is not infinite, fL(0) will not reach the fixed point s�. Although
formally the problem is solved by the calculation of fL(0), in general it is not feasible to arrive to
an explicit expression for the composition, even for small values of L.

A remarkable exception is the case when K follows the geometric distribution, given by

P½K ¼ k� ¼ pqk; ð13Þ

for k = 0, 1, . . .1 (and zero otherwise) and with q = 1 − p. The only parameter of the distribu-
tion is p, which is called the success probability. The geometric distribution has a straightfor-
ward interpretation in terms of biological populations. For instance, consider that the elements
that replicate are female individuals, and each female has a probability q to produce another
female and a probability p of producing a male. Each female reproduces until it gets a male,
and when the male is obtained the mother does not reproduce anymore. Although getting a
male is considered a “success” (this is just a name), it is the female individuals what are counted
as offsprings, so K counts the number of females disregading the male. Note that another vari-
ant of the geometric distribution counts also the male, this would be for us a shifted geometric
distribution and is not considered here.

The probability generating function of the geometric distribution turns out to be

f ðsÞ ¼
X1
k¼0

pqksk ¼ p
1� qs

; ð14Þ

from which the mean is obtained asm = hKi = f0(1) = q/p and the variance as σ2 = f00(1) −m(m
− 1) = q/p2, see Ref. [18]. Note that the critical point of the corresponding Galton-Watson pro-
cess is atm = q/p = 1 and so pc = qc = 1/2, with a critical variance s2

c ¼ 2.
The fundamental property (for our problem) of the geometric distribution comes from the

fact that its probability generating function is a fractional linear function [15], also called a
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linear fractional function [23]. In this case the successive compositions of f(s) can be computed
for any L, yielding

f LðsÞ ¼ s0 � kLðs� s0Þ=ðs� 1Þ
1� kLðs� s0Þ=ðs� 1Þ ; ð15Þ

see Ref. [23] or Eq (58) at our Appendix. The constant s0 is a fixed point of f(s) different from 1
(this fixed point, s0, always exists except form = 1), and the constant κ is given in the Appendix.
Then, the probability of survival will be

rðLÞ ¼ 1� f Lð0Þ ¼ 1� s0
1� kLs0

; ð16Þ

which contains the solution to our problem.
For the geometric distribution the fixed point s0 is at s0 = p/q =m−1, and then κ = p/q =m−1

(see Appendix); therefore, substituting into Eq (16) we get

rðLÞ ¼ mLðm� 1Þ
mLþ1 � 1

: ð17Þ

This exact equation provides the order parameter ρ as a function of the control parameterm
for any system size L (in the case of the geometric distribution).

In order to verify if a scaling law is fulfilled it is convenient to introduce the rescaled distance
to the critical point,

x ¼ L1=nðm� 1Þ; ð18Þ

where the “distance”m − 1 is rescaled (divided) by the term 1/L1/ν, with the value of the expo-
nent ν unknown. Substitutingm − 1 = x/L1/ν and

mL ¼ 1þ x
L1=n

� �L ð19Þ

into Eq (17) we observe that the rescaled survival probability L1/ν ρ(L) in the limit L!1
either tends to zero or infinite (depending on the sign of x and on whether ν> 0 or ν< 0),
except in the case ν = 1. For ν = 1 and close to the critical point, the limit of L1/ν ρ(L) is a posi-
tive value that only depends on x, which is the signature of a scaling law,

LrðLÞ / FðxÞ; ð20Þ

with F the scaling function.
Indeed, rewritting Eq (17) in terms of x, using thatmL ! ex for ν = 1 leads to

rðLÞ ’ exx=L
ex � 1

; ð21Þ

up to the lowest order in L−1. Taking into account that the variance at the critical point is
s2
c ¼ 2, the scaling law can be written as

rðLÞ ’ 1

s2
c L

2xex

ex � 1

� �
¼ 1

s2
c L

FðxÞ; ð22Þ

with scaling function

FðxÞ ¼ 2xex

ex � 1
; ð23Þ

Finite-Size Scaling Law and Corrections in the Geometric Galton-Watson Process
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in total agreement with Ref. [22]. The reason to introduce the value of s2
c will become more

clear when we consider the generalized geometric case, in Sec. 5. Note that the scaling law
obtained here for the Galton-Watson process is very similar to the purely mathematical case
considered in Sec. 2.5.1 (p. 85) of Ref. [2].

It is important that the scaling function Eq (23) fulfills

FðxÞ ¼

�2xex for x ! �1;

2 for x ¼ 0;

2x for x ! 1:

ð24Þ

8>>><
>>>:

Although our calculation does not include the critical case, x = 0, the Appendix shows that
indeed the critical case is also described by the value of the scaling function F at x = 0. There-
fore, there is a removable singularity at x = 0. The limit behavior of F, substituted into the scal-
ing law, leads to

rðLÞ ¼

2s�2
c ð1�mÞe�Lð1�mÞ for m < 1 and L ! 1;

2s�2
c L�1 for m ¼ 1;

2s�2
c ðm� 1Þ for m > 1 and L ! 1:

ð25Þ

8>>><
>>>:

We see that the infinite-size case, Eq (11), is recovered when L is infinite, and that it is only in
this case that a sharp transition exists.

Comparison with Eq (3) allows one to see which is the equivalent of the “critical isotherm”

and “spontaneous magnetization” laws for the Galton-Watson process. For the latter case we
see that β = 1. The Curie-Weiss law is not fulfilled as ρ does not decay as a power law in L but
exponentially form< 1.

We may also obtain the corrections to scaling, taking care of terms beyond the leading one.
Going back to Eq (17), we substitute there the exact expressionmL = (1 + x/L)L = ex(1 + ∑n an),
with a1 = −x2/(2L), a2 = x3/(3L2), etc., then,

rðLÞ ¼ exð1þP anÞx=L
exð1þP anÞð1þ x=LÞ � 1

¼ 2xex

s2
c Lðex � 1Þ

1þP an
1þ u

P
bn

� �
ð26Þ

¼ FðxÞ
s2
c L

1þ
X

an
� �

1� u
X

bn þ u2ð
X

bnÞ2 þ � � �
h i

ð27Þ

¼ FðxÞ
s2
c L

1þ
X

an � u
X

bn � u
X

an
� � X

bn
� �

þ u2ð
X

bnÞ2 þ � � �
h i

; ð28Þ
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with u = ex/(ex − 1) and ∑bn = x/L+(1+x/L)∑an. The first terms of the different sums are

X
an ¼ � x2

2L
þ x3

3L2
þ x4

8L2
� x4

4L3
þ � � � ð29Þ

X
bn ¼

x
L
� x2

2L
� x3

6L2
þ x4

8L2
þ x4

12L3
þ � � � ð30Þ

ð
X

bnÞ2 ¼
x2

L2
� x3

L2
þ x4

4L2
� x4

3L3
þ � � � ð31Þ

X
an

� � X
bn

� �
¼ � x3

2L2
þ x4

4L2
þ x4

3L3
þ � � � ð32Þ

ð
X

bnÞ3 ¼
x3

L3
� 3x4

2L3
þ � � � ð33Þ

X
an

� �
ð
X

bnÞ2 ¼ � x4

2L3
þ � � � ð34Þ

Let us study the behavior as far from the critical point as possible. Below it (x< 0), we take x
! −1 and then u! 0 (exponentially in x); therefore, only ∑an contributes and we get

rðLÞ ¼ FðxÞ
s2
c L

1� x2

2L
þ � � �

� �
ð35Þ

so, the first correction-to-scaling term goes as −x2/(2L) = −L(m − 1)2/2. This means that if this
term is of order ε (i.e., L(m − 1)2/2 = ε) all other terms are of higher order in ε, in the limit L
!1. This is so because the rest of terms are of the form

x2k�1

Lk
;
x2k�1

Lkþ1
; � � � x

2k�1

L2k�2
; ð36Þ

and

x2k

Lk
;
x2k

Lkþ1
; � � � x2k

L2k�1
: ð37Þ

Above the critical point (x> 0) we consider x!1, then, u! 1 and the sums lead to the can-
cellation of all terms that are not powers of x/L, so

rðLÞ ¼ FðxÞ
s2
c L

1� x
L
þ x2

L2
� x3

L3
þ � � �

� �
: ð38Þ

The first correction to scaling is given by the term −x/L. If we impose this to be of order ε, (i.e.
ε = x/L =m − 1), we will obtain the limit of validity of the scaling law above the critical point.
In summary, the scaling law will hold in the range

1�
ffiffiffiffiffi
2ε

L

r
< m < 1þ ε ð39Þ

with ε	 1. For instance, for a 5% error [defined as the ratio between the approximation given

by the scaling law and the exact ρ(L), Eq (17)], ε = 0.05 and then 1� ffiffiffiffiffiffiffiffiffiffiffiffi
0:1=L

p
< m < 1:05.

Fig 1 shows that this is valid for L–values above 40 form< 1 and above 160 form> 1. Note
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that the range of validity that we obtain, Eq (39), is much larger than the one implicit in
Ref. [22], 1 − c/L<m< 1 + c/L, with c a constant. If we do not take the limits x! ±1, we
have, keeping terms up to first order in 1/L,

rðLÞ ¼ FðxÞ
s2
c L

1� 2xex � x2

2Lðex � 1Þ þ � � �
� �

; ð40Þ

which is also shown in Fig 1a and 1b.
A scaling law with a broader range of validity is obtained taking as an order parameter not ρ

but ρ/(1 − ρ). This is just the ratio between the number of realizations that survive at t = L and
the number that are extinct at t = L. From Eq (17) we obtain

rðLÞ
1� rðLÞ ¼

mLðm� 1Þ
mL � 1

; ð41Þ

and proceeding as in the preceding case, we get

rðLÞ
1� rðLÞ ¼

exð1þP anÞx=L
exð1þP anÞ � 1

¼ 2xex

s2
c Lðex � 1Þ

1þP an
1þ u

P
an

� �
ð42Þ

¼ FðxÞ
s2
c L

1þ ð1� uÞ
X

an � uð1� uÞ
X

an
� �2

þ u2ð1� uÞ
X

an
� �3

þ � � �
� �

: ð43Þ

The factors uk(1 − u) = −ekx/(ex − 1)k+1 go to zero exponentially fast when x! ±1, except the
first one (k = 0) when x! −1, for which u! 1. This is the only contribution away from the
critical point, and so (below the critical point) the correction to scaling goes as −x2/(2L). The
range of validity of the scaling law is then given by

m > 1�
ffiffiffiffiffi
2ε

L

r
; ð44Þ

i.e., the scaling law is valid arbitrarily far from the fixed point in the supercritical region, as the
correction term there decays exponentially fast in x. If we keep x finite and terms up to first
order in 1/L we arrive at

rðLÞ
1� rðLÞ ¼

FðxÞ
s2
c L

1þ x2

2Lðex � 1Þ þ � � �
� �

: ð45Þ

This can be verified in Fig 2, where the scaling law describes system sizes as small as L = 10
arbitrarily far from the critical point in the supercritical region.

4 Applicability to randomwalks
Thanks to a well-known mapping between branching processes and random walks [24, 25],
our finite-size scaling law is also applicable to the latter system. In concrete, a one-dimensional
random walk can be obtained from the geometric Galton-Watson branching process by

Fig 1. (a) Comparison of the exact probability of survival, ρ(L), given by Eq (17), with the approximations
given by the scaling law Eq (22) and by the scaling law with the first correction to scaling, Eq (40), for different
m and L. (b) The same taking the y–axis logarithmic. (c) The same data, taking the ratio between the
approximation given by the scaling law [FðxÞ=ðs2

cLÞ], Eq (22), and the exact value of ρ(L). Larger values of L
are included in this case. The program used to draw the figure is provided as S1 File.

doi:10.1371/journal.pone.0161586.g001
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following the branches sequentially. Instead of considering that each generation t of the process
is generated in parallel from the previous one (as the identification of the index t with time sug-
gests) one changes the order in which offsprings appear. The position of a walker in the tree
associated to the branching process determines which element (which node of the tree)
replicates.

The walker is initially located at the root (the element at the 0–th generation), and moves to
one of the elements in the first generation (it does not matter which one). If this element has its
own offsprings, the walker moves to one of this, and so on. A branch is followed sequentially
until the branch gets extinct (the last element has no offsprings), and then the walker moves
back to the parent of the last element (from generation t to t − 1); if this parent has more off-
springs the walker follows the branch of one of the remaining offsprings; if not, the walker
moves back to the previous parent (at generation t − 2) and so on. Note then that the walker
passes twice through each link or edge between parent and offspring. If, arbitrarly, we consider
that the root is at the bottom of the tree (as in real, biological trees!) and each new generation is
one level above the previous one, the walker travels up and down through all the tree.

The one-dimensional random walk is obtained from the projection of the position of the
walker on the axis counting the number of generations, so, the t–axis of the branching process
becomes the spatial axis of the random walk. Then, the walker moves up with probability q and
down with probability p (the parameters of the geometrical distribution). Notice that the

Fig 2. Same as Fig 1a, but replacing the order parameter ρ(L) by ρ(L)/[1 − ρ(L)]. The exact behavior is given by Eq
(41), and the scaling law with the first correction to scaling is given by Eq (45). It becomes clear how the performance of the
finite-size scaling law is even better than for ρ(L), in particular form > 1. The program used to draw the figure is provided as
S1 File.

doi:10.1371/journal.pone.0161586.g002
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mapping is possible and exact because the number of offprings follows the geometric distribu-
tion, Eq (13).

The finite-size condition imposed to the branching process translates into the existence of a
reflecting boundary at t = L for the random walk, and then, the probability of survival ρ of the
branching process turns out to be the probability of hitting the reflecting boundary, Phit, for the
random walk. This also has an absorbing boundary at t = −1, where the walk dies (after a dura-
tion equal to twice the number of elements, minus one).

After all these considerations, the mapping is established, and we can write a finite-size scal-
ing relation for the hitting probability,

PhitðLÞ ’
1

2L
FðxÞ ð46Þ

with F(x) given by Eq (23) and

x ¼ Lðm� 1Þ ’ 4L q� 1

2

� �
: ð47Þ

Remember that this is valid for large L and close to the critical point q = qc = 1/2, becausem =
q/p. In particular, the corrections to scaling of the previous section hold in exactly the same
way when the relationships are written in terms ofm or x = L(m − 1).

In fact, the previous scaling law describes the probability that a random walk starting next
to the absorbing boundary hits the other boundary, independently of the nature of the latter
(reflecting or not), as it is only the first-passage time what matters. In this way, the one-dimen-
sional random walk, the simplest system in statistical physics, displays a continuous phase
transition with finite size scaling, for which the corrections to scaling can be easily obtained
as well.

5 The generalized geometric distribution
The previous analysis of the geometric Galton-Watson process in terms of fractional linear
functions (see Appendix) suggests a generalization of the problem. We may consider the gener-
alized geometric distribution, in which the zero-offspring probability, P[K = 0], is released
from following the geometric distribution and instead it takes a free value p0, which is a new
parameter. The rest of values of K follow the geometric distribution, but rescaled by (1 − p)/(1
− p0) (because of normalization). In a formula,

P½K ¼ k� ¼
(
p0 for k ¼ 0

ð1� p0Þpqk�1 for k ¼ 1; 2; � � �
ð48Þ

and zero otherwise. We recover the usual geometric distribution for p0 = p. The generating
function is indeed a fractional linear function,

f ðsÞ ¼ p0 þ ðp� p0Þs
1� qs

; ð49Þ

which yiedsm = f0(1) = (1 − p0)/p and σ
2 = (1 + p0 − p)(1 − p0)/p

2. The critical point turns out
to be at pc = (1 − p0)

The analysis of Sec. 3 is fully applicable in this case, in particular Eq (16). We need to know
that s0 = p0/q and κ =m−1 (see Appendix); in fact, we write s0 as a function ofm and p0, which
is s0 = p0m/(m − q0), with q0 = 1 − p0. Notice that we study the transition keeping fixed p0.
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Substituting into the formula for the order parameter ρ(L), Eq (16), we arrive at

rðLÞ ¼ mLð1� s0Þ
mL � s0

¼ mLðm� q0 � p0mÞ
mLðm� q0Þ � p0m

ð50Þ

¼ mLðm� 1Þð1� p0Þ
mLðm� 1þ p0Þ � p0m

: ð51Þ

Introducing again the rescaled variable x = L1/ν(m − 1), and taking the limit L!1, the only
non trivial limit arises for ν = 1. In this case, up to first order in 1/L and introducing the critical
variance s2

c ¼ 2p0=ð1� p0Þ, we get

rðLÞ ’ 1� p0
2p0

� �
1

L
2xex

ex � 1

� �
¼ 1

s2
c L

FðxÞ; ð52Þ

which is the same scaling law as for the geometric case, with the scaling function F(x) given
again by Eq (23).

6 Summary
We have presented here direct analogies between branching processes and thermodynamic
phase transitions. We have considered the classical Galton-Watson model of branching pro-
cesses when the number of offsprings K per element is given by the geometric distribution.
This process has as natural control and order parameters the mean value of K and the probabil-
ity of survival ρ, respectively. We study finite-size effects by imposing an upper limit L to the
number of generations. After obtaining the exact expression for the equation of state, that is,
the dependence of the order parameter with the control parameter, Eq (17), we introduce the
rescaled distance to the critical point, x = L1/ν(m − 1). When ν = 1 we demonstrate that a finite-
size scaling law, Eq (22), emerges in the limit L!1.

In general, the theory of critical phenomena does “not explain why in some systems scaling
holds for only 1-2% away from the critical point and in other systems it holds for 30-40%
away” [26]. In particular, finite-size scaling should work when the system size tends to infinite
and the control parameter approaches the critical point; nevertheless, in practice, finite-size
scaling predictions turn out to apply to rather small systems at a non-negligible distance from
the critical point [1]. We provide a quantitative derivation of these limits for the finite-size scal-
ing behavior of the Galton-Watson process, Eq (39), thanks to the calculation of the corrections
to scaling, Eqs (35) and (38), or Eq (40). If we define an alternative order parameter as ρ/(1 −
ρ), the same scaling law holds, but with a larger range of validity, given by Eq (44). In this case
the corrections to scaling are given by Eq (35), below the critical point or by Eq (45), in general.

A straightforward mapping between branching processes and random walks allows one to
establish that all our results for the survival probability of a geometric Galton-Watson process
are equally valid for the probability that a one-dimensional random walk, starting above but
close to an absorbing origin and evolving through ±1 increments, reaches a distance to the ori-
gin equal to L. In this way, a subcritical Galton-Watson process corresponds to a random walk
with a bias to the negative (−1) increment, for which the hitting probability becomes zero as L
!1. On the other hand, the supercritical case corresponds to a random walk with a positive
bias in the increment, for which there exists a non-zero probability that never returns to the
origin in the limit L!1. Obviously then, the critical case is the one of a fair random walk. To
the best of our knowledge, the one-dimensional random walk provides the simplest example of
a system exhibiting a finite-size scaling law. Therefore, the analogies between branching
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processes and equilibrium phase transitions are totally applicable to the one-dimensional ran-
dom walk.

Appendix
A fractional linear function is defined by

f ðsÞ ¼ aþ bs
cþ ds

; ð53Þ

with a, b, c and d constants fulfilling ad 6¼ bc (to avoid that the numerator and the denominator
are proportional). Note that for the geometric distribution, Eq (14), a = p, b = 0, c = 1, and d =
−q, although in the next paragraphs we will keep generality.

The advantge of fractional linear functions is that their compositions are very manageable.
To see this we follow the calculation of Karlin and Taylor [23]. Let us consider any point si,
then, it is direct to see that

f ðsÞ � f ðsiÞ ¼
cb� ad
cþ ds

� �
s� si
cþ dsi

� �
; ð54Þ

and for two points s0 and s1 one has

f ðsÞ � f ðs0Þ
f ðsÞ � f ðs1Þ

¼ cþ ds1
cþ ds0

� �
s� s0
s� s1

� �
: ð55Þ

For fractional linear functions representing probability generating functions there exist just
two fixed points that, by definition, verify si = f(si), so one can identify the previous s0 and s1
with these fixed points. It can be also verified that it is only at the critical point (m = 1) that the
two fixed points take the same value, s0 = s1. Note that the fixed point s� corresponding to the
probability of extinction in the infinite system (mentioned in Sec. 2) is defined as s� = min(s0,
s1). So, using the defining property of fixed points (si = f(si)) and defining κ = (c + ds1)/(c + ds0)
and w = f(s) one gets

w� s0
w� s1

¼ k
s� s0
s� s1

� �
: ð56Þ

In order to calculate f(w) one can iterate the same argument for the left-hand side of the equa-
tion, and in general, by induction,

wt � s0
wt � s1

¼ kt s� s0
s� s1

� �
; ð57Þ

with wt = ft(s). Isolating wt one arrives at the desired formula for the compositions of f(s),

wt ¼ f tðsÞ ¼ s0 � kts1ðs� s0Þ=ðs� s1Þ
1� ktðs� s0Þ=ðs� s1Þ

; ð58Þ

which holds for any values of the parameters of the offspring distribution, except at the critical
point (m = 1).

In the case in which f(s) is a probability generating function, one of the fixed points is equal
to one, by normalization. So, one can take, without loss of generality s1 = 1. Substituting the
form of a fractional linear function, Eq (53), into f(1) = 1 one gets a relation between the
parameters a, b, c and d. One can also verify that the other fixed point is s0 = −a/d. Finally, the
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constant κ turns out to be, substituting s0,

k ¼ cþ d
cþ ds0

¼ cþ d
c� a

; ð59Þ

which happens to be identical to the inverse of the mean, i.e.,

k ¼ m�1: ð60Þ

For the generalized geometric distribution, from its probability generating function, Eq
(49), and from the definition of fractional linear functions, Eq (53), one establishes that a = p0,
b = p − p0, c = 1, and d = −q, and the fixed point s0 turns out to be

s0 ¼
p0
q
; ð61Þ

which, for the particular case of the geometric distribution, defined by p0 = p, turns into

s0 ¼
p
q
: ð62Þ

The knowledge of the value of the fixed point s0 leads to the explicit form for ft(s).
At the critical point, given bym = 1, it is necessary to follow a separate approach. For the

generalized geometric distribution, the critical point is given by p = 1 − p0, which, substituting
into the probability generating function, Eq (49), leads to

f ðsÞ ¼ p0 þ ð1� 2p0Þs
1� p0s

: ð63Þ

Induction leads directly to

f tðsÞ ¼ ð1� p0Þftp0 þ ½1� ðt þ 1Þp0�sg
1þ ðt � 2Þp0 � ðt � 1Þp20 � ðtp0 � tp20Þs

ð64Þ

¼ tp0 þ ½1� ðt þ 1Þp0�s
1þ ðt � 1Þp0 � tp0s

; ð65Þ

from where the order parameter of the transition turns out to be

rðLÞ ¼ 1� PextðLÞ ¼ 1� f Lð0Þ ’ 1� p0
Lp0

¼ 2

s2
c L

; ð66Þ

taking the limit of large L and using the expression above for s2
c . This is in perfect agreement

with the results obtained form 6¼ 1. Note that the results for the geometric distribution are a
particular case corresponding to p0 = p = 1/2 atm = 1.
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