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Functional mechanisms underlying pleiotropic risk
alleles at the 19p13.1 breast–ovarian cancer
susceptibility locus
Kate Lawrenson et al.#

A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we

analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation

carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous

OC (P¼ 9.2� 10� 20), ER-negative BC (P¼ 1.1� 10� 13), BRCA1-associated BC (P¼ 7.7

� 10� 16) and triple negative BC (P-diff¼ 2� 10� 5). Genotype-gene expression associations

are identified for candidate target genes ANKLE1 (P¼ 2� 10� 3) and ABHD8 (Po2� 10� 3).

Chromosome conformation capture identifies interactions between four candidate SNPs and

ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8

promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative

enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional

effects for an ANKLE1 30-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13

regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms

underlying breast and ovarian cancer risk.
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G
enome-wide association studies (GWAS) have identified
more than 100 different genetic susceptibility regions for
breast cancer (BC)1–6 and 20 regions for epithelial

ovarian cancer (EOC)7–13. A few of these regions, and in some
cases the same genetic variants, are associated with risks of
both cancers (pleiotropy), suggesting there may be underlying
functional mechanisms and biological pathways common to
different cancers. The TERT-CLPTM1L locus (5p15) is one such
example in which the same variants are associated with risks of
oestrogen receptor (ER)-negative BC, BC in BRCA1 mutation
carriers and serous invasive OC10.

Few studies have comprehensively described the functional
mechanisms underlying common variant susceptibility loci10,14–18.
More than 90% of risk alleles lie in non-protein-coding DNA and
there is now unequivocal evidence that susceptibility regions are
enriched for risk-associated single-nucleotide polymorphisms
(SNPs) intersecting regulatory elements, such as transcriptional
enhancers, predicted to control the expression of target genes
in cis19–21. Establishing causality for risk SNPs is very challenging;
of the thousands of risk associations identified by GWAS,
functional validation of causal variants using genome editing has
only been experimentally performed for two SNPs, one for prostate
cancer22 using the CAUSEL pipeline and the other for obesity23.
Thus, there is a critical need to identify the causal risk SNP(s) and
the overlapping regulatory element(s) and the target gene(s)
regulated in an allele-specific manner.

Breast and high-grade serous OC share common genetic and
non-genetic risk factors, with mutations in BRCA1 and BRCA2
the most significant risk factors for both cancers, suggesting
similar biological mechanisms drive breast and OC development.
A region on chromosome 19p13.1 has previously been associated
with susceptibility to BC and OC in the general population, and
to modify the risks of BRCA1-related BC and BRCA2-related
OC9,24–27. Initial studies indicated that the association signal was
centred around the SNP rs8170 located in the BRCA1-interacting
gene BABAM1 (ref. 9), and subsequent studies have refined the
subtype specific BC risks associated with these SNPs24–26,28.

In the current study, we hypothesized that the same functional
mechanism underlies the 19p13.1 risk association in both BC and
OC. To evaluate this hypothesis we performed genetic fine
mapping in BC and OC patients and in BRCA1 mutation carriers,

and performed a wide range of functional assays in breast and
ovarian tissues and in vitro models to identify the likely causal
alleles, and target regulatory elements and susceptibility gene(s).
Our data indicate that multiple SNPs are involved in the
regulation of ABHD8 and perhaps ANKLE1 at this locus.

Results
Genetic association analyses with breast and OC risks. A total
of 438 SNPs spanning 420 kb at the chromosome 19p13
locus (nucleotides 17,130,000–17,550,000 (NCBI build 37)) were
genotyped successfully in the following populations: 46,451 BC
cases (of which 7,435 cases had ER-negative tumours) and 42,599
controls from the Breast Cancer Association Consortium (BCAC);
15,438 cases of EOC (of which 9,630 were of serous histology) and
30,845 controls from the Ovarian Cancer Association Consortium
(OCAC); and 15,252 BRCA1 mutation carriers from the
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA;
7,797 with BC and 7,455 unaffected; Supplementary Table 1).
Genotypes for variants identified through the 1,000 genomes
project (minor allele frequency (MAF)40.1%) were imputed for
all participants of European ancestry. A total of 2,269 genotyped
and imputed SNPs were analysed for their associations with ER-
negative BC risk in the general population, 2,311 SNPs with BC/
OC risk for BRCA1 mutation carriers, and 2,565 SNPs with risk of
serous OC. Results for all SNPs associated with these phenotypes at
Po10� 4 are illustrated in Fig. 1 and Supplementary Fig. 1. Two
perfectly correlated SNPs rs61494113 and rs67397200 located
between the ANKLE1 and ABHD8 genes demonstrated the
strongest association with BC risk among BRCA1 mutation carriers
(w2-test P¼ 7.8� 10� 16) and ER-negative BC in BCAC (w2-test
P¼ 1.3� 10� 13, P-meta-analysis¼ 7.3� 10� 28). There was no
association for ER-positive BC (w2-test P¼ 0.21 for rs61494113).
The strongest association with invasive and serous OC was for
rs4808075 (correlated with rs61494113 with r2¼ 0.99) located in
the BABAM1 gene (w2-test P¼ 9.2� 10� 20). We observed no
associations with risk of other histological subtypes of invasive OC
(Supplementary Table 2). The correlations between the SNP
exhibiting the strongest risk association (rs67397200) in the
meta-analysis of BC risk for BRCA1 mutation carriers and
ER-negative BC, with the previously reported risk-associated SNPs
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Figure 1 | Regional association plot disease-specific risk associations. Results for ER negative breast cancer from BCAC, for ovarian cancer from OCAC

and for BRCA1 mutation carriers with breast cancer from CIMBA are shown. Also shown are the results of a meta-analysis for BRCA1 and general

population ER negative breast cancer cases. The grey bars indicate the boundaries of the two association peaks, and the dotted horizontal line indicates the

cutoff for genome-wide significance (w2-test P¼ 5� 10�8). Previously identified GWAS SNPs are indicated with italic font. Genes in the region are

displayed beneath the association results.
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for breast, OC and BRCA1-associated BCs can be found in
Supplementary Table 3.

All SNPs with an association P valueo0.001 with each
phenotype were included in forward stepwise Cox regression
models for risks of BRCA1 BC, and logistic regression models for
ER-negative BC and serous OC. The most parsimonious models
for ER-negative BC and serous OC each included one SNP,
rs67397200 for ER-negative BC and rs4808075 for serous OC
(referred to as Peak 1). The most parsimonious model in the
analysis of BC risk for BRCA1 mutation carriers included two
virtually uncorrelated SNPs (pairwise correlation r2¼ 0.018)
rs61494113 (P value¼ 4.4� 10� 16 in conditional regression
analysis), and rs3786515 (Peak 2, conditional regression
P value¼ 9.6� 10� 5, pairwise correlation r2¼ 0.018; Fig. 1).
No other SNP was retained in the model at the P value threshold
of 0.0001.

Candidate causal variants. Peak 1 includes SNPs that encompass
the BABAM1, ABHD8 and ANKLE1 gene and are associated with
serous OC, ER-negative BC and BC risk for BRCA1 mutation
carriers (Fig. 1 and Supplementary Fig. 1); Peak 2 includes SNPs
located in the MYO9B gene associated only with BC risk in
BRCA1 mutation carriers. SNPs in Peaks 1 and 2 are virtually
uncorrelated.

To identify the strongest candidate causal SNPs, we computed
likelihood ratios of each SNP relative to the SNP with the
strongest association in each peak for risks of each phenotype.

Due to the similarities in associations between ER-negative BC
and BRCA1-associated BC in Peak 1, we computed the likelihood
ratios on the basis of the meta-analysis results. Table 1 includes
the SNPs that cannot be excluded at a likelihood ratio of 41:100
fold. In Peak 1, all but 12 SNPs can be excluded from being causal
for ER-negative BC and BRCA1-associated BC. An additional
SNP (rs10424198) cannot be excluded from being causal for
serous OC. All 13 SNPs were highly correlated (r240.95) and
spanned a region of 19.4 kb. In Peak 2, the likelihood ratios of
each SNP were calculated on the basis of the BRCA1 association
analysis conditional on the top SNP rs61494113. All but seven
SNPs correlated with rs3786515 (r240.10) cannot be excluded
from being the causal SNP for BRCA1-associated BC risk. With
the exception of rs3786514 (pairwise r2 with rs3786515¼ 0.87) all
other SNPs had r2 with rs3786515 between 0.13 and 0.20.

Associations for BRCA1 and BRCA2 mutation carriers. SNPs in
Peak 1 were only associated with risk of ER-negative BC for
BRCA1 mutation carriers and provided no evidence of association
with ER-positive BC for BRCA1. SNPs in Peak 1 were also
associated with OC risk for BRCA1 mutation carriers. SNPs in
Peak 2 were also primarily associated with BRCA1-related
ER-negative BC but there was no evidence of association with
OC risk (Supplementary Table 4). SNPs in peak 1 were not
associated with overall risk of BC in BRCA2 carriers (for example,
rs67397200 HR for BC¼ 1.00 (95% confidence interval (CI):
0.93–0.89)); however, SNP rs67397200 showed evidence of

Table 1 | SNPs associated with risk ovarian cancer, ER-negative breast cancer or breast cancer in BRCA1 carriers at the 19p13
locus.

SNP* Nucleotide
position

(build 37)

Allele
freq.

BRCA1 breast
cancer

ER-negative breast
cancer

BRCA1/ER-negative
breast cancer meta-

analysis (P value)

Serous ovarian cancer

HR (95%
confidence
intervals)

P value OR (95%
confidence
intervals)

P value OR (95%
confidence
intervals)

P value

Peak 1
rs4808075 (I) 17390291 0.30 1.19 (1.14–1.24) 4.77� 10� 15 1.16 (1.11–1.21) 4.42� 10� 13 1.55� 10� 26 1.19 (1.14–1.23) 9.17� 10� 20

rs10419397 (I) 17391328 0.30 1.19 (1.14–1.24) 5.55� 10� 15 1.16 (1.11–1.21) 6.57� 10� 13 2.7� 10� 26 1.19 (1.14–1.23) 1.29� 10� 19

rs56069439 (I) 17393925 0.30 1.19 (1.14–1.24) 3.33� 10� 15 1.16 (1.12–1.21) 2.22� 10� 13 5.26� 10� 27 1.19 (1.14–1.23) 1.94� 10� 19

rs4808076 (I) 17395401 0.30 1.19 (1.14–1.24) 2.55� 10� 15 1.16 (1.12–1.21) 2.9� 10� 13 5.59� 10� 27 1.18 (1.14–1.23) 3.72� 10� 19

rs111961716 (I) 17398085 0.30 1.19 (1.14–1.24) 3.22� 10� 15 1.16 (1.12–1.21) 2.63� 10� 13 6.07� 10� 27 1.18 (1.14–1.23) 6.97� 10� 19

rs113299211 (I) 17400765 0.30 1.19 (1.14–1.24) 2.33� 10� 15 1.16 (1.12–1.21) 2.4� 10� 13 4.22� 10� 27 1.18 (1.14–1.23) 8.13� 10� 19

rs67397200 (G) 17401404 0.30 1.19 (1.14–1.24) 8.88� 10� 16 1.16 (1.12–1.21) 1.10� 10� 13 6.18� 10� 28 1.18 (1.14–1.23) 7.75� 10� 19

rs61494113 (G) 17401859 0.30 1.19 (1.14–1.25) 7.77� 10� 16 1.16 (1.12–1.21) 1.27� 10� 13 7.31� 10� 28 1.18 (1.14–1.23) 1.14� 10� 18

rs4808616 (G) 17403033 0.31 1.19 (1.14–1.24) 1.44� 10� 15 1.16 (1.12–1.21) 1.10� 10� 13 9.37� 10� 28 1.18 (1.14–1.23) 1.51� 10� 18

rs55924783 (I) 17404072 0.30 1.19 (1.14–1.24) 2.44� 10� 15 1.16 (1.12–1.21) 1.61� 10� 13 2.81� 10� 27 1.18 (1.14–1.23) 1.35� 10� 18

rs28473003 (I) 17406167 0.30 1.19 (1.14–1.24) 2.11� 10� 15 1.16 (1.12–1.21) 2.8� 10� 13 4.55� 10� 27 1.18 (1.14–1.22) 3.43� 10� 18

rs13343778 (I) 17407695 0.30 1.19 (1.14–1.24) 7.44� 10� 15 1.16 (1.12–1.21) 3.92� 10� 13 2.06� 10� 26 1.18 (1.14–1.22) 3.18� 10� 18

rs10424198 (I) 17409671 0.30 1.18 (1.13–1.24) 3.13� 10� 14 1.16 (1.12–1.20) 1.18� 10� 12 2.56� 10� 25 1.18 (1.14–1.22) 3.85� 10� 18

Peak 2
rs3786514 (G) 17294954 0.48 1.08 (1.04–1.13) 5.85� 10�05 1.02 (0.98–1.06) 0.364 6.52� 10�04 1.05 (1.01–1.08) 8.01� 10�03

rs3786515 (G) 17295023 0.45 1.10 (1.05–1.14) 5.42� 10�06 1.02 (0.98–1.06) 0.281 9.94� 10�05 1.05 (1.01–1.09) 5.62� 10�03

rs891205 (G) 17354586 0.61 1.09 (1.05–1.13) 4.16� 10�05 1.05 (1.01–1.09) 0.0164 5.39� 10�06 1.07 (1.04–1.11) 1.26� 10�04

rs7247493 (G) 17362941 0.60 1.09 (1.04–1.13) 5.85� 10�05 1.05 (1.01–1.09) 0.014 5.73� 10�06 1.07 (1.04–1.11) 9.68� 10�05

rs7246243 (I) 17363068 0.60 1.09 (1.04–1.13) 5.28� 10�05 1.05 (1,01–1.09) 0.0149 5.74� 10�06 1.08 (1.04–1.11) 3.73� 10�05

rs4464206 (G) 17367585 0.62 1.10 (1.05–1.14) 7.28� 10�05 1.06 (1.02–1.10) 0.0172 8.87� 10�06 1.08 (1.04–1.12) 2.54� 10�05

C19pos17261271
(G)

17400271 0.50 0.92
(0.88–0.96)

2.41� 10�05 0.96
(0.92–0.99)

0.020 4.76� 10�06 0.92
(0.89–0.96)

9.26� 10�06

Peak 2 (conditional P values on top SNP from Peak 1)
rs3786514 17294954 1.40� 10�03

rs3786515 17295023 9.13� 10�05

rs891205 17354586 0.0107
rs7247493 17362941 0.0131
rs7246243 17363068 0.0122
rs4464206 17367585 115
c19_pos17261271 17400271 6.31� 10�03

EOC, epithelial ovarian cancer; ER, oestrogen receptor; freq., frequency; HR, hazards ratio; OR, odds ratio; SNP, single-nucleotide polymorphism.
SNPs in Peak 1 and Peak 2 that cannot be excluded at a likelihood ratio of 41:100 fold relative to the most significant SNP for the meta-analysis and serous EOC (Peak 1) and BRCA1 association breast
cancer for Peak 2.
*Imputed (I) or genotyped (G) SNPs.
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association with OC for BRCA2 mutation carriers (hazards ratio
(HR)¼ 1.18, 95% CI: 1.06–1.36, w2-test P¼ 0.0056). SNPs in peak
2 did not show any evidence of association with breast or OC risk
for BRCA2 mutation carriers.

Associations with risk among BC subtypes. None of the Peak 1
SNPs were associated with risk of ER-positive BC. When analyses
were restricted to triple negative BC, the odds ratio (OR)
estimates for SNPs in Peak 1 were larger than the corresponding
OR estimates for ER-negative disease (Supplementary Table 4).
There was no evidence of association with ER-negative and
HER2-positive BC risk, with the association restricted only to
triple-negative BC (test of difference between triple-negative
versus ER-negative/HER2þ , P-diff¼ 2.2� 10� 5 for SNP
rs61494113).

Analysis in Asian and African ancestry studies. None of the
SNPs in the fine-mapping region were associated with ER-nega-
tive BC in samples of Asian ancestry after adjusting for multiple
testing (P valuesZ0.0018). However, the risk alleles of the 13
candidate causal SNPs in Peak 1 are uncommon in the Asian
population (MAF¼ 0.0079–0.011); hence, the power to detect an
association was limited and, due to the wide CIs for the estimated
ORs for these SNPs, we cannot rule out that the minor allele of
these SNPs in Asian subjects is associated with similar level of risk
as in Europeans. In samples of African ancestry only rs4808616
(MAF¼ 0.22) showed evidence of association with risk for overall
BC or ER-negative disease (OR for BC¼ 1.19, 95% CI:1.02–1.39,
w2-test P¼ 0.03; OR for ER-negative BC¼ 1.59, 95% CI:
1.02–2.49, w2-test P¼ 0.04).

Functional characterization of the 19p13.1 region. Functional
characterization focused on the 13 candidate causal SNPs for
ER-negative and BRCA1-associated BC and serous OC in Peak 1,
based on the hypothesis that the functional mechanisms mediated
by one or more of these SNPs were the same for these
phenotypes.

Genotype-gene expression associations. We used expression
quantitative trait locus (eQTL) analyses to evaluate associations
between risk SNPs and the expression of genes in a 1 Mb region
spanning rs4808075 in: 135 normal breast tissues29, 60 normal
ovarian and fallopian tube epithelial cell cultures, 391 ER positive
BCs30, 59 ER-negative BCs29 and 340 high-grade serous OCs30.
We identified significant eQTL associations for ABHD8
expression (linear regression P value range 2� 10� 3–7� 10� 3)
in normal breast tissues and between rs480816 and ABHD8

expression in OCs (linear regression P¼ 3� 10� 5). In both
instances the risk allele was associated with higher ABHD8
expression (Fig. 2a, Supplementary Data 1 and 2 and
Supplementary Table 5). We examined whether risk SNPs were
the top eQTL SNPs in this region. rs4808616 was the strongest
predictor of ABHD8 expression in OCs. However, in normal
breast tissues the top eQTL SNP for ABHD8 was rs11666308
(linear regression P¼ 3.3� 10� 4), a marginally better predictor
than rs4808616 (linear regression P¼ 2.8� 10� 3). The two SNPs
were correlated (r2¼ 0.79) and regressing out effects of either
SNP from the expression levels of ABHD8 and repeating eQTL
analysis abolished the eQTL signal for the other SNP, confirming
their statistical inseparability. In addition we found significant
associations between rs4808616 and NXNL1 expression in OCs
(linear regression P¼ 4� 10� 3) and with ANKLE1 expression
(P¼ 0.002) in normal ovarian surface epithelial cells (OSECs).
There were no eQTL associations for any other genes in the
region.

We also performed allele-specific expression analysis in BC
using RNA sequencing data31 for coding SNPs in ABHD8
(rs56069439) and BABAM1 (rs10424198). Both SNPs were
correlated with rs4808616 (r2¼ 0.91). There was a significant
association between rs56069439 and the allelic ratio of
ABHD8 transcripts (F-test P¼ 0.016) with greater expression
associated the risk allele (Supplementary Fig. 2; Supplementary
Data 3).

Chromosome conformation capture. Chromosome conforma-
tion capture (3C) analysis was used to investigate DNA–DNA
interactions between ABHD8 and 5 of 13 candidate causal SNPs
in Peak 1. Eight SNPs close to the ABHD8 promoter were too
near to be resolved, and the close proximity of candidate causal
SNPs to ANKLE1 precluded 3C analysis for this gene. The
ABHD8 promoter showed an interaction with a 6.3 kb region
B20 kb telomeric to the gene in both normal breast (Bre80) and
ovarian (IOSE11) epithelial cells, and in breast (MCF7) and
ovarian (A2780) cancer cell lines (Fig. 3). This region spans the
ANKLE1 promoter and includes four candidate causal SNPs:
rs4808075, rs10419397, rs56069439 and rs4808076. There was no
evidence of interaction for any candidate causal SNP with
BABAM1 (Supplementary Fig. 3).

Annotation of candidate causal SNPs. All 13 candidate causal
SNPs were located in non-protein coding DNA. We annotated
putative functional regulatory elements that coincided with the
candidate causal SNPs in normal human mammary epithelial
cells (HMECs), and normal fallopian tube and ovarian epithelial
cells19, and in OC cell lines. Five of the 13 SNPs coincide with
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regulatory elements that were reproducible in two biological
replicate samples (Fig. 4). Three SNPs were located in epigenetic
marks in breast and/or ovarian cells: rs55924783 coincided with
insulator marks in HMECs and enhancer marks in ovarian cells;
rs113299211 coincided with enhancer marks in ovarian cells and
is predicted to alter transcription factor binding sites for ELF1,
ELK4 and GABP; and rs56069439 coincided with experimentally
derived ChIP-seq footprints (for CTCF, ATF2 and ZNF263),
enhancer marks in ovarian cells and both enhancer (H3K4me1)
and insulator (CTCF) marks in breast cells. Two SNPs were
located in 30-untranslated regions (UTRs) of protein
coding genes: rs111961716 in ANKLE1 and rs4808616 in
ABHD8. rs4808616 also coincided with enhancer marks in
ovarian and breast cells. Finally, rs10419397 lay within the
putative promoter of ANKLE1, B1,200 bp from the transcription
start site.

Functional analysis of candidate causal SNPs in UTRs. We
evaluated the effects on mRNA stability of the SNPs located in
30 UTRs of ANKLE1 (rs111961716) and ABHD8 (rs4808616,
Figs 4 and 5a) in normal primary ovarian epithelial cell lines
carrying different SNP genotypes. RNA transcript abundance was
measured after blocking mRNA transcription by treating cells
with actinomycin D. For rs111961716, ANKLE1 transcript
expression was significantly more stable in cell lines homozygous
for the A (risk) allele of rs111961716 compared with

heterozygous cells or cells homozygous for the C allele (P¼ 0.006,
analysis of variance; Fig. 5b). There was no association between
ABHD8 mRNA stability and genotypes of rs4808616 (Fig. 5b).

Functional analysis of promoter and enhancer SNPs. Seven of
the 13 candidate causal SNPs in Peak 1 resided either in the
ANKLE1 promoter or in putative regulatory elements (PREs-A-
C) in breast and ovarian normal and cancer cell lines (Figs 4 and
5a). SNP rs10419397 fell within the ANKLE promoter region, but
had no effect on promoter activity (Fig. 5c). PRE-A contained
SNP rs56069439, PRE-B contained SNPs rs113299211,
rs67397200, rs61494113 and PRE-C contained SNPs rs4808616
and rs55924783. We examined the effect of these PREs, and of the
risk alleles of each SNP cloned into luciferase constructs con-
taining the ABHD8 or ANKLE1 promoters. Inclusion of the
reference allele of PREs A, B and C significantly increased
ABHD8 promoter activity in both OC (A2780) and normal breast
(Bre80) cell lines (Fig. 5). Constructs containing the risk alleles
further enhanced ABHD8 promoter activity compared with the
reference allele for PREs A, B and C in Bre80 cells (P
values¼ 0.0027, 0.0308 and 0.0342, respectively, two-way analysis
of variance (ANOVA)) and for PREs A, B and C in A2780 cells (P
values¼ 0.0193, 0.0115 and o0.0001, respectively, two-way
ANOVA; Fig. 5d,e). Constructs containing the reference allele of
PRE-A showed a silencing effect on the ANKLE promoter in both
cell types with the risk allele further silencing the activity of the
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reference allele in A2780 cells (P¼ 0.0049, two-way ANOVA).
The reference allele of PRE-B had no effect on ANKLE promoter
activity, while the risk allele significantly increased activity com-
pared with the reference allele in A2780 cells (P¼ 0.0034, two-
way ANOVA). Constructs containing the reference allele of PRE-
C significantly increased ANKLE promoter activity in both
ovarian (P¼ 0.0004, two-way ANOVA) and breast cell lines
(P¼ 0.0067, two-way ANOVA). However the risk allele showed a
silencing effect on the reference allele in only Bre80 cells
(P¼ 0.0289, two-way ANOVA; Fig. 5d,e).

Functional effects of rs56069439 deletion. Collectively, the data
above suggested that rs56069439 may regulate the expression of
ANKLE1 and/or ABHD8. We used Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR)/Cas9-mediated
genome editing to delete a 57 bp region containing the regulatory
region that includes rs56069439 in breast (MCF10A) and ovarian
(IOSE19) epithelial cells (Fig. 6a). Analysis of multiple clones
containing confirmed homozygous deletions (Fig. 6b,c) indicated
a significant reduction in ANKLE1 expression compared with
parental cells (P¼ 0.025, two-tailed paired T-test) and a trend
towards reduced ANKLE1 expression in IOSE19 cells (P¼ 0.29,
two-tailed paired T-test; Fig. 6d). Expression of ABHD8 and
BABAM1 was unchanged following deletion of the region con-
taining rs56069439.

In vitro functional analysis of candidate genes. We analysed the
effects of perturbing ABHD8, ANKLE1 and BABAM1 expression
in in vitro models of ‘normal’ breast (MCF10A) and ovarian
(IOSE19 (ref. 32)) epithelial cells. For each gene, we
overexpressed full length, green fluorescent protein-tagged
constructs, because genes at 19p13 were frequently
overexpressed in ovarian and BCs9 and because eQTL analyses
indicated that risk alleles were associated with increased
expression of ABHD8 and ANKLE1. After confirming gene
overexpression (Supplementary Fig. 3a) we evaluated cell growth,
migration and invasion, and anchorage-independent growth
(Fig. 7 and Supplementary Fig. 3b). Overexpression of ABHD8
caused a significant reduction in cell migration (P¼ 0.007 in

MCF10A; P¼ 0.047 in IOSE19, two-tailed paired T-test) and a
decrease in invasion (P¼ 0.018 in MCF10A; P¼ 0.063 in IOSE19,
two-tailed paired T-test; Fig. 7). BABAM1 and ANKLE1
overexpression had no effect on these cellular phenotypes for
either cell type.

RNA sequencing was used to profile transcriptomic changes
caused by overexpression of ABHD8, ANKLE1 and BABAM1 and
pathway analyses performed using Ingenuity Pathway Analysis.
We found no indication of significant changes in relevant
pathways after overexpressing BABAM1 in breast or ovarian
epithelial cells. Cells overexpressing ANKLE1 showed a significant
enrichment for cancer-associated and cell growth/proliferation
pathways in both breast (P¼ 3.36� 10� 6) and ovarian (P¼ 2.43
� 10� 27) epithelial cells. Cells overexpressing ABHD8 were
enriched for expression changes in cancer related pathways
(Po5.52� 10� 8) and fibrosis pathways (Po1.23� 10� 2, all
right-tailed Fisher’s exact tests; Supplementary Tables 6-8).

Discussion
Through fine-scale mapping of the 19p13.1 region we have found
evidence of two independent regions of genetic association with
BC and/or OC risk among women of European ancestry. The
minor alleles of all candidate causal variants in Peak 1 conferred
increased risks of ER-negative BC and serous OC and increased
risks of both cancers for BRCA1 mutation carriers. We were able
to rule out associations with ER-positive BC and risks for other
OC histotypes. There was weaker evidence that SNPs in Peak 2
were independently associated with BC risk among BRCA1
mutation carriers only. When analyses in BCAC were restricted
to triple-negative BC, the strength of association was greater and
there was no evidence of association with ER-negative/HER2-
positive BC. Thus, our results suggested that these variants are
primarily associated with triple-negative BC, the predominant
tumour subtype in BRCA1 mutation carriers33. These results are
in line with previous findings for the initial SNPs identified
through GWAS26.

The increased sample size resulting from combining data from
BCAC, OCAC and CIMBA for variants in Peak 1 have enabled us
to restrict the likely functional variants at 19p13.1 to 13 SNPs.

ANKLE1 

BABAM1 ABHD8 

FAIRE
H2K27ac

H3K4me1
FAIRE

H2K27ac
H3K4me1

FAIRE
H2K27ac

H3K4me1
FAIRE

H2K27ac
H3K4me1

FAIRE
H2K27ac

H3K4me1
FAIRE

H2K27ac
H3K4me1
H3K4me1
H2K27ac

CTCF
TF ChIP

TF ChIP V2 
Dnase I

IOSE4 

IOSE11 

FT33 

FT246 

UWB 

CaOV3 

HMEC 

Other 

rs4808075

17,390,000⏐ 17,395,000⏐ 17,400,000⏐

10kb
17,405,000⏐ 17,410,000⏐

rs10419397
rs56069439    rs4808076 rs111961716

rs113299211
rs61494113

rs67397200
rs4808616

rs55924783 rs28473003 rs13343778 rs10424198
Candidate

Causal SNPs

Transcripts

Figure 4 | Epigenetic marks intersecting candidate causal SNPs in the 19p13 susceptibility region and analyses of UTR SNPs. The thirteen candidate

SNPs were aligned with open chromatin and enhancer marks (H3K27ac and H3K4me1) in high-grade serous ovarian cancer cells (UWB1.289 and CaOV3)

and ovarian cancer precursor cells (ovarian epithelial cells, IOSE and fallopian epithelial cells, FT). Enhancer and insulator (CTCF) data for human mammary

epithelial cells (HMECs) were obtained from ENCODE. Five SNPs coincide with biofeatures in breast and/or ovarian cells (indicated in red).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12675

6 NATURE COMMUNICATIONS | 7:12675 | DOI: 10.1038/ncomms12675 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


The 13 candidate causal risk SNPs in this region were the same
for both BC and OC leading us to hypothesize that the underlying
functional mechanisms are the same in both cancers and the
overlap between these SNPs and functional elements provided
multiple testable hypotheses, necessitating a range of different
functional assays to evaluate their possible causality. Multiple
assays were performed in breast and ovarian tissues and cell lines
to establish if there is true evidence of pleiotropy. The candidate
causal SNPs in Peak 1 clustered around two candidate genes,
ANKLE1 and ABHD8, neither of which have been previously
implicated in BC or OC. Proximal to these SNPs is BABAM1, a
gene involved in recruiting BRCA1 to sites of DNA damage34,35

and therefore a compelling candidate gene at this locus. While
gene regulation can be mediated across long genomic distances,
the majority of interactions occur over a distance of 1 Mb) or
less36,37. We, therefore, evaluated all candidate genes within a
1 Mb region centred on the Peak 1 risk SNPs for eQTL
associations. We found significant eQTL associations for
ABHD8 in OCs and normal breast tissues, plus allele-specific
expression of ABHD8 in BCs, but no compelling evidence for any
other gene at this locus. Nonetheless, the identification of ABHD8
as the most likely target susceptibility gene must be treated with
some caution as it is plausible that more distant cis-eQTL or even
trans-eQTL associations exist for these risk SNPs. Unfortunately,
the limited power of eQTL analysis based on the current sample

size precluded us from performing genome-wide eQTL analysis
to address these hypotheses.

The weight of our functional data, in particular the eQTL
associations, indicates that ABHD8 is a target of functional SNPs
at this locus, and therefore a novel breast and OC susceptibility
gene. 3C identified an interaction between a region containing
four candidate causal SNPs and the ABHD8 promoter in both
breast and OC and normal epithelial cell lines. The luciferase
assays of three PREs (including one encompassing rs56069439 in
the interacting region) consistently showed that they acted as
enhancers, and furthermore the risk-associated alleles of
rs56069439, rs113299211, rs67397200, rs61494113, rs4808616
and rs55924783 (within PREs A-C) further increase ABHD8
promoter activity in both breast and ovarian cells. These results
were consistent with our eQTL studies and support the
hypothesis that increased ABHD8 expression is associated with
an increased cancer risk. ABHD8 is a poorly studied lipase38. The
Achilles heel project identified ABHD8 as a lineage-specific
cancer cell vulnerability in OC cell lines39 and a recent study
identified ABHD8 as a potential OC susceptibility gene though its
participation in a homeobox transcription factor-centred gene
network associated with serous OC risk40. Overexpression of
ABHD8 led to significant reductions in the invasive and
migratory potential of breast and ovarian cells and enriched for
genes involved in cellular movement (IOSE19) and mTOR
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Figure 5 | Allele specific analysis of susceptibility SNPs. (a) Location of SNPs in putative regulatory elements (PREs) and 50 untranslated regions.

(b) RNA stability assays in primary ovarian epithelial cell lines for risk-associated UTR SNPs in ABHD8 and ANKLE1. Normal ovarian epithelial cell lines

carrying different genotypes of the risk SNP rs4808616, located in the 30 UTR of ABHD8. Rs4808616 is tightly correlated with rs111961716 (R2¼0.98)

located in the 30 UTR of ANKLE1. The risk allele of rs111961716 was associated with decreased mRNA stability of ANKLE1 compared with the protective allele

(P¼0.006, ANOVA). Different genotypes of rs4808616 are not associated with the stability the ABHD8 transcript. (c–e) Luciferase assays to evaluate

SNP-dependent promoter and enhancer activity. (c) The ANKLE1 promoter SNP did not affect ANKLE1 expression in ovarian cancer cells (A2780) and

normal breast cells (Bre80). (d) Allele-specific activity of PRE-A, PRE-B and PRE-C on the ANKLE1 promoter. (e) Allele-specific activity of PRE-A, PRE-B and

PRE-C on ABHD8 promoter activity. *P40.05, **P40.01, ***P40.001, ****P40.0001, two-way ANOVA. RLU, relative light units.
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signalling (MCF10A), consistent with the observed changes in
invasion and migration. The direction of the effect was opposite
to what we might expect from the eQTL data, which might reflect
different functions of ABHD8 in different contexts, similar to the
observations for another BC susceptibility gene, TOX3 (ref. 41).
For example, under specific microenvironmental cues or in a
tumour cell (rather than the normal cells used in these

experiments) increased ABHD8 may promote rather than
inhibit migration and invasion.

Nonetheless, we cannot unequivocally exclude other genes as
the targets of candidate causal variants at this locus, in particular
ANKLE1. The close proximity of the candidate causal SNPs to the
ANKLE1 gene precluded 3C analysis; but in the luciferase assays,
these same PREs and SNPs had variable, context-dependent
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effects on ANKLE1 promoter activity. This raises the possibility
that the SNPs were cooperatively acting to alter ANKLE1
expression although it was difficult to predict the overall direction
of their effects from this assay. We were able to rule out the SNP
rs10419397 in the promoter of ANKLE1 as a likely causal variant.
The SNP rs111961716 in the 30-UTR of ANKLE1 was associated
with allele-specific ANKLE1 mRNA stability; but stable over-
expression of ANKLE1 had no influence on the phenotype of
normal breast and ovarian epithelial cells even though pathway
after overexpression of ANKLE1 found a significant enrichment
for cancer and cell death/proliferation associated pathways in
both breast and ovarian epithelial cells. More recently, ANKLE1
has been implicated in DNA damage responses, while other,
better-characterized endonucleases (for example, ERCC1) are
involved in nucleotide excision repair, which are important for
the repair of bulky adducts42.

This study has highlighted the challenges in establishing
causality for both candidate causal SNPs at common variant
susceptibility loci and the susceptibility genes targets. The multi-
tude of functional assays that can be used to test allele specific
functional activity rarely provide unequivocal evidence of one SNP
over another. Genome editing, which allows the creation of
isogenic experimental models carrying the different alleles of
candidate causal SNP, is emerging as a single assay approach that
can evaluate the function of common variants. However, until now
the technical challenges of genome editing have restricted its
application to two non-coding risk SNPs identified by GWAS at
susceptibility loci for prostate cancer and obesity, respectively22,23.
It was beyond the scope of the current study to utilize genome
editing to test all 13 candidate causal SNPs in Peak 1 at 19p13 in
BC and OC and normal cell line models. Instead, we used CRISPR-
Cas9 genome editing to evaluate the effects of a putative enhancer
containing most plausible functional SNP (rs56069439) identified
from 3C analysis and mapping of putative regulatory elements.
This revealed strong functional evidence for a breast/ovarian
epithelial cell enhancer, within an intron of ANKLE1. When this
enhancer containing rs56069439 was deleted ANKLE1 expression
was significantly reduced, without any reduction in BABAM1 or
ABHD8 expression. Further experiments using homology-directed
repair will be required to determine if there is allele-specific activity
of the rs56069439 SNP in regulating ANKLE1 expression, and to
determine whether shadow enhancers are employed to maintain
ABHD8 expression43.

In conclusion, we have performed detailed functional analysis
of SNPs and candidate target genes at the 19p13 locus in breast

and ovarian normal and cancer cells. ABHD8 is the most likely
target gene although we cannot rule out a role for ANKLE1 in the
development of breast and OC or the possibility that both genes,
acting independently or in synergy may be functional targets of
candidate causal SNPs. Using a combination of genetic fine
mapping, and a spectrum of in silico and functional assays, seven
of thirteen showed evidence of functionality.

These data suggest that the underlying functional mechanism(s)
at the 19p13 locus may be mediated by many SNPs rather than by
a single causal allele. This hypothesis is supported by studies
showing tissue-specific enrichment of correlated risk-associated
SNPs at susceptibility loci within regulatory biofeatures, including
enhancers and transcription factor binding sites19,20. Such
enrichments would not be detected if a single causal SNP at a
locus was driving disease development. Taken together these data
suggest that common molecular mechanisms are likely to underlie
this pleiotropic risk locus.

Methods
Study populations. All specimens used in this study were collected with informed
consent and under the approval of local Institutional Review Boards. We used
epidemiological and genotype data from studies participating in the BCAC44, the
OCAC12 and the CIMBA45 that have been genotyped using the iCOGS array that
included B200,000 SNPs.

BC association consortium. Data were available from 52 BC case-control studies,
41 studies of European ancestry, 9 studies of Asian ancestry and 2 studies of
African-American ancestry. Details of all studies, the genotyping process and the
quality control process have been described elsewhere6,44, standard sample and
genotyping QC criteria were applied. After the quality control process, data on
46,451 cases and 42,599 controls of European ancestry, 6,269 cases and 6,624
controls of Asian ancestry and 1,117 cases and 932 controls of African-American
ancestry were available for analysis. Data on the BC ER status were available for
34,509 cases of European ancestry, 7,435 (22%) of whom had ER-negative tumours.

OC association consortium. Data were available from 41 case-control studies of
EOC from OCAC that were genotyped using the iCOGS array12. In addition to the
OCAC iCOGS data, genotype data were available for stage 1 of three population-
based OC genome-wide association studies. The final data set comprised genotype
data for 11,069 cases and 21,722 controls from COGS (‘OCAC-iCOGS’), 2,165
cases and 2,564 controls from a GWAS from North America (‘US GWAS’)46, 1,762
cases and 6,118 controls from a UK-based GWAS (‘UK GWAS’)7, and 441 cases
and 441 controls from the Mayo Clinic. All subjects included in this analysis
provided written informed consent as well as data and blood samples under
ethically approved protocols. Overall, 43 studies from 11 countries provided data
on 15,437 women diagnosed with invasive EOC, 9,627 of whom were diagnosed
with serous EOC and 30,845 controls from the general population.
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Consortium of investigators of modifiers of BRCA1/2. Data on BRCA1
mutation carriers were obtained through CIMBA. Eligibility in CIMBA is restricted
to females 18 years or older with pathogenic mutations in BRCA1 or BRCA2. The
majority of the participants were sampled through cancer genetics clinics47,
including some related participants. Fifty-one studies from 25 countries
contributed data on BRCA1 mutation carriers who were genotyped using the
iCOGS array45. After quality control of the phenotypes and genotypes, data were
available on 15,252 BRCA1 mutation carriers of whom 7,455 had been diagnosed
with BC, 2,639 with ER-negative BC and 1,724 with OC, all of European ancestry.
Analyses in BRCA1 mutation carriers focused on assessing associations with
BC risk, following the evidence from the original GWAS in BRCA1 mutation
carriers48.

URLs: 1000 Genomes Project, http://www.1000genomes.org/; BCAC,
http://ccge.medschl.cam.ac.uk/consortia/bcac/index.html; CIMBA, http://ccge.
medschl.cam.ac.uk/consortia/cimba/index.html; COGS, http://www.cogseu.org/;
iCOGS, http://ccge.medschl.cam.ac.uk/research/consortia/ icogs/; SNAP

https://www.broadinstitute.org/mpg/snap/; TCGA, https://tcga-data.nci.nih.
gov; CGHub, https://cghub.ucsc.edu/

iCOGS SNP selection for fine mapping and imputation. The fine mapping
region was defined as Chromosome 19 positions: 17,130,000–17,550,000 (NCBI
build 37). To identify the set of variants potentially responsible for the original
GWAS reports, we considered all variants with minor allele frequencies of 40.02
from the 1,000 Genomes Project (March 2010 version) and selected all SNPs
correlated (r240.1) with either of the two SNPs that had been identified through
the BRCA1 and EOC GWAS studies (rs8170 and rs2363956)12,45, plus an
additional set of SNPs that tagged all remaining SNPs in the region with r240.9. A
total of 438 SNPs that were included on iCOGS in the 19p13 region passed QC and
were available for the analyses. Data on these SNPs were used to impute the
genotypes of all known variants from the 1,000 genomes project (V3, April 2012
release49) using the IMPUTE (version 2) software. After excluding SNPs with
MAFo0.001 and SNPs with imputation r2 accuracy score of r0.3, there were
2,269 imputed SNPs in BCAC, 2,565 in OCAC and 2,311 in BRCA1 mutation.

BCAC and OCAC association analysis and logistic regression. To evaluate the
association of each SNP with breast and EOC risk in BCAC and OCAC we used a
Wald test statistic based on logistic regression, by estimating the per-allele OR and its
s.e. Analyses restricted to specific tumour subtypes (ER-negative BC or high-grade
serous EOC) were assessed separately using all available controls. All analyses were
adjusted for principal components, described in more detail elsewhere12,44.
Conditional logistic regression was used to assess the evidence that there are multiple
independent association signals in the region, by evaluating the associations of
genetic variants in the region while adjusting for the SNP with the smallest P value.
We considered only SNPs with P values of association of o10� 3 and MAF40.1%
and the most parsimonious model was identified using step-wise forward logistic
regression and a threshold of Po10� 4 for retaining SNPs in the model.

CIMBA retrospective cohort analysis. All associations between genotypes and
BC risk in BRCA1 mutation carriers were evaluated using a 1 df per allele trend-test
(P-trend), based on modelling the retrospective likelihood of the observed geno-
types conditional on BC phenotypes49. To allow for the non-independence among
related individuals, an adjusted test statistic was used which took into account the
correlation in genotypes48. Per allele HR estimates were obtained by maximizing
the retrospective likelihood. All analyses were stratified by country of residence. To
identify the most parsimonious model that includes multiple SNPs, forward-
selection Cox-regression analysis was performed, using the same P value thresholds
as in the BCAC and OCAC analysis. This approach provides valid tests of
association, although the parameter estimates can be biased49,50. Parameter
estimates for the most parsimonious model were obtained using the retrospective
likelihood approach.

Meta-analysis. It is well established that the majority of BCs in BRCA1 mutation
carriers are ER-negative51,52. To increase the statistical power for identifying the
most likely causal variants, we also performed a meta-analysis of the associations of
BC risk for BRCA1 mutation carriers and ER-negative BC in the general population
(in BCAC) for both genotyped and imputed SNPs. We used an inverse variance
approach assuming mixed effects, by combining the logarithm of the per-allele HR
for the association with BC risk for BRCA1 mutation carriers and the logarithm of
the OR estimate for the association with ER-negative BC in BCAC.

eQTL and allele-specific expression analyses. Germline genotype data were
obtained from the Affymetrix SNP 6.0 (METABRIC) and Illumina 1M-Duo
(TCGA HGSOC). No SNPs from Peak 1 and 2 were present on the Affymetrix
platform so these genotypes were imputed into the 1000 Genomes European
reference panel (March 2012, version 3) using IMPUTE version 2 (ref. 53). All
analyses were restricted to patients of 490% European ancestry as per LAMP
estimates54 and SNPs with info score 40.3. For METABRIC, gene expression data
consisted of probe-level measurements from the Illumina HT-12 v3 microarray

platform for a total of 135 samples obtained from normal breast tissue adjacent to
tumour and 59 samples obtained from ER-negative breast tumours were analysed.
For TCGA HGSOC, gene expression data consisted of measurements from the
Agilent 244 K microarray for 340 HGSOC tumours downloaded from the
cBioportal. Only genes and probes o1 Mb from the top Peak 1 SNP were analysed.
Tumour gene expression data was first adjusted for copy number (TCGA and
METBRIC, Affymetrix SNP 6.0 calls) and methylation (TCGA only, Illumina 27 K
beta values) using the method of Li et al31. Expression QTL analysis was conducted
by linear regression with genotypes as predictors, as implemented in the R package
Matrix eQTL55.

Sixty early passage primary normal OSECs and fallopian tube epithelial cells
were collected and cultured as previously described27,56. Briefly, OSECs were
harvested from ovaries using a sterile cytobrush and cultured in Medium 199 and
MCDB105, mixed in a 1:1 ratio and supplemented with 15% fetal bovine serum
(FBS, Hyclone), 10 ng ml� 1 epidermal growth factor, 0.5 mg ml� 1 hydrocortisone,
5 mg ml� 1 insulin (all Sigma, St Louis, MO, USA) and 34 mg protein per ml
bovine pituitary extract (Life Technologies). Fresh fallopian specimens were
subjected to 48–72 h Pronase (Roche) and DNase I digests to release the epithelial
cells. Epithelial cells were pelleted and cultured on collagen in DMEM/F12
supplemented with 10% FBS (Seradigm). RNA was isolated from cell cultures
harvested at B80% confluency using the QIAgen miRNAeasy kit with on-column
DNase 1 digestion. 500 ng of RNA was reverse transcribed using SuperScript III
First-Strand Synthesis System (Invitrogen). The cDNA was diluted to 10 ng ml� 1

and 12.5 ng was used in target specific amplification before real-time PCR using
TaqMan PreAmp Master Mix Kit (Applied Biosystems) following Fluidigm’s
Specific Target Amplification Protocol. 1.25 ml of the 25ml pre-amplified cDNA was
added to each chip. Each sample was run in triplicate and each experiment
included no template controls and no template controls from the cDNA reactions.
96.96 Dynamic Array Integrated Fluidic Circuits (Fluidigm) were loaded with 96
pre-amplified cDNA samples and 96 TaqMan gene expression probes (Applied
Biosystems) using the BioMark HD System (Fluidigm). Expression levels for each
gene were normalized to the average expression of control genes (GAPDH and
ACTB). Relative expression levels were calculated using the DDCt method.
Correlations between genotype and gene expression were calculated in R 2.14.1.
Genotype specific gene expression was compared using the Jonckheere–Terpstra
test. Genes with significant eQTL results were validated by individual Taqman
(Applied Biosystems, Warrington UK) reactions run on ABI 7900HT Sequence
Detection System equipment and analysed with SDS software according to the
manufacturer’s instructions. Normal cell line DNAs were analysed on iCOGS
arrays to obtain genotype information. We analysed all protein-coding genes
within a 1 Mb region of the risk association. The method for allele specific
expression analysis has been described previously31.

Breast and ovarian normal and cancer cell lines. Breast and OC cell lines MCF7
(ERþ , breast; ATCC #HTB-22) and A2780 (ERþ , ovarian; kindly provided by
Thomas Hamilton, NCI, Maryland) were grown in RPMI medium with 10% FBS
and antibiotics. The normal breast epithelial cell lines Bre-80 (kindly provided by
Roger Reddel, CMRI, Sydney) and MCF10A (ATCC #CRL-10317) were grown in
DMEM/F12 medium with 5% horse serum, 10 mg ml� 1 insulin, 0.5 mg ml� 1

hydrocortisone, 20 ng ml� 1 epidermal growth factor, 100 ng ml� 1 cholera toxin
and antibiotics. The phenotypically normal TERT immortalized ovarian epithelial
cell lines IOSE11 and IOSE19 (ref. 32) were grown in NOSE-CM. All cell lines were
maintained under standard conditions, were routinely tested for Mycoplasma and
were profiled with short tandem repeats to confirm their identity.

Functional annotation of risk SNPs. FAIRE-seq and ChIP-seq for H3K27ac and
H3K4me1 marks in normal ovarian (IOSE4, IOSE11) and fallopian epithelial cell
lines (FT33, FT246) and OC cell lines (CaOV3, UWB1.289) were generated
in-house using standard protocols and have been previously described19,27.
Epigenetic marks in HMECs were downloaded from ENCODE (genome.ucsc.edu).

Chromosome conformation capture. 3C libraries were generated using NcoI as
described previously14. To quantify interactions by real-time quantitative PCR
(qPCR) was performed using primers listed in Supplementary Table 9. All qPCRs
were performed on a RotorGene 6,000 using MyTaq HS DNA polymerase with the
addition of 5 mM of Syto9, annealing temperature of 66 �C and extension of 30 s.
Each experiments was performed three times in duplicate. The BAC clone
(CTD-2278I10) covering the 19p13 region was used to normalize for PCR
efficiency and a by reference region within GAPDH used to calculate relative
interaction frequencies. All qPCR products were resolved on 2% agarose gels, gel
purified and sequenced to verify the 3C product.

RNA stability assays. For each genotype (two homozygotes and the heterozygote)
two early passage primary normal ovarian epithelial cell lines were incubated with
actinomycin D for 20 h. RNA was extracted using the QIAgen RNeasy extraction
kit and reverse transcribed using MMLV RT enzyme and random hexamers
(Promega). Quantitative PCR was performed using TaqMan gene expression
probes for ABHD8 (Hs00225984_m1) and ANKLE1 (Hs01094673_g1). Signal for
each gene of interest was normalized to signal for ACTB (Hs01060665_g1) and
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GAPDH (Hs02758991_g1) and relative gene expression calculated using the DDCt
method, relative to untreated cells. 18s rRNA (Hs99999901_s1) and MYC
(Hs00153408_m1) mRNA levels were included as internal controls.

Promoter and allele specific enhancer assays. A 1119 bp fragment containing
the ABHD8 promoter was cloned into the pGL3 basic luciferase reporter. Reference
and risk associated ANKLE1 promoter fragments were synthesized by GenScript
and cloned into pGL3 basic. We generated PCR fragments corresponding to PRE A
and PRE B and had PRE C haplotype fragments synthesized by GenScript and
these were also sub-cloned into ABHD8 and ANKLE1 promoter constructs. PCR
primers are listed in Supplementary Table 10. Bre80 and A2780 cells were tran-
siently transfected with equimolar amounts of luciferase reporter constructs using
Renilla luciferase as an internal control reporter. Luciferase was measured 24 h after
transfection using Dual-Glo Luciferase (Promega). To correct for any differences in
transfection efficiency or cell lysate preparation, Firefly luciferase activity was
normalized to Renilla luciferase, and the activity of each construct was measured
relative to the promoter alone construct, which had a defined activity of 1.
Association was assessed by log transforming the data and performing two-way
ANOVA, followed by Dunnett’s multiple comparisons test; for ease of
interpretation, values were back transformed to the original scale for the graphs.

Genome editing. Guide RNAs targeting the region flanking rs56069439 (50-GT
GAGACGGTCAGAACCAAT-30 and 50-GTGTCTGAGGCCGAAAGAGC-30) were
designed using the CRISPR design tool from the Zhang lab (www.crispr.mit.edu)57.
The gRNAs were cloned into the lentiCRISPR (Addgene Plasmid 49535) vector by
using the BsmBI restriction enzyme site and lentiviral supernatants made by
cotransfection of HEK293T cells. IOSE19 and MCF10A cells were transduced with
viral supernatants and infected cells selected using 400 ng ml� 1 and 500 ng ml� 1

puromycin (Sigma Aldrich) respectively. Selected cells were sorted into single cells
using flow cytometry and expanded in vitro. Screening for clones containing the
deletion was performed using the following primers: Forwards: 50-CCCTGACATC
CAGGGTCTTC-30 and Reverse: 50-AGTCCAGCGTCTCATCGGTA-30. For
sequence verification of the deletion the following primers were used: Forwards:
50-TTCTGGACCAGTCCCTGACA-30 and Reverse: 50-CAGCGTCTCATCGGT
AGGTC-30 . RNA was isolated from positive clones using the Zymo Quick-RNA kit
and reverse transcribed using Superscript III (Life Technologies). Real time gene
expression analysis was performed using TaqMan probes, as described above.

In vitro analysis of candidate genes. The three candidate genes were
overexpressed as green fluorescent protein fusion proteins. The BABAM1
overexpression construct was a kind gift from Dr S Elledge58. ANKLE1 and ABHD8
contructs were purchased from Genecopoeia. Virus was made in-house by
cotransfection of HEK293Ts and used to transduce MCF10A and IOSE19 cells.
Positive cells were selected using 400 ng ml� 1 (for IOSE19 cells) or 500 ng ml� 1

(for MCF10A cells) puromycin. Anchorage dependent and independent growth
assays were performed as previously described32,59. For invasion and migration
assays Millipore luminescent transwell assays (24 well plate format) were used,
following the manufacturer’s protocol.

Data availability. The relevant SNP genotype data underpinning these analyses
can be accessed by applying to the OCAC, BCAC and CIMBA consortia
(see URLs). EQTL data are available in supplementary information. All other data
are available on request.
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Erkkilä. (HMBCS) Natalia Antonenkova, Peter Hillemanns, Hans Christiansen and
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Blomqvist and Kirsimari Aaltonen and RNs Irja Erkkilä and Virpi Palola for their help
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Anna Öfverholm, Margareta Nordling, Per Karlsson, Zakaria Einbeigi; from Stockholm
and Karolinska University Hospital: Anna von Wachenfeldt, Annelie Liljegren, Annika
Lindblom, Brita Arver, Gisela Barbany Bustinza, Johanna Rantala; from Umeå University
Hospital: Beatrice Melin, Christina Edwinsdotter Ardnor, Monica Emanuelsson; from
Uppsala University: Hans Ehrencrona, Maritta Hellström Pigg, Richard Rosenquist; from
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Barcelona 08035, Spain. 69 Department of Community and Family Medicine, Section of Biostatistics & Epidemiology, The Geisel School of Medicine at
Dartmouth, Lebanon, New Hampshire 03755, USA. 70 Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, USA. 71 Department of Genetics, University of Pretoria, Pretoria 0083, South Africa. 72 Genomics Center,
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Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA. 102 Department of Health Sciences Research, Mayo Clinic, Rochester,
Minnesota 55902, USA. 103 Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles,
California 90048, USA. 104 Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los
Angeles, California 90048, USA. 105 Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of
Health, Rockville, Maryland 20892, USA. 106 Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland.
107 Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, 94805 Villejuif, France. 108 University Paris-
Sud, 91405 Villejuif, France. 109 Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. 110 Center for
Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark. 111 Department of Oncology, Department of Public Health
and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK. 112 Saw Swee Hock School of Public Health, National
University of Singapore Singapore 119077, Singapore. 113 Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, 50603
Kuala Lumpur, Malaysia. 114 Cancer Research Initiatives Foundation, Subang Jaya, 47500 Selangor, Malaysia. 115 Department of Gynecology and Gynecologic
Oncology, Kliniken Essen-Mitte, 45136 Essen, Germany. 116 Department of Gynecology and Gynecologic Oncology, Dr Horst Schmidt Kliniken Wiesbaden,
65199 Wiesbaden, Germany. 117 Clinical Cancer Genetics, for the City of Hope Clinical Cancer Genetics Community Research Network, Duarte California
91010, USA. 118 Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark. 119 Department of Virus,
Lifestyle and Genes, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark. 120 Department of Gynecology, Rigshospitalet, University of
Copenhagen, 2100 Copenhagen, Denmark. 121 Family Cancer Clinic, Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands. 122 Department of
Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands. 123 Center for Medical Genetics, NorthShore
University Health System, Evanston, Illinois 60201, USA. 124 N.N. Petrov Institute of Oncology, St Petersburg 197758, Russia. 125 Lombardi Comprehensive
Cancer Center, Georgetown University, Washington District of Columbia 20057, USA. 126 Division of Epidemiology and Prevention, Aichi Cancer Center
Research Institute, Aichi 464-8681, Japan. 127 State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania. 128 Department of
Epidemiology, Cancer Prevention Institute of California, Fremont, California 94538, USA. 129 Department of Preventive Medicine, Seoul National University
College of Medicine, Seoul 08826, Korea. 130 Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Victoria 3010, Australia.
131 Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
132 Radboud University Medical Centre, Radboud Institute for Health Sciences, 6500 Nijmegen, The Netherlands. 133 Prosserman Centre for Health Research,
Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. 134 Division of Epidemiology, Dalla Lana School of
Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada. 135 Imaging Center, Department of Clinical Pathology, Kuopio University Hospital,
70210 Kuopio, Finland. 136 Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland. 137 Institute of Clinical Medicine, Pathology and Forensic
Medicine, University of Eastern Finland, 70210 Kuopio, Finland. 138 Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo,
1478 Oslo, Norway. 139 The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong,
China. 140 Department of Surgery, The University of Hong Kong, Hong Kong, China. 141 Vesalius Research Center, VIB, 3000 Leuven, Belgium. 142 Laboratory
for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium. 143 Department of Molecular Medicine and Surgery,
Karolinska Institutet, SE-171 77 Stockholm, Sweden. 144 Division of Health Sciences, Warwick Medical School, Warwick University, Coventry CV4 7AL, UK.
145 Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. 146 Unit of Medical Genetics,
Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT),
20133 Milan, Italy. 147 University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA. 148 Department of Oncology - Pathology, Karolinska Institutet, SE-
171 77 Stockholm, Sweden. 149 National Center for Tumour Diseases, University of Heidelberg, 69117 Heidelberg, Germany. 150 Department of Gynaecology,
Radboud University Medical Centre, 6500 Nijmegen, The Netherlands. 151 Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences,
Fukuoka 812-8582, Japan. 152 Anatomical Pathology, The Alfred Hospital, Melbourne, Victoria 3004, Australia. 153 Institute of Cancer Sciences, University of
Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow G61 1BD, UK. 154 Division of Gynaecology and Obstetrics,
Technische Universität München, 81675 Munich, Germany. 155 Department of Human Genetics, Radboud University Medical Centre, 6500 Nijmegen, The
Netherlands. 156 Immunology and Molecular Oncology Unit, Instituto Oncologico Veneto IOV, IRCCS, 35128 Padua, Italy. 157 Department of Cancer
Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York 14263, USA. 158 Institute of Population Health, University of Manchester, Manchester
M13 9PL, UK. 159 Laboratory Medicine Program, University Health Network, Toronto, Ontario M5G 1L7, Canada. 160 Department of Laboratory Medicine and
Pathobiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada. 161 The University of Texas School of Public Health, Houston, Texas 77030, USA.
162 Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California 91010, USA. 163 Department of Medicine and Genetics,
University of California, San Francisco, California 94143, USA. 164 Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, New York
14263, USA. 165 Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York 10065, USA. 166 Department of Molecular Genetics, National
Institute of Oncology, 1122 Budapest, Hungary. 167 Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago,
Illinois 60637, USA. 168 The Ohio State University and the James Cancer Center, Columbus, Ohio 43210, USA. 169 Department of Epidemiology and
Biostatistics, Memorial Sloan Kettering Cancer Center, New York 10017, USA. 170 Human Genetics Group, Human Cancer Genetics Program, Spanish National
Cancer Centre (CNIO), 28019 Madrid, Spain. 171 Biomedical Network on Rare Diseases (CIBERER), 28029 Madrid, Spain. 172 Department of Surgery, Seoul
National University College of Medicine, Seoul, 03080 Korea. 173 Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland,
Oregon 97239, USA. 174 Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA. 175 IFOM, The FIRC (Italian
Foundation for Cancer Research) Institute of Molecular Oncology, 16 20139 Milan, Italy. 176 Department of Obstetrics and Gynecology, Comprehensive
Cancer Center, Medical University of Vienna, 1090 Vienna, Austria. 177 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida 33606,
USA. 178 Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
179 Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts 02115, USA. 180 Laboratory of Cancer Genetics and
Tumour Biology, Northern Finland Laboratory Centre NordLab, FI-90014 Oulu, Finland. 181 Laboratory of Cancer Genetics and Tumour Biology, Department of
Clinical Chemistry and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland. 182 Unit of Molecular Bases of Genetic Risk and Genetic Testing,
Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT),

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12675 ARTICLE

NATURE COMMUNICATIONS | 7:12675 | DOI: 10.1038/ncomms12675 | www.nature.com/naturecommunications 19

http://www.nature.com/naturecommunications


20133 Milan, Italy. 183 Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden. 184 Department of Basic Sciences, Shaukat
Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan. 185 Clalit National Israeli Cancer Control Center and
Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Haifa, 34362, Israel. 186 Centre of
Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), Center for Molecular Medicine
Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany. 187 Department of Chronic Disease Epidemiology, Yale School of Public Health,
New Haven, Connecticut 06510, USA. 188 Division of Gynecologic Oncology, NorthShore University HealthSystem, Evanston, Illinois 60201, USA. 189 Program
in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. 190 Department of
Epidemiology, University of Washington, Seattle, Washington 98109, USA. 191 National Cancer Institute, Bangkok 10400, Thailand. 192 Research Oncology,
Guy’s Hospital, King’s College London, London SE1 9RT, UK. 193 Department of Community and Family Medicine, Duke University Medical Center, Durham,
North Carolina 27710, USA. 194 Cancer Control and Population Sciences, Duke Cancer Institute, Durham, North Carolina 27710, USA. 195 Netherlands Cancer
Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands. 196 Division of Molecular Gyneco-Oncology, Department of
Gynaecology and Obstetrics, University Hospital of Cologne, 50676 Cologne, Germany. 197 Center for Integrated Oncology, University Hospital of Cologne,
50676 Cologne, Germany. 198 Center for Molecular Medicine, University Hospital of Cologne, 50676 Cologne, Germany. 199 Center of Familial Breast and
Ovarian Cancer, University Hospital of Cologne, 50676 Cologne, Germany. 200 Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115,
Taiwan. 201 School of Public Health, China Medical University, Taichung 404, Taiwan. 202 Department of Health Research and Policy - Epidemiology, Stanford
University School of Medicine, Stanford California 94305, USA. 203 Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de
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