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Sequence variation between 462 
human individuals fine-tunes 
functional sites of RNA processing
Pedro G. Ferreira1,2,3,4, Martin Oti5, Matthias Barann6, Thomas Wieland7, Suzana Ezquina8, 
Marc R. Friedländer9, Manuel A. Rivas10, Anna Esteve-Codina11,12, The GEUVADIS Consortium†, 
Philip Rosenstiel6, Tim M. Strom7,13, Tuuli Lappalainen2,14,15, Roderic Guigó1,16 & 
Michael Sammeth1,5,17

Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-
sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-
individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis 
Project and genome sequencing data from the 1000 Genomes Project we show that the computational 
analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in 
the phenotype data. In contrast to widespread assessments of statistically significant associations between 
DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular 
mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles 
that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ 
further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic 
sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq 
combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA 
processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed 
but in other characteristics similar to their annotated counterparts.

In eukaryotes–especially in mammals–functional mRNAs depend crucially on the correct processing of tran-
scribed sequences, governed by (alternative) splicing and 3′  end formation1. At the molecular level these reac-
tions rely on the recognition of the corresponding core RNA elements by different factors involved in transcript 
processing, i.e., components of the splicing machinery (e.g., U1 and U2) that target the splice site sequences in 
order to remove introns2 and polyadenylation signals that correspondingly bind to the Cleavage/Polyadenylation 
Specificity Factor (CPSF) for initiating the 3′  formation3,4. In addition to these central elements, modern molec-
ular biology has demonstrated several scenarios of more complex splicing reactions that regulate the correct 

1Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain. 
2Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, 
Switzerland. 3Instituto de Investigação e Inovação em Saúde, (i3S) Universidade do Porto, 4200-625 Porto, Portugal. 
4Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-625 Porto, Portugal. 
5Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de 
Janeiro, Brazil. 6Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel,  24105 Kiel, Germany. 
7Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany. 8Center for Human Genome 
and Stem-cell research (HUG-CELL), University of São Paulo (USP), 05508 090 São Paulo, Brazil. 9Science for Life 
Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden. 10Wellcome Trust Centre for Human Genetics, 
University of Oxford, Oxford OX3 7BN, United Kingdom. 11Centre Nacional d’Anàlisi Genòmica, 08028 Barcelona, 
Catalonia, Spain. 12Center for Research in Agricultural Genomics (CRAG), Autonome University of Barcelona, 
08193 Bellaterra, Catalonia, Spain. 13Institute of Human Genetics, Technische Universität München, 81675 Munich, 
Germany. 14Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland. 
15Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. 16Pompeu Fabra University (UPF), 08003 Barcelona, 
Catalonia, Spain. 17National Center of Scientific Computing (LNCC), 2233-6000 Petrópolis, Rio de Janeiro, Brazil. 
†A comprehensive list of consortium members appears at the end of the paper. Correspondence and requests for 
materials should be addressed to M.S. (email: micha@sammeth.net)

received: 12 April 2016

Accepted: 03 August 2016

Published: 12 September 2016

OPEN

mailto:micha@sammeth.net


www.nature.com/scientificreports/

2Scientific RepoRts | 6:32406 | DOI: 10.1038/srep32406

abundance of alternative gene products, involving accessory proteins, non-coding RNAs and also epigenetic 
factors. However, these mechanisms follow very cell-type and gene-specific rules that are not applicable in the 
general case5–9.

The genomic sequence varies from individual to individual, and already some published case studies show 
that genetic markers can affect the control of RNA processing10–12. Particularly in human, the causal DNA var-
iants of several diseases have been demonstrated to tamper with the control of splicing13–15. Traditionally, best 
practices for carrying out systematic studies on splicing mechanisms involve specifically designed mutagenesis 
experiments in minigenes16,17, which despite their evident usefulness, are restricted to a single locus and mutation 
in each experiment18. Predominantly hampered by the lack of availability of genome-wide genotype and pheno-
type data across a sufficient number of individuals, mechanistic investigations of differences in RNA-processing 
throughout populations have so far been limited to small numbers of genes and individuals19–23. However, the 
advent of high-throughput sequencing technologies also heralded a new generation of population-scale projects 
that analyse combined DNA and RNA sequencing across multiple individuals. Such studies generally focus on 
identifying which genetic elements are statistically associated with a certain phenotype—usually defined as a 
quantitative trait locus (QTL) resolved at gene- transcript- or exon-level—rather than building hypotheses about 
how these phenotypic changes are mechanistically projected from the DNA to the RNA molecules24–31.

In our present work, we employ data from the Geuvadis Project that provides deep RNA-sequencing 
in lymphoblastoid cell lines (LCLs) collected from 462 individuals of five populations genotyped in the 1000 
Genomes Project32. The Geuvadis RNA-Seq experiments are described extensively in Lappalainen et al.33 with a 
detailed analysis of the technical variation in ‘t Hoen et al.34. Our main study33 already used this data set to map 
and to characterize regulatory variation, showing by expression QTL (eQTL) analysis that genetic control of gene 
expression and transcript processing appears largely independent. Here, we drill into the molecular mechanisms 
of RNA modifications that are modulated by genetic polymorphisms in the sequence motifs of annotated splice 
donor and splice acceptor sites at the 5′  and 3′  ends of introns35, as well as in poly-A signals affecting the 3′  for-
mation of transcripts36,37. Beyond genotypes, our study also extends to the effect of additional sequence variants 
in functional elements that are likely due to RNA editing mediated by the adenosine deaminase acting on RNA 
(ADAR) enzyme, as observed by divergences of the RNA-Seq reads from the corresponding DNA sequencing 
data. Combining the resolution of sequencing transcriptomes from hundreds of individuals in a population-scale 
project, we also pinpoint rare and therefore often not annotated transcriptional elements, i.e. splice sites, introns 
and cleavage sites. Altogether, our studies describe a comprehensive classification and comparison of the different 
ways in which RNA processing can be affected by these sources of sequence variation and serve as a reference for 
forthcoming mechanistic studies on RNA regulation by minority alleles.

Results
Genomic variants in splice sites can affect the splicing potential positively or negatively. In 
order to investigate the molecular mechanisms that cause splicing variation between populations, we focused 
on variants that directly affect the affinity of annotated splice sites, considering an informative sequence of 9nt 
for splice donors including the GT dinucleotide, and 27nt for splice acceptors that include the AG dinucleotide 
and additionally the typical area of the preceding polypyrimidine tract (see Methods). When superimposing 
the 1000 Genomes DNA polymorphisms32 to the Gencode transcriptome version 12 reference transcriptome38, 
we find 10.7% (51,342 out of 477,880) of the annotated splice sites to harbor one (92% out of the 51,342) or 
multiple sequence polymorphisms in the core splice site motif (up to seven polymorph positions per splice site, 
Supplementary Fig. 1a). Splice sites exhibit a repression of indels (2.2% vs. 3.6% indels overall, p-value =  0.017). 
Also, allele frequencies of indels in splice sites are shifted to lower values (median frequency =  0.039 vs. 0.049 
for indels not affecting splice sites, p-value =  0.11 Mann-Whitney-Wilcoxon (MWW) test) likely due to purify-
ing selection against large genomic perturbations in functional elements32, albeit coding sequences with < 0.5% 
indels exhibit even higher depletions. Furthermore, the frequency of single nucleotide polymorphisms (SNPs) 
occurring at certain positions of the splice site sequence is negatively correlated with the information content 
of the consensus motif, and the dinucleotides involved in the splicing reaction are mostly exempt of sequence 
polymorphisms (Fig. 1a,b).

Following earlier reports that genetic polymorphisms can directly affect splicing39,40, we computed splicing 
scores traditionally used in gene finding for evaluating the affinity of an RNA sequence to the splicing machinery 
in a systematic manner (Methods). Gene finders usually score potential splice sites in order to predict gene struc-
tures, however, we created a high-throughput tool for studying the effects of sequence variation in splice sites by 
employing these scoring schemes in an introspective manner, i.e. a posteriori given a set of splice sites. In techni-
cal terms our “Scorer” tool avoids the computation of a majority of hypothetical splice sites in a genome, and the 
associated overhead of filtering these predictions with respect to a given set of genes, and it additionally allows 
to provide a list of specific sequence variants based on the corresponding reference genome. For scoring splice 
sites, we employed the Hidden Markov Model (HMM) scoring matrices provided by the gene predictor GeneID41, 
which we further evaluate in the following with respect to their capabilities of introspectively evaluating splice site 
affinities based on the Geuvadis dataset.

Supplementary Fig. 1b shows that the implemented HMM model predicts different scores for donor and for 
acceptor sites, however, the scores computed for alternative splice sites and exons are lower than those for sites that 
are constitutively spliced, confirming earlier observations that modification of splicing can be driven by less effi-
cient binding of splicing factors to the RNA sequence42. Turning to our Geuvadis phenotype data, we reassuringly 
observe several examples where the RNA-Seq splice-junction coverage supports our predictions of variant effects 
in the expected manner. In order to analyse how the predicted splice score of variants correlates with our RNA-seq 
data, we first studied the correlation between changes in the HMM score, measured as the difference between the 
score computed for the GRCh37 reference genome splice site sequence and the corresponding sequence with the 
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annotated genomic variants, and percent-spliced-in (PSI) scores43 of alternatively included exons (0.2 <  PSI <  0.8 
in > 80% of the individuals). We found that exons with variants that lower the computed splice site score (“neg-
ative” effects in Fig. 1c) exhibit low inclusion levels even in individuals carrying the reference allele (median 
PSI score 0.37), whereas variants with “positive” effects target preferentially the flanks of exons that are already 
relatively highly included employing the reference allele (median PSI score 0.76). The exon inclusion level then 
further gradually increases/decreases in individuals accumulating more variants with positive and respectively 
negative effects in their splice sites (Fig. 1c). In a nutshell, our analyses demonstrate that between individuals the 
usage of splice sites and of entire exons can be negatively as well as positively controlled by genetic variants.

To further evaluate and to classify the predicted HMM score changes, we compared them to corresponding 
predictions based on Position Weight Matrices (PWMs) from the complementary splice site discovery database 
SpliceRack44, providing the reference and variant splice site sequences collected by our Scorer tool. We analyzed 
different thresholds on the computed HMM score differences below which we do not consider a change in the 
score between the reference and the alternative allele of a splice site as biologically meaningful. We then classi-
fied sequence alterations for which we predict positive score changes above the chosen threshold as “enhancing” 
variants, and correspondingly negative score changes exceeding the threshold as “weakening” variants. Sequence 
polymorphisms that lead to score deviations less than the selected threshold are considered as “neutral” variants. 

Figure 1. Genetic polymorphisms in splice sites. The distribution of nucleotide diversity (black curve) 
observed around splice donors (a) and splice acceptors (b) shows that polymorphisms are repressed in exons 
when compared to introns. Splice site dinucleotides are largely exempt of polymorphisms, and the frequency 
of polymorphisms observed in the remaining positions of the splice site motif scales about inversely with the 
information content of the consensus sequence (zoomed out areas). (c) Genetic variants with effects on the 
splicing score of alternative exons (0.2 <  PSI <  0.8 in > 75% of the population) are not randomly distributed. 
Variants for which the model predicts negative splicing effects target exons that are already mostly excluded 
in individuals that employ the reference splice site alleles (median PSI~ 0.4, light blue curve), whereas 
variants with positive effects occur in the splice sites of exons that are predominantly included in individuals 
with reference alleles (median PSI~ 0.75, light red curve). The predicted effect then gradually increases the 
observed PSI ex-/inclusion level in genotypes with one or both splice sites of an alternative exon accumulating 
negative/positive alleles (medium and dark blue/red curves). (d) The heatmaps show the agreement (from 
blue =  depletion to red =  enrichment) in the splice site score differences (Δ ) caused by variants when 
comparing the scores computed by the HMM model employed herein (y-axis) with the scores obtained by a 
complementary PWM based model (x-axis), separately for splice donor (left panel) and acceptor sites (right 
panel). At the thresholds chosen to distinguish neutral from weakening/enhancing variants (|τ | =  1.5 for 
donor and |τ | =  1.0 for acceptor sites), the comparison between the classifications based on HMM predictions 
and those computed by PWMs yield very high enrichment scores (weakening =  72.87, neutral =  51.4, 
enhancing =  46.41 for donors, and weakening =  86.51, neutral =  76.18, enhancing =  33.17 for acceptors).  
(e) The Chi-Square Test statistic shows that indeed the best agreement between the PWM and the HMM 
scoring scheme is obtained at a threshold of |τ | =  1.5 (for donors, blue curve) respectively |τ | =  1.0 (for 
acceptors, red curve).
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When comparing for each threshold the classification by the HMM model to corresponding PWM-based calcu-
lations (Fig. 1d summarizes the systematic study shown in Supplementary Fig. 2), we observe clear enrichment of 
shared predictions in all three categories (i.e., “weakening”, “neutral”, and “enhancing” variants) at all thresholds, 
peaking at a threshold of 1.5 for donor and 1.0 for acceptor sites (p-value <  3e-323 at all thresholds, chi-squared 
test, Fig. 1e). The high agreement between both independent scoring schemes suggests that splice site scores are 
primarily a function of the analyzed sequence rather than the model employed to compute the score.

Splice site disrupting variants are rare in the genome and in the gene pool. In contrast to PWM 
estimates, the HMM model also pinpoints sequences with consecutive bases that have not been observed in 
the training set of splice sites used to establish the model (Methods). We therefore extend our classification to 
“activating” and “disrupting” variants for comparisons where the reference or alternative allele exhibit such splice 
site-absent sequences. Such variants include previously described SNPs that trigger alternative splice site usage 
between individuals by switching on/off cryptic splice sites. In these cases, homozygous individuals exhibit exclu-
sively the use of one or the other exon boundary, whereas heterozygous individuals provide evidence of both 
splice sites being used (Fig. 2a–c).

Figure 2d summarizes the distribution of the different variant classes considered across all splice sites and 
individuals in the Geuvadis dataset and shows that the major part of SNPs in splice sites indeed fine-tunes the 

Figure 2. Distribution of different variant classes. (a–c) Scatter plots with examples for splice site switching 
triggered by splice site disrupting SNPs at the flanks of coding exons. The distribution of read counts at the 
extended (x-axis) and the shortened (y-axis) exon boundary is reported for all individuals carrying exclusively 
the reference allele (green), for individuals with homozygous SNP alleles (blue), and for heterozygous 
individuals (red). (a) A NAGNAG tandem acceptor site (delta =  3) in the TOR1AIP1 gene, (b) alternative 
acceptor sites (delta =  6) in the XRCC4 gene, and (c) alternative donor sites (delta =  6) in the URK3 gene.  
(d) The distribution of variants that stem from DNA polymorphisms in splice sites annotated by the Gencode 
v12 reference, classified accordingly by the differences in predicted splice site scores into disrupting (red), 
weakening (blue), neutral (gray), enhancing (green), and activating (orange) variants. Most sequence variants 
in splice sites are predicted to be neutral, and the Gencode reference splice sites harbor many more weakening 
and disrupting than enhancing and activating variants. (e) Derived allele frequencies (DAFs) of variants 
categorized according to the five different variant classes: alleles of enhancing variants (green bars) are deviating 
significantly (p-value ~ 2e-4, KS test), and alleles of activating variants (orange bars) even more significantly 
(p-value ~ 9e-5, KS test), from the distribution of allele frequencies of neutral variants (gray bars), enriching 
in higher abundant alleles. Weakening (blue bars) or disrupting variants (red bars) on the contrary accumulate 
more in low allele frequencies than neutral variants (p-value ~ 2e-3 and p-value ~ 2e-4, KS test). (f) An 
analogous pie chart as shown in (d), but for variants in novel splice sites of PNIs, exhibits relatively less neutral 
and weakening, but more enhancing, activating, and also disrupting variants.
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splicing activity, with a notably higher fraction of splicing weakening than enhancing variants (~17% vs. 4%). 
Disrupting variants (~10.5%) are less frequent, and actually only an exceptional minority (< 0.5%) of SNPs in 
Gencode splice sites is activating. The differences in the relative proportion of disrupting vs. activating variants–
and similarly also of weakening vs. enhancing variants–are presumptively provoked by a bias for functional alleles 
in the GRCh37 refs 45, 46. Since our classification of the variant effect depends by definition on the allele included 
in the human reference genome, the Geuvadis data suggests that in total ~22% of splice sites with genetic variants 
are modified in their splicing potential, about half of them severely by entirely disrupting the splicing activity, 
compared to a dominating subset of ~68% variants without predicted effects.

Our classification of genetic variants on splice sites is based on the effect of the non-reference allele, which 
corresponds to the derived allele when assuming that the reference genome represents the ancestral state. 
However, this is a priori not always the case. We therefore measured for variants in each variant class the global 
derived allele frequency (DAF), i.e., the frequency of the non-ancestral allele (Methods). Figure 2e shows that 
splicing-disrupting and also -weakening sequence polymorphisms are significantly more enriched (p-value ~ 2e-3  
and 2e-4, Kolmogorov-Smirnov (KS) test) in low derived allele frequencies as compared to neutral variants. 
Enhancing variants on the contrary are shifted towards higher DAFs (p-value ~ 2e-4, KS test), and activating 
variants differ substantially in their global DAF distribution from all other splice site variant classes: 72% of acti-
vating SNPs exhibit DAFs > 0.1 (p-value ~ 9e-5 compared to the distribution of neutral variants, KS test). Our 
results imply that activating variants are common variants for which the reference assembly of the human genome 
actually describes a low-frequency derived allele that disrupts the splice site.

To further estimate the degree to which the Geuvadis experiment can complement current knowledge about 
transcript annotation in LCLs, we superimposed split-mappings to the exon-intron structures of Gencode v12 
to rescue putative novel introns (PNIs) that describe non-annotated exon-exon junctions (Methods). We found  
> 64 million reads supporting ~2/3 of the annotated introns (222,862 out of 337,247 introns) and additionally 
~14.7 million split-mappings that provide evidence for ~1.1 million PNIs. Although the overall size distribu-
tion of PNIs follows largely the one of introns annotated in the Gencode reference, a mixture of two lognor-
mal distributions caused by distinct groups of short (~100nt) and long (~1,600nt) introns47, there are outliers of 
extremely short and long PNIs (Supplementary Fig. 3a). Most PNIs are predominantly observed in few individ-
uals (Supplementary Fig. 3b) and also covered poorly by split-mappings in comparison to introns annotated in 
the Gencode reference (Supplementary Fig. 3c). However, PNIs also reflect many RNA-biology attributes similar 
to their annotated counterparts (Supplementary Fig. 4), the majority of PNIs (~74%) locate within annotated 
transcripts (i.e., “internal” events), and ~82% of them also employ at least one annotated splice site (Table 1a).

But also PNIs involving non-annotated (i.e., novel) splice sites and those that extend the transcript bounda-
ries beyond the Gencode annotation (Table 1b) are supported well by complementary RNA-Seq data from the 
Encode project48, especially at higher thresholds of individual- and population-support (Table 2a). Like annotated 
splice sites (Fig. 1a), novel splice sites show evidence for genetic control of their splicing functionality, although 
at expectedly lower read support levels (Supplementary Fig. 3d). When clustering genetic variation caused by 
19,528 variants in novel GT/AG splice sites from PNIs confirmed by > 150 individuals according to the effects on 
splicing, we find amongst the variant groups a ranking similar to the one of splice sites annotated in the Gencode 
reference, but with highly significant shifts towards fewer neutral (p-value ~ e-30, Fisher Exact test) and weak-
ening (p-value ~ e-29), but more enhancing (p-value ~ e-125), activating variants (p-value ~ e-65, Fig. 2f). In 
the context of our previous observations on the bias of the human reference genome in favor of more functional 
elements, these differences can be explained by non-annotated PNIs showing a reduced bias for functional refer-
ence alleles (Fig. 2d vs. 2f). However, we also observe an increase in the relative proportion of disrupting variants 
(p-value~ e-14), which could reflect that disrupted splice junctions are underrepresented in the Gencode annota-
tion by their generally lower expression levels26.

RNA editing as a splice site modulator. Next, we employed our methodology to analyze Gencode splice 
sites for the impact of potential RNA editing events catalyzed by the ADAR enzyme complex (Methods), which 
produces A-to-I conversions that are represented by A-to-G transitions in the RNA-Seq data49. Reassuringly, our 
approach calls substantially fewer splice sites with putative RNA editing polymorphisms than with genetic poly-
morphisms (< 0.01% vs. 10.7%). Only two of the 39 editing events we predict to incur in the region of annotated 
splice sites are contained in the complementary RADAR-2 database50, however, this database includes data from 
studies that intentionally select against editing events in annotated splice sites51–53. In contrast to genetic variants 
(Fig. 2d), more than twice the proportion of edited nucleotides (~68% vs. 32%) disrupt their harboring splice site, 
which can be expected by mechanistic restrictions when considering the possible sequence alterations of ADAR 
editing in the canonical dinucleotides of annotated sites (Fig. 3a). Consequently, we observe 28 A-to-G transitions 
that disrupt the AG acceptor dinucleotide, whereas the only activation event we predict for ADAR editing incurs 
by conversion of a donor AT dinucleotide, usually employed in a very limited set of introns spliced by the minor 
spliceosome54.

Our data in Supplementary Fig. 5a further suggests that RNA editing targets significantly shorter introns 
(median 607nt vs. 1,881nt in constitutive introns), and particularly RNA editing events that disrupt splicing 
activities are limited to very short introns (median 522.5nt vs. 972nt in the other introns with edited sites, p-value 
~1.1e-09, MWW test). Supplementary Table 1 also summarizes that, according to the Gencode reference tran-
scriptome, most of the splice sites (28 of 41 sites) that are affected by RNA editing are alternatively spliced, which 
interestingly leads predominantly to retaining the entire intron (in 18 of 28 introns with edited sites). Indeed, we 
also observe in the Geuvadis dataset substantial amounts of reads from introns flanked by sites with predicted 
editing events (Supplementary Fig. 5b), in agreement with recent reports concluding that the ADAR complex can 
sterically block the splicing machinery from accessing the RNA substrate55.
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Unlike the binary state of variants encoded by the genome, RNA editing constitutes a more gradual trait that 
has been reported to vary across individuals, transcript sequences and gene expression levels56. Interestingly, 
we also find in the Geuvadis data that the editing efficiency in splicing disrupting events anti-correlates with 
the splicing efficiency, as introns flanked by disrupted sites that are exhaustively edited (> 0.9 of non-reference 
bases) exhibit higher intron read coverages and therefore more retained introns (Fig. 3b). We do not observe 
this difference for non-disruptive editing events (Supplementary Fig. 5c). These results support complementary 
observations of splicing57 and also RNA editing58 being co-transcriptionally competing processes (Fig. 3c). Our 
findings suggest that both molecular processes are often temporally coordinated, as also reported by complemen-
tary evidence55,59, and that RNA editing can guide splice site choice in particular genes and species60–63.

Genetic diversity in polyadenylation signals. Beyond splicing, we also investigated the impact of 
inter-individual DNA variability on polyadenylation. To obtain 3′  end information we predicted 52,349 putative 
cleavage sites (PCSs) from read mappings that align partly with the genomic sequence and exhibit poly-A tails 
(Methods). The number of PCSs found with higher read support levels decreases rapidly (Supplementary Fig. 6a),  
but independently of the expression rate of the underlying transcript (Supplementary Fig. 6b). In our further 
analyses we focus on the conservative subset of 21,102 PCSs supported by ≥ 2 reads, which are still twice as many 
as identified in previous studies28,64. These PCSs exhibit a high degree of overlap with annotated 3′  UTRs (71.4%), 

(a) Internal Events

 novel sites 0 1 1 2

 description novel cassette novel donor novel acceptor novel intron

 events total 3,552 15,469 16,093 7,925

 pattern #1

 events #1 2,477 14,017 9,764 5,847

 pattern #2

 events #2 737 1,159 5,257 1,347

 more patterns

 more events 338 293 1,072 731

(b) Extension Events

 novel sites 1 1 2

 description 5′  extension 3′  extension alt. TSS and CVS

 events total 3,051 2,717 9,080

 pattern #1

 events #1 2,143 1,869 3,141

 pattern #2

 events #2 604 276 3,341

 more patterns

 more events 304 350 2,598

Table 1.  Alternative splicing implied by putative novel introns (PNIs). The table summarises novel 
alternative splicing events implied by superimposing the 21,761 Gencode PNIs supported by > 150 individuals 
to the transcript structures of the Gencode reference annotation. The events have been grouped according to 
their localisation within the transcript body (i.e., “internal events”, Table 1a) or beyond the transcript extremities 
(“extension events”, Table 1b). The 1st row presents the number of novel splice sites, i.e. the splice sites of the 
PNI that are not annotated in the Gencode reference, described in each category (i.e., the column). The 2nd 
row provides the total count of such events. Rows 3–8 show the two most frequently observed event patterns 
(“pattern #1” and “pattern #2”) in the category and a summary of remaining patterns (“more patterns”), with 
the corresponding number of single events observed for each pattern. (a) Most internal PNIs link novel splice 
sites to an existing one (~73%), less frequently introns employ two novel sites (~18%), and novel combinations 
of existing sites are rather exceptional (~8%). (b) In contrast, PNIs employing novel splice sites upstream of the 
annotated transcription start site (TSS) or downstream of the annotated cleavage site (CVS) are more frequently 
combinations of two novel splice sites (~62% vs. ~59%).
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especially within a distance of 50 nt from 3′  transcript ends annotated in Gencode (66%), and they are highly 
supported by complementary RNA-Seq data from the Encode Project (Table 1b).

Scanning the genomic sequence around these PCSs (Methods), we identified for 96.3% of them sequences that 
agree with earlier described poly-A motifs, and the nucleotide distribution of their consensus also matches earlier 
reports36. For those that coincide with polyA-signals provided by the Gencode annotation, we additionally ana-
lyzed the degree up to which genetic variation affects the composition of the poly-A motif. Most poly-A motifs are 
exempt of SNPs, but Fig. 4a shows 235 events of SNPs that are reproducing known poly-A signals and therefore 

Geuvadis Encode Novel

(a) PNIs

All 1,068,786 62,5% 400,697

 > 0 in all populations 205,649 94,9% 10,553

 > 150 individuals 21,761 97,8% 469

 > 300 individuals 6,660 97,9% 139

 > 450 individuals 846 97,4% 22

(b) PCSs

 all PCSs ≥ 2 mappings 21,102 62,8% 7,856

 not overlapping 3′  UTR 6,032 40,2% 3,607

 overlapping 3′  UTR 15,070 86,6% 2,017

Table 2.  Mutual confirmation of novel transcriptional elements in Geuvadis and Encode RNA-Seq data. 
The table presents the number of different (subsets of) novel transcriptional elements (rows) predicted from the 
Geuvadis experiments (column 2), the proportion of these elements that is additionally confirmed by Encode 
RNA-Seq reads (column 3), and the number of non-overlapping (i.e., novel) elements in Geuvadis as compared 
to Encode. (a) Nearly 2/3 (~63%) of the putative novel introns (PNIs) in Geuvadis are also contained in the 
34,926,167 Encode PNIs. Applying more restrictive population support thresholds on the PNIs leads to high 
confirmation rates (> 97%). (b) Putative cleavage sites (PCSs) with a support of ≥ 2 RNA-Seq reads show similar 
a base level (~63%) of overlap between the Geuvadis data set and the 160,331 PCSs correspondingly rescued 
from the Encode data. For PCSs outside annotated 3′  UTRs the confirmation rate decreases (~40%), whereas 
PCSs in 3′  UTR regions are strongly supported by Encode data (~87%).

Figure 3. ADAR catalyzed RNA editing predicted in splice sites. (a) A-to-I RNA editing catalyzed by the 
ADAR complex can disrupt (red marker) the canonical U2 splice acceptor dinucleotide AG, as for instance 
predicted in the MDM2 gene. In contrast, the GT splice donor dinucleotide can be created from AT, which  
is usually recognized as a donor only by the minor spliceosome, as predicted in the RASGRP3 gene.  
(b) Incomplete RNA editing (red boxplot) of splicing disrupting bases is associated with significantly lower 
intron coverage by RNA-Seq reads (y-axis) than observed for disrupted sites that are exhaustively edited (blue 
boxplot, p-value =  0.03, MWW test). The observed intron read coverage can serve as a proxy for the number 
of introns retained when the splicing machinery fails to recognize the correspondingly edited, thus disrupted, 
splice site. (c) The cartoon sketches a competitive model for the cotranscriptional processes of splicing and 
RNA-editing, where components of the splicing machinery (e.g., U2) compete with the ADAR enzyme complex 
for the splice site substrate.
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overall maintain the consensus profile (“altered motifs”, left panel in Fig. 4a) in contrast to 214 polymorphisms 
that produce sequences unknown to function as poly-A signals that distort the consensus and therefore likely 
disrupt the affinity of the site to the CPSF (“degraded” motifs, right panel in Fig. 4a). Interestingly, we observe that 
poly-A motifs that are degraded by genetic variation locate marginally but significantly further away from the 
PCSs (Fig. 4b), indicating a different relevance of the CPSF for 3′ -end formation. Summing up, we collected the 
Geuvadis RNA-Seq evidence for splice sites, introns and cleavage sites that are not annotated in the Gencode v12 
reference, and we exhaustively characterized the implications of genetic variation also in these novel elements.

Discussion
In this study we employed the genetic diversity annotated for 462 individuals from the 1000 Genomes project, 
to compose a genome-wide catalogue of genetic polymorphisms in annotated splice sites and to estimate their 
potential effects on splicing based on the sequence changes in splice site motifs. In this light we consider the 
landscape of inter-individual variants described by the large-scale Geuvadis experiment as a natural source of 
mutagenesis experiments from which we deduce rules for the regulation of splicing. Due to their important func-
tional role, splice sites are generally depleted for genetic polymorphisms, and our results suggest an even higher 
level of selective constraints in the splice site dinucleotides than in the adjacent exon sequences. Employing HMM 
scoring models established in gene finding, we implemented a tool that allows to score the splicing potential of 
splice sites and their variants. We evaluate the computed score by an alternative scoring model based on PWMs, 
and we compare the results produced by either method to establish a rationale to classify the changes observed 
in splicing scores in five classes (i.e., disrupting, weakening, neutral, enhancing, and activating variants). From a 
computational point of view, we contribute to forthcoming studies along the same lines by making our programs 
to compute splicing scores for reference and variant sites publicly available.

Based on these score predictions, the mechanistic impact of genetic variation on splice sites is often of sub-
tle nature, for instance modulating the inclusion level of alternative exons, but can also be rather severe. We 
describe variants that activate or disrupt entirely the splicing activity, providing examples from the Geuvadis 
Project where SNPs switch intron splicing allele-specifically on or off. Although RNA-editing can also affect 
splicing, we find that ADAR-edited splice sites are comparatively rare, however, with a higher degree of disrupting 

Figure 4. Genetic variants in poly-A motifs. (a) The sequence logo of poly-A motifs in the human reference 
genome sequence GRCh37 reproduces well the distribution of nucleotides from earlier reports (sequence logo 
at the top). Genetic variants can change the poly-A motif to another sequence that is known to act as a poly-A 
signal (i.e. “altered” motifs, sequence logo at the bottom-left of the panel), or they can disrupt the poly-A 
motif such that the variant sequence no longer corresponds to any reported poly-A signal (“degraded” motifs, 
sequence logo to the bottom-right). (b) When analysing the distribution of distances between poly-A signals 
and the closest PCS, the 235 poly-A motifs altered by genetic variants (blue distribution) localize slightly but 
significantly (p-value 0.016 MWW test) closer to the PCS than the 214 poly-A motifs that are degraded by SNPs 
(red distribution).
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variants caused by A-to-G substitutions in the canonical AG dinucleotide of the acceptor site. Our analyses sug-
gest that RNA-editing targets mainly short introns of evolutionary rather old genes, most of the edited sites are 
already known to be alternatively used and many are related to intron retention. The Geuvadis dataset shows a 
substantial amount of intronic reads in introns with edited sites, as expected in the proposed model under which 
the ADAR complex makes the RNA molecule inaccessible to the splicing machinery, and in concordance with 
the computed splice site scores the RNA-Seq coverage is even higher in introns with splice sites that are predicted 
to disrupt splicing activity. We also find that the RNA-Seq read coverage of introns with splice sites disrupted by 
RNA-editing increases when editing levels rise close to the complete substitution of the genomic base, whereas 
this is not observed in introns with edited sites that are still predicted to be functional. Altogether, the computa-
tional models we apply to combined DNA- and RNA-sequencing at a population scale support multiple aspects 
of RNA editing postulated by previous observations in limited gene sets.

Allele frequencies from the 1000 Genomes project show that most of the genetic variation affecting splicing 
stems from rare alleles in the population, but we discover also a small set of common polymorphisms that actually 
describe a functional splice site in contrast to a splicing-defective reference sequence, which shows that relying 
exclusively on the reference genome in gene annotation and polymorphism effect estimation may be problematic 
in specific cases. In fact, the combined sequencing depth of hundreds of samples and billions of reads provides 
us with the power to detect thousands of transcribed elements that are not annotated in the Gencode reference 
annotation, including novel introns (PNIs) and cleavage sites (PCSs). The majority of these previously undetected 
elements are also discovered in complementary RNA-Seq data from the Encode project and exhibit attributes 
similar to the biology of their annotated counterparts. Many of them occur only in few individuals, which may 
be the reason why they are absent from existing annotations, but they may still be important determinants of 
personal transcriptomes by contributing to the genetic makeup of each individual.

Employing these novel elements predicted from the phenotype data, we show that PNIs exhibit a higher pro-
portion of activating as well as disrupting variants, indicating that the absence of their splicing can be tolerated 
more often. These conclusions are in agreement with our observations of comparatively low splicing and popula-
tion frequencies for PNIs. We also find that genetic polymorphisms potentially disrupt poly-A signals, especially 
in cases where the CPSF recognition site localizes slightly further away from the PCS. In a nutshell, our results 
are certainly limited because RNA-Seq in the Geuvadis experiment have been obtained from a single cell type 
per individual, namely lymphoblastoid cell lines, and we expect that our observations will be extended in the 
future with more population-scale tissue data becoming available. However, our study demonstrates a hitherto 
less explored potential for mechanistic studies on the inter-individual variability and population diversity in 
RNA-processing that can be derived by combined RNA- and DNA-sequencing.

Methods
Supplementary Fig. 7 shows an overview of all resources employed and the analyses carried out for this work, 
employing the analyses detailed in the following.

Computing splicing scores. Following traditional approaches in gene finding41, we employ computational 
splice site models that comprise an informative sequence of 9nt for splice donors (interval [− 2; 7]), and 27nt for 
splice acceptors—from − 24 to + 3 including additionally the typical area of the upstream polypyrimidine tract65. 
We first apply these models to the splice sites annotated in the GENCODE version 12 reference transcriptome, 
and subsequently also to novel introns (PNIs, see below) as well as predicted RNA-editing in splice sites (see 
below). To estimate splicing efficiency of polymorphisms, the splice site sequence composition is represented by a 
second order Markov Model66,67. Under this model, sequences with a higher degree of similarity to the consensus 
bind more tightly to the corresponding factors of the splicing machinery68,69, and therefore are more frequently 
observed as authentic splice sites70,71. We then compute the log-odds “splicing score” and compare the scores of 
sequences derived from splice site variants with the score of the corresponding splice site reference sequence in 
the human genome assembly GRCh37. Our scoring algorithm is implemented in the Scorer tool of the Astalavista 
framework available at http://scorer.sammeth.net, which we employed using the command: 

astalavista -t scorer -i gencode_v12.gtf -c GRCh37_sequences_folder –gid geneid.human.070123.param –vcf 
population_variants.vcf -f population_variant_scores.vcl

where geneid.human.070123.param is the GeneID parameters file for the human genome, downloaded from 
ftp://genome.crg.es/pub/software/geneid/human.070123.param.

Comparison of HMM scores with PWM scores. Hidden Markov Model (HMM) scores were calculated 
with our Astalavista Scorer tool as described above. Position Weight Matrix (PWM) scores were calculated by run-
ning the FIMO72 motif scanning tool with default parameters on the splice site DNA sequences retrieved with the 
Astalavista Scorer tool, using PWMs from the SpliceRack database44. The motif score assigned by FIMO was used as 
the PWM score. For both approaches, score differences Δ HMM and Δ PWM were calculated by subtracting the refer-
ence sequence (RS) score from the variant sequence (VS) score, with negative score differences suggesting splice site 
“weakening” variants while positive differences imply splice site “enhancing” variants. As the PWM scores exhibited 
a trimodal distribution separated by minima at ~+ /− 6, we classified all score differences between − 6 and + 6 as 
“neutral” variants (Supplementary Fig. S2a). We subsequently varied the “neutral” threshold for the HMM score 
differences between 0 and + /− 2.5, and we determined the degree of classification agreement as enrichment between 
the two scoring schemes using the chi-square test from the R statistical program73. The enrichment is measured as 
the standardized residuals of the chi-square test, i.e., an enrichment of x means that the observed frequency of coin-
cidences is x times the standard deviation away from the expected frequency of coincidences between both models.

http://scorer.sammeth.net
ftp://genome.crg.es/pub/software/geneid/human.070123.param
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Classification of sequence variants in splice sites. SNPs that increase/decrease the splicing score of a 
reference splice site sequence above/below the previously determined threshold (|τ | =  1.5 for donors, and |τ | =  1.0 
for acceptors) are classified as “enhancing”/“weakening” variants. In the cases where either the GRCh37 genome 
or the splice site variant reproduces a sequence that is absent from the training set of our model, we assume that 
the sequence does not represent a functional splice site and consider the corresponding variants as “activat-
ing”/“disrupting” the splice site potential. All other sequence variations that do not change the splicing score more 
than |τ | are “neutral” polymorphisms. We employed the global derived allele frequencies (DAFs) computed for 
the non-reference alleles by the 1000 Genomes Project.

Prediction of RNA editing in splice sites. We employed the samtools (version 0.1.18) mpileup tool in 
combination with the bundled vcfutils.pl script74 to call sequence polymorphisms from RNA-Seq reads by the 
following command: 

samtools mpileup -C0 -m3 -F0.0002 -E -d999999 -q20 -DSuf hg19.fa -b inputBams | bcftools view -cgv - | vcfutils.
pl varFilter -Q25 -d3 -D4999500 -a2 -w10 -W10 -10.0001 -21e-400 -30 -40.0001 -p >  variants.vcf

This pipeline produces from the Geuvadis RNA-Seq mappings (“inputBams”) a list of variants (“variants.vcf ”), 
employing the mpileup standard parameters for disabling the adjustment of mapQ (-C0) and for the minimum 
fraction of gapped reads (-F0.002), but allowing a higher per-BAM depth (-d999999), to attribute for the une-
qual read coverage in genes with different expression levels, and requiring a higher mapQ (-q20) for mappings 
to be considered during calling. The corresponding parameters (-D4999500 and -Q25) were also adjusted in the 
vcfutils.pl filtering script, where we additionally increased the stringency for polymorphisms to not locate up to 
10nt next to a gapped position (-w10 and -W10). Subsequently, we merged the calls from 421 individuals with 
non-imputed genotypes in the Phase2 dataset of the 1000 Genomes Project32, removing polymorphisms with a 
median coverage of < 10 at called sites, with < 10 samples showing the called non-reference base, and with a var-
iant quality of < 100 assigned by SAMtools. We thus obtained 8,479 predictions polymorphisms, of which 7,770 
(91.6%) correspond to 1000 Genomes genotype variants employed by the Geuvadis Project:

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/files/genotypes/

Considering the transcription directionality of each respective gene, 39 of the remaining 709 non-genomic pol-
ymorphisms correspond to A-to-G variants that modify in total 41 introns annotated by the Gencode reference 
(Supplementary Table 1).

Prediction of putative novel introns (PNIs). We rescue PNIs from split-mapped RNA-Seq reads that 
indicate non-annotated alternative 5′  or 3′  splice sites within proximity of up to 30 nt to an annotated exon 
boundary, considering only properly paired mappings with a mapping quality of at least 150, an edit distance ≤ 6, 
and an insert-size of ≤ 1,000,000 nt. We then superimpose PNIs to the exon-intron structures of the Gencode v12 
annotation, and we employ our earlier described definition to classify the patterns of alternative splicing events 
implied by these novel introns75.

Prediction of putative cleavage sites (PCSs). To identify putative cleavage sites, we employ unmapped 
reads containing a poly-A tail (or a poly-T head) that pinpoint the cleavage site in poly-adenylated mRNAs. After 
trimming the reads for these subsequences, filtering them by a minimum informative length (> 25nt after trim-
ming) and removing low complexity reads (i.e., read sequences with an [A] and [T] content ≥ 80%), we obtain 
~24 million reads of which 685,351 map uniquely to the genome and indicate 52,349 putative cleavage sites 
(PCSs). This can be summarized by the following commands, using the trimest tool76: 

samtools view -f 4 $BAMFILE | awk ‘{if($10 !~ /\./&& (($10~/AAAA$/) || ($10 ~/^TTTT/))){cnt+ + ;print 
“> “cnt”\n”$10}}’ | trimest -filter -minlength= 5 -fiveprime Y -mismatches= 1 | perl FastaToTbl.pl | awk –f sel-
ByLenAndContent.awk | perl TblToFasta.pl> $OUTFILE

selByLenAndContent.awk: 

{len= length($2);cntA= cntT= 0; for(i= 0;i< len+ 1;i+ + ){if(substr($2,i,1)= = “A”){ cntA+ + ;} if(substr($2,i,1)= 
 = “T”){ cntT+ + ;}}rA= cntA/len;rT= cntT/len;rr= rA+ rT;if((rr <  0.8) && length($2)> 25){print;}}

This pipeline receives as input a BAM file (BAMFILE) and produces a file with polyA reads already trimmed 
and selected. The scripts FastaToTbl and TblToFasta convert from tabular format to Fasta format. We consider a 
PCS predicted from the Geuvadis RNA-Seq data to be confirmed if we can extract a corresponding PCS from the 
Encode dataset that intersects in the genomic region to which the non poly-adenylated parts of supporting reads 
align. This analysis can be summarized by the following command using BedTools77: 

windowBed -a gencode.polyA.sites.bed -b./geuvadis.polyA.bed -w 50 -c | awk ‘{if($7> 0)print}’

Finding poly-A signals. In order to identify poly-A motifs for previously identified PCSs, we use a recursive  
approach similar to an earlier proposed method37. We employ 13 hexamer motifs that have been identified as 
potential binding sites of the CPSF36,37, i.e. AATAAA, ATTAAA, TATAAA, AGTAAA, AAGAAA, AATATA, 
AATACA, CATAAA, GATAAA, AATGAA, TTTAAA, ACTAAA, AATAGA. This list of hexamers is ranked by 

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/files/genotypes/
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the frequency with which each motif is observed, with AATAAA being the most and AATAGA the least frequent 
poly-A motif in the human transcriptome. We then scan the DNA sequences of 50 nt around the previously 
predicted PCSs in a top-down approach, starting with searching for the most frequently occurring hexamer; if 
a corresponding hexamer sequence is found, we record its position, otherwise we continue scanning with next 
most frequent motif until all of the 13 known poly-A motifs have been tested.

References
1. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).
2. Black, D. L., Chabot, B. & Steitz, J. A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. 

Cell 42, 737–750 (1985).
3. Wahle, E. & Kühn, U. The mechanism of 3′  cleavage and polyadenylation of eukaryotic pre-mRNA. Prog. Nucleic Acid Res. Mol. Biol. 

57, 41–71 (1997).
4. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).
5. Curado, J., Iannone, C., Tilgner, H., Valcárcel, J. & Guigó, R. Promoter-like epigenetic signatures in exons displaying cell type-

specific splicing. Genome Biol. 16, 236 (2015).
6. Derrien, T., Guigó, R. & Johnson, R. The Long Non-Coding RNAs: A New (P)layer in the ‘Dark Matter’. Front. Genet. 2, 107 (2011).
7. Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 

1494–1504 (2009).
8. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).
9. Papasaikas, P., Tejedor, J. R., Vigevani, L. & Valcárcel, J. Functional splicing network reveals extensive regulatory potential of the core 

spliceosomal machinery. Mol. Cell 57, 7–22 (2015).
10. Krawczak, M., Reiss, J. & Cooper, D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of 

human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).
11. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by 

deep learning. Nat. Biotechnol. 33, 831–838 (2015).
12. Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 

(2015).
13. Garcia-Blanco, M. A., Baraniak, A. P. & Lasda, E. L. Alternative splicing in disease and therapy. Nat. Biotechnol. 22, 535–546 (2004).
14. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).
15. Singh, R. K. & Cooper, T. A. Pre-mRNA splicing in disease and therapeutics. Trends Mol. Med. 18, 472–482 (2012).
16. Acedo, A. et al. Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes. Breast Cancer 

Res. 14, R87 (2012).
17. Rahman, M. A. et al. HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-

mRNA. Sci. Rep. 3, 2931 (2013).
18. Vibe-Pedersen, K., Kornblihtt, A. R. & Baralle, F. E. Expression of a human alpha-globin/fibronectin gene hybrid generates two 

mRNAs by alternative splicing. EMBO J. 3, 2511–2516 (1984).
19. Kwan, T. et al. Heritability of alternative splicing in the human genome. Genome Res. 17, 1210–1218 (2007).
20. Zhang, X., Zou, F. & Wang, W. Efficient Algorithms for Genome-wide Association Study. ACM Trans. Knowl. Discov. Data 3, 

19:1–19:28 (2009).
21. Fraser, H. B. & Xie, X. Common polymorphic transcript variation in human disease. Genome Res. 19, 567–575 (2009).
22. Kwan, T. et al. Tissue effect on genetic control of transcript isoform variation. PLoS Genet. 5, e1000608 (2009).
23. Lu, Z.-X., Jiang, P. & Xing, Y. Genetic variation of pre-mRNA alternative splicing in human populations. Wiley Interdiscip. Rev. RNA 

3, 581–592 (2012).
24. Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using 

sQTLseekeR. Nat. Commun. 5, 4698 (2014).
25. Ongen, H. & Dermitzakis, E. T. Alternative Splicing QTLs in European and African Populations. Am. J. Hum. Genet. 97, 567–575 

(2015).
26. Rivas, M. A. et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 

348, 666–669 (2015).
27. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 

773–777 (2010).
28. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 

768–772 (2010).
29. Stranger, B. E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).
30. Cheung, V. G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 

1365–1369 (2005).
31. Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 

(2009).
32. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 135, 0–9 (2012).
33. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).
34. ’t Hoen, P. A. C. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 

31, 1015–1022 (2013).
35. Zhang, X. H.-F., Leslie, C. S. & Chasin, L. a. Dichotomous splicing signals in exon flanks. Genome Res. 15, 768–779 (2005).
36. Beaudoing, E., Freier, S., Wyatt, J. R., Claverie, J. M. & Gautheret, D. Patterns of variant polyadenylation signal usage in human 

genes. Genome Res. 10, 1001–1010 (2000).
37. Tian, B., Hu, J., Zhang, H. & Lutz, C. S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids 

Res. 33, 201–212 (2005).
38. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).
39. Graveley, B. R. The haplo-spliceo-transcriptome: common variations in alternative splicing in the human population. Trends Genet. 

24, 5–7 (2008).
40. Zhang, W. et al. Identification of common genetic variants that account for transcript isoform variation between human populations. 

Hum. Genet. 125, 81–93 (2009).
41. Guigó, R., Knudsen, S., Drake, N. & Smith, T. Prediction of gene structure. J. Mol. Biol. 226, 141–157 (1992).
42. Ast, G. How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782 (2004).
43. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
44. Sheth, N. et al. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967 (2006).
45. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
46. Olivier, M. et al. A high-resolution radiation hybrid map of the human genome draft sequence. Science 291, 1298–1302 (2001).
47. Lim, L. P. & Burge, C. B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. 

USA 98, 11193–11198 (2001).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:32406 | DOI: 10.1038/srep32406

48. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).
49. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).
50. Ramaswami, G. & Li, J. B. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 42, D109–D113 

(2014).
51. Kleinman, C. L., Adoue, V. & Majewski, J. RNA editing of protein sequences: a rare event in human transcriptomes. RNA 18, 

1586–1596 (2012).
52. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).
53. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).
54. Wu, Q. & Krainer, A. R. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel 

genes. Mol. Cell. Biol. 19, 3225–3236 (1999).
55. Licht, K., Kapoor, U., Mayrhofer, E. & Jantsch, M. F. Adenosine to Inosine editing frequency controlled by splicing efficiency. Nucleic 

Acids Res. doi: 10.1093/nar/gkw325 (2016).
56. Fumagalli, D. et al. Principles Governing A-to-I RNA Editing in the Breast Cancer Transcriptome. Cell Rep. 13, 277–289 (2015).
57. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human 

genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).
58. Rodriguez, J., Menet, J. S. & Rosbash, M. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol. Cell 

47, 27–37 (2012).
59. Laurencikiene, J., Källman, A. M., Fong, N., Bentley, D. L. & Ohman, M. RNA editing and alternative splicing: the importance of 

co-transcriptional coordination. EMBO Rep. 7, 303–307 (2006).
60. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).
61. Jin, Y. et al. RNA editing and alternative splicing of the insect nAChR subunit alpha6 transcript: evolutionary conservation, 

divergence and regulation. BMC Evol. Biol. 7, 98 (2007).
62. Jones, A. K. et al. Splice-variant-and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency.  

J. Neurosci. 29, 4287–4292 (2009).
63. Grohmann, M. et al. Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLoS One 5, e8956 (2010).
64. Fu, Y. et al. Differential genome-wide profiling of tandem 3′  UTRs among human breast cancer and normal cells by high-throughput 

sequencing. Genome Res. 21, 741–747 (2011).
65. Coolidge, C. J., Seely, R. J. & Patton, J. G. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res. 

25, 888–896 (1997).
66. Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinformatics Chapter 4, Unit 4.3 (2007).
67. Hull, J. et al. Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3, e99 (2007).
68. Nelson, K. K. & Green, M. R. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87, 

6253–6257 (1990).
69. Zamore, P. D., Patton, J. G. & Green, M. R. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355, 

609–614 (1992).
70. Ohshima, Y. & Gotoh, Y. Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and 

like sequences. J. Mol. Biol. 195, 247–259 (1987).
71. Brunak, S., Engelbrecht, J. & Knudsen, S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 

220, 49–65 (1991).
72. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
73. Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013 

(2014).
74. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
75. Sammeth, M., Foissac, S. & Guigó, R. A General Definition and Nomenclature for Alternative Splicing Events. PLoS Comput. Biol. 

4, e1000147 (2008).
76. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 

(2000).
77. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 

(2010).

Acknowledgements
This research leading to these results has received funding from the European Commission 7th Framework 
Program, Project N. 261123 (GEUVADIS). PGF received funding by POPH - QREN Type 4.2, European Social 
Fund and Portuguese Ministry of Science and Technology (MCTES), Contrato Programa no âmbito do Programa 
Investigador FCT, 2014, IF/01127/2014. MO received funding by the National Counsel of Technological and 
Scientific Development (CNPq) grant 310132/2015-0, and MS received funding by the Research Support 
Foundation of the State of Rio de Janeiro (FAPERJ) E_06/2015, and by CNPq grant 401626/2015-6.

Author Contributions
The GEUVADIS Consortium produced the raw RNA-seq data, the mapping data and defined the final dataset 
after quality control analysis. P.G.F., M.O., P.R., T.M.S. and M.S. designed the research. P.G.F, M.O., M.B., T.W., 
S.E., A.E.C. and M.S. conducted the analyses. P.G.F., M.O., M.F., M.R., T.L., R.G. and M.S. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Ferreira, P. G. et al. Sequence variation between 462 human individuals fine-tunes 
functional sites of RNA processing. Sci. Rep. 6, 32406; doi: 10.1038/srep32406 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/


www.nature.com/scientificreports/

13Scientific RepoRts | 6:32406 | DOI: 10.1038/srep32406

The GEUVADIS Consortium
Xavier Estivill1, Roderic Guigó1,16, Emmanouil Dermitzakis2, Stylianos Antonarakis2, Thomas 
Meitinger7, Tim M. Strom7,13, Aarno Palotie18, Jean François Deleuze19, Ralf Sudbrak20, Hans  
Lerach20, Ivo Gut11, Ann- Christine Syvänen21, Ulf Gyllensten21, Stefan Schreiber6, Philip  
Rosenstiel6, Han Brunner22, Joris Veltman22, Peter A.C.T Hoen23, Gert Jan van Ommen23, Angel 
Carracedo24, Alvis Brazma25, Paul Flicek25, Anne Cambon-Thomsen26, Jonathan Mangion27, 
David Bentley28, Ada Hamosh29

18Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1SA, UK. 19Centre National de la Recherche Génomique, 
91030 Evry, France. 20Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. 21Uppsala University, Box 
256 751 05 Uppsala, Sweden. 22Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands. 
23Leiden University Medical Center, 2333 ZA Leiden, the Netherlands. 24Universidad de Santiago de Compostela, 
E-15706 Santiago de Compostela, Spain. 25European Bioinformatics Institute, EMBL-EBI, Hinxton Cambridge 
CB10 1SD, UK. 26Institut National de la Santé et de la Recherche Médicale, 75013 Paris Country, France. 27Life 
Technologies, 64293 Darmstadt, Germany. 28Illumina Cambridge Limited, Fulbourn Cambridge CB21 5XE, UK. 
29Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.


	Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing
	Results
	Genomic variants in splice sites can affect the splicing potential positively or negatively. 
	Splice site disrupting variants are rare in the genome and in the gene pool. 
	RNA editing as a splice site modulator. 
	Genetic diversity in polyadenylation signals. 

	Discussion
	Methods
	Computing splicing scores. 
	Comparison of HMM scores with PWM scores. 
	Classification of sequence variants in splice sites. 
	Prediction of RNA editing in splice sites. 
	Prediction of putative novel introns (PNIs). 
	Prediction of putative cleavage sites (PCSs). 
	Finding poly-A signals. 

	Acknowledgements
	Author Contributions
	Figure 1.  Genetic polymorphisms in splice sites.
	Figure 2.  Distribution of different variant classes.
	Figure 3.  ADAR catalyzed RNA editing predicted in splice sites.
	Figure 4.  Genetic variants in poly-A motifs.
	Table 1.   Alternative splicing implied by putative novel introns (PNIs).
	Table 2.   Mutual confirmation of novel transcriptional elements in Geuvadis and Encode RNA-Seq data.



 
    
       
          application/pdf
          
             
                Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing
            
         
          
             
                srep ,  (2016). doi:10.1038/srep32406
            
         
          
             
                Pedro G. Ferreira
                Martin Oti
                Matthias Barann
                Thomas Wieland
                Suzana Ezquina
                Marc R. Friedländer
                Manuel A. Rivas
                Anna Esteve-Codina
                Philip Rosenstiel
                Tim M. Strom
                Tuuli Lappalainen
                Roderic Guigó
                Michael Sammeth
            
         
          doi:10.1038/srep32406
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep32406
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep32406
            
         
      
       
          
          
          
             
                doi:10.1038/srep32406
            
         
          
             
                srep ,  (2016). doi:10.1038/srep32406
            
         
          
          
      
       
       
          True
      
   




