
223Evolutionary Bioinformatics 2016:12

Introduction
The field of population genetics endeavors to ascertain how
basic evolutionary forces, such as natural selection, recom­
bination, and mutation, shape the patterns of genetic varia­
tion within and between populations.1,2 Computer simulation
software has traditionally been used to explore analytically
intractable genetic models.3,4 Continuous advances in numeri­
cal simulation and the wide availability of computational
resources allow researchers to use numerical simulation to test
mathematical models in virtual populations, and even to ana­
lyze genetic data.5,6 As a direct consequence, there is a plethora
of simulators available, each one tailored to a specific scenario.
This forces geneticists to choose a simulator depending on the
research being conducted.3

The challenge is to provide flexible simulation programs
with the capacity for dealing with complex and realistic
demographic/evolutionary models, using efficient algorithms
to deal with genome-wide data sets processing complexity.4,7,8
The availability of cost-effective next-generation sequencing
technologies has democratized whole-genome sequencing,
making large genomic data sets available to most research­
ers.2,9,10 Among the two approaches to simulation algorithms,
forward-in-time and coalescent-based, the latter is most
widely used because of its efficiency and flexibility.3,11,12 In
particular, the standard coalescent approach was shown to

be extremely efficient for short sequences (less than few mega
base pairs), but it becomes computationally demanding for
simulating long genome regions with large recombination
rate.13 New approaches have emerged to overcome this issue,
such as the sequential Markov coalescent and Markov Chain
Monte Carlo methods5,8,14–16 and alternative implementations
of the exact coalescent, including algorithmic and data struc­
ture optimizations, such as scrm and msprime.17,18

In this article, we focus on coalescent simulators, which
are shown to be computationally intractable when working
at the genome scale,8,11,19 and more specifically on msPar,20
which is the parallel version of Hudson’s ms coalescent simu­
lator,21 ie, the most classical and widely used coalescent simu­
lator.3,7,22 msPar addresses both the problem of sampling long
genomic regions with large recombination rates and running
analysis requiring a large number of samples.20 We have previ­
ously shown that msPar execution time is orders of magnitude
faster than Hudson’s ms when simulating large samples of
long genomic sequences and large recombination rates using
a High Performance Computing (HPC) cluster,20 but it is
less efficient than the other approximated standard coalescent
simulators such as MaCS and fastsimcoal.13–15

Our interest in further developing the standard coales­
cent simulators resides in the underlying side effects shown by
approximated methods, like the one implemented by MaCS:

Approaching Long Genomic Regions and Large
Recombination Rates with msParSm as an
Alternative to MaCS

Carlos Montemuiño1, Antonio Espinosa1, Juan C. Moure1, Gonzalo Vera2,
Porfidio Hernández1 and Sebastián Ramos-Onsins2

1Computer Architecture and Operating Systems Department (CAOS), Universitat Autònoma de Barcelona, Bellaterra, Spain. 2Centre for
Research in Agricultural Genomics (CRAG) Consortium CSIC-IRTA-UAB-UB Edifici CRAG, Campus UAB, Bellaterra, Spain.

Abstract: The msParSm application is an evolution of msPar, the parallel version of the coalescent simulation program ms, which removes the
limitation for simulating long stretches of DNA sequences with large recombination rates, without compromising the accuracy of the standard coalescence.
This work introduces msParSm, describes its significant performance improvements over msPar and its shared memory parallelization details, and shows
how it can get better, if not similar, execution times than MaCS. Two case studies with different mutation rates were analyzed, one approximating the
human average and the other approximating the Drosophila melanogaster average. Source code is available at https://github.com/cmontemuino/msparsm.

Keywords: coalescence, recombination, sequential Markov coalescent, HPC, MPI

Citation: Montemuiño et al. Approaching Long Genomic Regions and Large
Recombination Rates with msParSm as an Alternative to MaCS. Evolutionary
Bioinformatics 2016:12 223–228 doi: 10.4137/EBO.S40268.

TYPE: Software or Database Review

Received: May 31, 2016. ReSubmitted: July 19, 2016. Accepted for
publication: July 21, 2016.

Academic editor: Liuyang Wang, Associate Editor

Peer Review: Two peer reviewers contributed to the peer review report. Reviewers’
reports totaled 450 words, excluding any confidential comments to the academic editor.

Funding: This work has been supported by projects (number: AGL2013-41834-R and
TIN2014-53234-C2-1-R) of Spanish Ministerio de Ciencia y Tecnologia. The authors
confirm that the funder had no influence over the study design, content of the article, or
selection of this journal.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: cmontemu@acm.org

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is
an open-access article distributed under the terms of the Creative Commons CC-BY-NC
3.0 License.

�Paper subject to independent expert blind peer review. All editorial decisions made
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of
agreement to article publication and compliance with all applicable ethical and legal
requirements, including the accuracy of author and contributor information, disclosure of
competing interests and funding sources, compliance with ethical requirements relating
to human and animal study participants, and compliance with any copyright requirements
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
https://github.com/cmontemuino/msparsm
http://dx.doi.org/10.4137/EBO.S40268
mailto:cmontemu@acm.org
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Montemuiño et al

224 Evolutionary Bioinformatics 2016:12

1.	 We can suffer loss of accuracy for certain evolutionary
models as when sampling from populations separated by
reduced gene flow.23

2.	 Ignoring type 2 recombination events (from Marjoram
and Wall’s classification24) may impact on the mean and
variance of most recent common ancestor times when
long sequences are simulated.25

Regarding the implementation details, we have consid­
erably improved msPar’s memory management, improved its
master–worker implementation, removed the data structure
dependencies inherited from Hudson’s ms, and made use of
the Vader shared memory byte transport layer (BTL) pro­
vided by OpenMPI v1.8.26 By applying a message-passing/
shared-memory parallelization strategy, msParSm is able to
achieve similar execution times to those of MaCS, simulating
long stretches of DNA sequences with large recombination
rates. Thus, we significantly reduce the computational burden
of the standard coalescent method. For the purpose of com­
parison, we have used two case studies, with fixed mutation
rates approximating the human and Drosophila melanogaster
average values.

Accuracy of simulations is maintained to be the same
as the one from Hudson’s ms. It is ensured by the fact that
the code in charge of sample generation was maintained
unchanged from original Hudson’s ms code.

It is also important to note that msParSm, as same as
msPar and Hudson’s ms, only generates samples under a
Wright–Fisher neutral model of genetic variation.

Methods
In this section, we describe the parallelization approach
taken over msPar, the experimental setup we designed for
evidence gathering, and the hardware/software used to run
the experiments.

Parallelization approach. We present a new master–
worker application design that includes the following: remov­
ing the data structure dependencies inherited from Hudson’s
ms, refactoring msPar’s memory management, and improv­
ing the communication patterns used in the msPar’s master–
worker implementation.

First, we have taken the advantage of the OpenMPI’s
new transport layer (Vader shared-memory BTL) for trans­
ferring data between communication end points, which
was introduced in version 1.8. The Message Passing Inter­
face (MPI) transport layer used by msPar is known as sm
BTL (shared-memory BTL), which follows a copy-in/
copy-out pattern: when an MPI process X sends a mes­
sage to a process Y, the message is first copied from the
X’s buffer to the shared memory, and then the receiver
(ie, the process Y) copies the message from the shared memory
into a buffer.27 The Vader shared memory BTL provides sup­
port for XPMEM Linux kernel module and allows to directly
transfer messages between sender and receiver buffers when

both MPI processes are in the same node, thereby saving one
copy operation compared against the previous transport layer
used included in OpenMPI (ie, sm BTL).

To take the advantage of Vader BTL, we have changed
the master–worker topology used by msPar. Given N as the
total number of available processes for parallel computation,
we define one single global master process coordinating the
N−1 remaining worker processes. In msParSm, we have one
master process per compute node (henceforth referred to as
node master) and one global master process that coordinates
the M node masters (where M is the number of compute
nodes). Each master node coordinates the worker processes
located in its node, returning a consolidated message with
all of the generated samples back to the global master when
computation is performed. It is important to note that there is
going to be one node hosting two master processes: the global
master and the node master.

By using non-blocking MPI collectives, we enabled node
masters to also generate samples while waiting for local worker
communications; therefore, the loss of worker processes com­
pared with msPar is compensated as much as possible. In a
setup with M compute nodes and P cores per node, in msPar,
we have a total number of M*P − 1 dedicated worker processes,
while in msParSm the number is M*(P − 1) − 1.

For the use case of the scientist using a single node for
the computation, eg, a single fat node or even a workstation,
the application is not going to use a global master but a single
master that is also going to generate replica samples.

Another improvement we made is to allow MPI pro­
cesses located in the same compute node as the global master,
to directly output the generated samples avoiding the use of
MPI point-to-point communications with a master process.

Summarizing the major improvements, we

•	 greatly decreased the number of memory allocation calls
by favoring memory reusing and reallocation as much as
possible;

•	 refactored the master–worker strategy to leverage the use
of the Vader BTL;

•	 included the master process in the replica generation
process;

•	 made worker processes more autonomous to reduce the
number of MPI communications;

•	 removed all global structures inherited from Hudson's ms,
making it possible to explore a fine-grained paralleliza­
tion approach (eg, using OpenMP and/or CUDA).

Experimental setup and case studies. We compared our
msParSm with Hudson’s ms and MaCS in terms of execution
time, using two case studies with fixed population mutation
rate values (ie, θ = 4Nµ, where N is the current population
size and µ is the mutation rate per site), one of them approxi­
mating the estimated human average (case 1) and the other
one approximating the estimated D. melanogaster average

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Approaching with msParSm as an alternative to MaCS

225Evolutionary Bioinformatics 2016:12

(case 2; θ = 0.001 and 0.005 values, meaning that 1 and 5
are differences between two random individuals for each
1000 sites, respectively).

The number of generated replicas was set at 300, each one
with 100 chromosomes, a genetic region of 1 × 106 bp, and
population recombination per site (4Nρ, where ρ is the muta­
tion rate between two contiguous sites) ranging from 0.0005
to 0.08 values. Both evolutionary models exhibit no popula­
tion genetic structure.

The parameters used in each of the simulations performed
in this work are given in Supplementary Table 1.

Hardware and software. We implemented the paral­
lel application in ANSI C and compiled it using the Linux
GNU Compiler 4.9.1. Inter-process communication was
implemented using OpenMPI 1.10.1.28 We ran the binaries
on a cluster using up to eight nodes each with two Intel Xeon
X5660 six-core processors using hyper-threading technology
running at 2.80 GHz, 12 MB L3 cache, and 96 GB of Dou­
ble data rate synchronous dynamic-random access memory
(DDR-RAM). This configuration provided us 12 physical
processors per compute node.

Results and Discussion
We evaluated the performance of msParSm by analyzing the
speedup and efficiency as a function of increasing numbers of
compute nodes. The speedup is defined as Sp = T1/Tp, where
p is the number of processors, T1 is the execution time of the
sequential application, and Tp is the execution time of the
parallel application with p processors. Efficiency is defined as
Ep = Sp/p.

In Figure 1, the speedup of msParSm compared with
the sequential Hudson’s ms version is shown, which was
registered in case study 1. We observed a high parallel effi­
ciency of msParSm and a strong increase in speed in relation

to sequential Hudson’s ms version. Nevertheless, for the case
of maximal recombination (Fig. 1D), we observed a slight
performance degradation. This happened because the node
memory was mostly exhausted by the MPI processes (90 GB
in use out of 96 GB available), implying a penalty because of
the page swapping.

In Figure 2, the same graphic data as before are shown,
but for the case study 2. Compared with the case study 1, we
observed a worse performance for lower recombination rate
(Fig. 2A), but there was a similar performance for upper values
(ie, 2000, 4000, and 8000). An explanation for this behavior
is associated with the message payload exchanged between
MPI processes. Average message with sample data is 4.5 times
higher for the case study 2, suggesting that the time spent in
communication is less relevant as long as the recombination
rate increases.

In Figure 3, the average consumed memory in function
of the recombination rate and cores used for the computation
is shown, which is registered in case study 1. In Figure 4, the
same exact data are shown, but for the case study 2. From
both figures, we can observe how the node’s main memory is
exhausted when the maximal recombination rate is reached
(Fig. 4D), irrespective of the number of involved cores,
explaining why the efficiency is impacted given the current
experimental setup.

The most important contribution for the geneticist is the
reduction in the overall running time of the simulation pro­
cess. In Table 1, the average time Hudson’s ms, MaCS, msPar,
and msParSm spent running both case studies using differ­
ent problem sizes (ie, recombination rate values) is given. We
observe that how the execution time of msParSm is orders of
magnitude faster than Hudson’s ms, faster by a factor than
msPar, and significantly better than MaCS in most configura­
tions, mainly when mutation rate is higher.

A Speed-up (case study 1)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

12 cores

9.7
18.1

31.0

47.3

ρ = 1000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

B Speed-up (case study 1)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

12 cores

9.8
20.2

38.9

65.9
ρ = 2000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

C Speed-up (case study 1)

90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0
12 cores

10.9

22.2

42.5

76.4ρ = 4000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

D Speed-up (case study 1)

90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0
12 cores

10.9
21.7

41.5

74.1ρ = 8000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

Figure 1. Speedup analysis of case study 1 in function of the number of cores used for computation, grouped by a scaled recombination rate (A to D),
registered in case study 1. Subfigures show speedup of the application increases adding more computational cores, slowly decaying when considering
recombination rates of 4Nρ = 8000.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Montemuiño et al

226 Evolutionary Bioinformatics 2016:12

A Speed-up (case study 2)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

12 cores

8.7
15.3

26.5

42.7

ρ = 1000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

B Speed-up (case study 2)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

12 cores

11.3
22.9

44.6

68.8
ρ = 2000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

C Speed-up (case study 2)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0
12 cores

10.6
21.7

41.8

74.5ρ = 4000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

D Speed-up (case study 2)
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0
12 cores

10.9
21.9

41.5

74.2ρ = 8000

24 cores 48 cores 96 cores

S
p

ee
d

-u
p

Figure 2. Obtained speedup of case study 2 in function of the number of cores used for computation, grouped by used recombination rate (A to D). As in
the previous case study 1, this figure shows increasing speedups when adding more computational resources.

A Memory (ρ = 1000)

12 cores

3.71 2.88 2.51 2.35

24 cores 48 cores 96 cores

G
ig

ab
yt

es

B Memory (ρ = 2000)

0

20

40

60

80

100

12 cores

9.34 8.44 7.39 7.27

24 cores 48 cores 96 cores

G
ig

ab
yt

es

C Memory (ρ = 4000)

12 cores

28.59 26.37 25.77 25.18

24 cores 48 cores 96 cores

G
ig

ab
yt

es

D Memory (ρ = 8000)

12 cores

96.27 92.80 91.88 89.57

24 cores 48 cores 96 cores

G
ig

ab
yt

es

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 3. Average consumed memory for case study 1 in function increasing the number of computational cores and recombination values, registered
in case study 1. Each subfigure shows the consumed memory values when running the simulation using 12, 24, 48, and 96 cores, starting with a scaled
recombination of 4Nρ = 1000 in (A), and doubling it through the remaining subfigures (C to D) until reaching a scaled recombination of 4Nρ = 8000.

A Memory (ρ = 1000)

0

20

40

60

80

100

12 cores

7.37 4.56 3.35 2.82

24 cores 48 cores 96 cores

G
ig

ab
yt

es

B Memory (ρ = 2000)

12 cores

13.60 10.71 8.61 7.51

24 cores 48 cores 96 cores

G
ig

ab
yt

es

C Memory (ρ = 4000)

12 cores

33.05 29.14 26.77 26.16

24 cores 48 cores 96 cores

G
ig

ab
yt

es

D Memory (ρ = 8000)

12 cores

101.29 94.93 92.13 90.65

24 cores 48 cores 96 cores

G
ig

ab
yt

es

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 4. Average consumed memory for case study 2 in function increasing the number of cores used for computation. Each subfigure (A to D) shows
the same information as in Figure 3, but with data registered when running the case study 2.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Approaching with msParSm as an alternative to MaCS

227Evolutionary Bioinformatics 2016:12

Although the parallel execution of msParSm is behind
MaCS, the scalability of presented msParSm is generally good
when adding more computational resources with the possible
limitation of the available memory of the nodes.

Conclusion
In this work, we developed a new application for parallelizing the
Hudson’s ms, a standard coalescent simulator, coined as msParSm,
addressing the sampling of long stretches of DNA sequences with
large recombination rates, and we showed that this new applica­
tion has comparable performance with MaCS when working with
large recombination rate, without the side effects of MaCS.

Interestingly, the application achieves high parallel effi­
ciency figures (.70%) when working with large recombination
rate, suggesting that it could be run on more nodes than used
for this work and get better execution times. In addition, our
application can outperform MaCS in most of the cases, even
when running the application in one single node.

We believe that this new application will facilitate simu­
lating coalescent processes with long genomic regions and
large recombination rates in population genomics and evo­
lutionary biology, without compromising the accuracy of the
standard coalescence.

Author Contributions
Conceived and designed the experiments: SRO, CM.
Analyzed the data: CM. Wrote the first draft of the manu­
script: CM. Contributed to the writing of the manuscript:
PH, SRO. Agreed with the manuscript results and conclu­
sions: SRO, PH, AE, GV, JCM, CM. Jointly developed the
structure and arguments for the article: SRO, PH, CM. Made
critical revisions and approved the final version: SRO, PH,
AE, GV, JCM. All the authors reviewed and approved the
final manuscript.

Supplementary Material
Supplementary Table 1. Parameters used in each of the

simulations performed.

References
	 1.	 Hudson R. Gene genealogies and the coalescent process. In: Futuyama D,

Antonovics J, eds. Oxford Survey in Evolutionary Biology. Vol 7. Oxford: Oxford
University Press; 1991:1–44.

	 2.	 Akey JM, Shriver MD. A grand challenge in evolutionary and population genet­
ics: new paradigms for exploring the past and charting the future in the post-
genomic era. Front Genet. 2011;2:47.

	 3.	 Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for popula­
tion and evolutionary genetics. Nat Rev Genet. 2011;13(2):110–22.

	 4.	 Arenas M. Simulation of molecular data under diverse evolutionary scenarios.
PLoS Comput Biol. 2012;8(5):e1002495.

	 5.	 Sanford J, Baumgardner J, Brewer W, Gibson P, ReMine W. Mendel’s
accountant: a biologically realistic forward-time population genetics program.
Scalable Comput Pract Exp. 2001;8(2):147–65.

	 6.	 Sanford J, Nelson C. The next step in understanding population dynamics:
comprehensive numerical simulation. In: Fust MC, ed. Studies in Population
Genetics. InTech; 2012. Available at: http://www.intechopen.com/books/studies-in-
population-genetics/the-next-step-in-understanding-population-dynamics-
comprehensive-numerical-simulation. Accessed March 29, 2016.

	 7.	 Carvajal-Rodríguez A. Simulation of genomes: a review. Curr Genomics.
2008;9(3):155–9.

	 8.	 Carvajal-Rodríguez A. Simulation of genes and genomes forward in time. Curr
Genomics. 2010;11(1):58–61.

	 9.	 Liu DJ, Leal SM. Replication strategies for rare variant complex trait association
studies via next-generation sequencing. Am J Hum Genet. 2010;87(6):790–801.

	 10.	 Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from
genomic sequence variation. Genome Res. 2010;20(3):291–300.

	 11.	 Kim Y, Wiehe T. Simulation of DNA sequence evolution under models of recent
directional selection. Brief Bioinform. 2009;10(1):84–96.

	 12.	 Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation
environment. Bioinformatics. 2005;21(18):3686–7.

	 13.	 Yang T, Deng H-W, Niu T. Critical assessment of coalescent simulators in
modeling recombination hotspots in genomic sequences. BMC Bioinformatics.
2014;15:3.

	 14.	 Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA sequence
data. Genome Res. 2009;19(1):136–42.

	 15.	 Excoffier L, Foll M. Fastsimcoal: a continuous-time coalescent simulator of
genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics.
2011;27(9):1332–4.

	 16.	 Grünwald NJ, Goss EM. Evolution and population genetics of exotic and
re-emerging pathogens: novel tools and approaches. Annu Rev Phytopathol.
2011;49(1):249–67.

Table 1. Comparison of average time cost (in minutes) between ms, MaCS, msPar, and msParSm. The execution times of both msParSm
and msPar are grouped in function of the number of cores used for computation. A combination of font styles and background color is used
to facilitate the reading: values in italics are related to msPar, while bold style is used for msParSm; shaded table cells indicate cases that the
execution time of either msParSm or msPar is worse than MaCS.

Rho Ms MaCS msParSm/mspar

96 cores 48 cores 24 cores 12 cores

Case study 1

1000 3.81 3.82 0.08 0.44 0.12 0.44 0.21 0.64 0.40 0.59

2000 29.77 7.16 0.45 2.75 0.76 2.75 1.47 3.91 3.05 3.42

4000 322.80 13.76 4.23 19.57 7.60 26.07 14.57 28.48 29.64 30.52

8000 2605.58 26.86 35.15 149.48 62.78 214.36 120.02 223.98 240.12 249.5

Case study 2

1000 3.95 5.80 0.22 1.14 0.21 1.22 0.26 1.61 0.44 1.37

2000 34.85 9.14 0.51 3.33 0.78 3.53 1.52 4.89 3.09 4.23

4000 320.30 15.88 4.30 20.02 7.67 27.61 14.78 29.43 30.12 32.03

8000 2602.00 29.32 35.05 151.35 62.75 222.60 119.03 224.18 239.47 249.27

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.intechopen.com/books/studies-in-population-genetics/the-next-step-in-understanding-population-dynamics-comprehensive-numerical-simulation
http://www.intechopen.com/books/studies-in-population-genetics/the-next-step-in-understanding-population-dynamics-comprehensive-numerical-simulation
http://www.intechopen.com/books/studies-in-population-genetics/the-next-step-in-understanding-population-dynamics-comprehensive-numerical-simulation

Montemuiño et al

228 Evolutionary Bioinformatics 2016:12

	 17.	 Staab PR, Zhu S, Metzler D, Lunter G. scrm: efficiently simulating long
sequences using the approximated coalescent with recombination. Bioinformatics.
2015;31(10):1680–2.

	 18.	 Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and genea­
logical analysis for large sample sizes. PLoS Comput Biol. 2016;12(5):e1004842.

	 19.	 Liang L, Zöllner S, Abecasis GR. GENOME: a rapid coalescent-based whole
genome simulator. Bioinformatics. 2007;23(12):1565–7.

	 20.	 Montemuiño C, Espinosa A, Moure JC, et al., eds. MsPar: a parallel coalescent
simulator. Euro-Par 2013: Parallel Processing Workshops. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer; 2013:321–30. Available at: http://link.
springer.com/chapter/10.1007/978-3-642-54420-0_32. Accessed February 24,
2016.

	 21.	 Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics. 2002;18(2):337–8.

	 22.	 Ewing G, Hermisson J. MSMS: a coalescent simulation program including
recombination, demographic structure and selection at a single locus. Bioinfor-
matics. 2010;26(16):2064–5.

	 23.	 Eriksson A, Mahjani B, Mehlig B. Sequential Markov coalescent algorithms
for population models with demographic structure. Theor Popul Biol.
2009;76(2):84–91.

	 24.	 Marjoram P, Wall JD. Fast “coalescent” simulation. BMC Genet. 2006;7:16.
	 25.	 Wang Y, Zhou Y, Li L, et al. A new method for modeling coalescent processes

with recombination. BMC Bioinformatics. 2014;15:273.
	 26.	 FAQ: Tuning the Run-Time Characteristics of MPI Sm Communications.

Available at: https://www.open-mpi.org/faq/?category=sm. Accessed March 25,
2016.

	 27.	 Hjelm NT, Gutierrez SK, Gorentla Venkata M. On the Current State of Open MPI
on Cray Systems. Oak Ridge National Laboratory (ORNL); Oak Ridge Leader­
ship Computing Facility (OLCF); 2014. Available at: http://www.osti.gov/
scitech/biblio/1150898-current-state-open-mpi-cray-systems. Accessed April 4,
2016.

	 28.	 Open MPI: Open Source High Performance Computing. Available at: https://
www.open-mpi.org/. Accessed March 29, 2016.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://link.springer.com/chapter/10.1007/978�3-642�54420�0_32
http://link.springer.com/chapter/10.1007/978�3-642�54420�0_32
https://www.open-mpi.org/faq/?category=sm
http://www.osti.gov/scitech/biblio/1150898-current-state-open-mpi-cray-systems
http://www.osti.gov/scitech/biblio/1150898-current-state-open-mpi-cray-systems
https://www.open-mpi.org/
https://www.open-mpi.org/

