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Introduction
The field of population genetics endeavors to ascertain how 
basic evolutionary forces, such as natural selection, recom­
bination, and mutation, shape the patterns of genetic varia­
tion within and between populations.1,2 Computer simulation 
software has traditionally been used to explore analytically 
intractable genetic models.3,4 Continuous advances in numeri­
cal simulation and the wide availability of computational 
resources allow researchers to use numerical simulation to test 
mathematical models in virtual populations, and even to ana­
lyze genetic data.5,6 As a direct consequence, there is a plethora 
of simulators available, each one tailored to a specific scenario. 
This forces geneticists to choose a simulator depending on the 
research being conducted.3

The challenge is to provide flexible simulation programs 
with the capacity for dealing with complex and realistic 
demographic/evolutionary models, using efficient algorithms 
to deal with genome-wide data sets processing complexity.4,7,8 
The availability of cost-effective next-generation sequencing 
technologies has democratized whole-genome sequencing, 
making large genomic data sets available to most research­
ers.2,9,10 Among the two approaches to simulation algorithms, 
forward-in-time and coalescent-based, the latter is most 
widely used because of its efficiency and flexibility.3,11,12 In 
particular, the standard coalescent approach was shown to 

be extremely efficient for short sequences (less than few mega 
base pairs), but it becomes computationally demanding for 
simulating long genome regions with large recombination 
rate.13 New approaches have emerged to overcome this issue, 
such as the sequential Markov coalescent and Markov Chain 
Monte Carlo methods5,8,14–16 and alternative implementations 
of the exact coalescent, including algorithmic and data struc­
ture optimizations, such as scrm and msprime.17,18

In this article, we focus on coalescent simulators, which 
are shown to be computationally intractable when working 
at the genome scale,8,11,19 and more specifically on msPar,20 
which is the parallel version of Hudson’s ms coalescent simu­
lator,21 ie, the most classical and widely used coalescent simu­
lator.3,7,22 msPar addresses both the problem of sampling long 
genomic regions with large recombination rates and running 
analysis requiring a large number of samples.20 We have previ­
ously shown that msPar execution time is orders of magnitude 
faster than Hudson’s ms when simulating large samples of 
long genomic sequences and large recombination rates using 
a High Performance Computing (HPC) cluster,20 but it is 
less efficient than the other approximated standard coalescent 
simulators such as MaCS and fastsimcoal.13–15

Our interest in further developing the standard coales­
cent simulators resides in the underlying side effects shown by 
approximated methods, like the one implemented by MaCS:
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1.	 We can suffer loss of accuracy for certain evolutionary 
models as when sampling from populations separated by 
reduced gene flow.23

2.	 Ignoring type 2 recombination events (from Marjoram 
and Wall’s classification24) may impact on the mean and 
variance of most recent common ancestor times when 
long sequences are simulated.25

Regarding the implementation details, we have consid­
erably improved msPar’s memory management, improved its 
master–worker implementation, removed the data structure 
dependencies inherited from Hudson’s ms, and made use of 
the Vader shared memory byte transport layer (BTL) pro­
vided by OpenMPI v1.8.26 By applying a message-passing/
shared-memory parallelization strategy, msParSm is able to 
achieve similar execution times to those of MaCS, simulating 
long stretches of DNA sequences with large recombination 
rates. Thus, we significantly reduce the computational burden 
of the standard coalescent method. For the purpose of com­
parison, we have used two case studies, with fixed mutation 
rates approximating the human and Drosophila melanogaster 
average values.

Accuracy of simulations is maintained to be the same 
as the one from Hudson’s ms. It is ensured by the fact that 
the code in charge of sample generation was maintained 
unchanged from original Hudson’s ms code.

It is also important to note that msParSm, as same as 
msPar and Hudson’s ms, only generates samples under a 
Wright–Fisher neutral model of genetic variation.

Methods
In this section, we describe the parallelization approach 
taken over msPar, the experimental setup we designed for 
evidence gathering, and the hardware/software used to run 
the experiments.

Parallelization approach. We present a new master–
worker application design that includes the following: remov­
ing the data structure dependencies inherited from Hudson’s 
ms, refactoring msPar’s memory management, and improv­
ing the communication patterns used in the msPar’s master–
worker implementation.

First, we have taken the advantage of the OpenMPI’s 
new transport layer (Vader shared-memory BTL) for trans­
ferring data between communication end points, which 
was introduced in version 1.8. The Message Passing Inter­
face (MPI) transport layer used by msPar is known as sm 
BTL (shared-memory BTL), which follows a copy-in/
copy-out pattern: when an MPI process X sends a mes­
sage to a process Y, the message is first copied from the 
X’s buffer to the shared memory, and then the receiver  
(ie, the process Y) copies the message from the shared memory 
into a buffer.27 The Vader shared memory BTL provides sup­
port for XPMEM Linux kernel module and allows to directly 
transfer messages between sender and receiver buffers when 

both MPI processes are in the same node, thereby saving one 
copy operation compared against the previous transport layer 
used included in OpenMPI (ie, sm BTL).

To take the advantage of Vader BTL, we have changed 
the master–worker topology used by msPar. Given N as the 
total number of available processes for parallel computation, 
we define one single global master process coordinating the 
N−1 remaining worker processes. In msParSm, we have one 
master process per compute node (henceforth referred to as 
node master) and one global master process that coordinates 
the M node masters (where M is the number of compute 
nodes). Each master node coordinates the worker processes 
located in its node, returning a consolidated message with 
all of the generated samples back to the global master when 
computation is performed. It is important to note that there is 
going to be one node hosting two master processes: the global 
master and the node master.

By using non-blocking MPI collectives, we enabled node 
masters to also generate samples while waiting for local worker 
communications; therefore, the loss of worker processes com­
pared with msPar is compensated as much as possible. In a 
setup with M compute nodes and P cores per node, in msPar, 
we have a total number of M*P − 1 dedicated worker processes, 
while in msParSm the number is M*(P − 1) − 1.

For the use case of the scientist using a single node for 
the computation, eg, a single fat node or even a workstation, 
the application is not going to use a global master but a single 
master that is also going to generate replica samples.

Another improvement we made is to allow MPI pro­
cesses located in the same compute node as the global master, 
to directly output the generated samples avoiding the use of 
MPI point-to-point communications with a master process.

Summarizing the major improvements, we

•	 greatly decreased the number of memory allocation calls 
by favoring memory reusing and reallocation as much as 
possible;

•	 refactored the master–worker strategy to leverage the use 
of the Vader BTL;

•	 included the master process in the replica generation 
process;

•	 made worker processes more autonomous to reduce the 
number of MPI communications;

•	 removed all global structures inherited from Hudson's ms, 
making it possible to explore a fine-grained paralleliza­
tion approach (eg, using OpenMP and/or CUDA).

Experimental setup and case studies. We compared our 
msParSm with Hudson’s ms and MaCS in terms of execution 
time, using two case studies with fixed population mutation 
rate values (ie, θ =  4Nµ, where N is the current population 
size and µ is the mutation rate per site), one of them approxi­
mating the estimated human average (case 1) and the other 
one approximating the estimated D. melanogaster average 
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(case 2; θ  =  0.001 and 0.005 values, meaning that 1 and 5 
are differences between two random individuals for each 
1000 sites, respectively).

The number of generated replicas was set at 300, each one 
with 100 chromosomes, a genetic region of 1 × 106 bp, and 
population recombination per site (4Nρ, where ρ is the muta­
tion rate between two contiguous sites) ranging from 0.0005 
to 0.08 values. Both evolutionary models exhibit no popula­
tion genetic structure.

The parameters used in each of the simulations performed 
in this work are given in Supplementary Table 1.

Hardware and software. We implemented the paral­
lel application in ANSI C and compiled it using the Linux 
GNU Compiler 4.9.1. Inter-process communication was 
implemented using OpenMPI 1.10.1.28 We ran the binaries 
on a cluster using up to eight nodes each with two Intel Xeon 
X5660 six-core processors using hyper-threading technology 
running at 2.80 GHz, 12 MB L3 cache, and 96 GB of Dou­
ble data rate synchronous dynamic-random access memory 
(DDR-RAM). This configuration provided us 12 physical 
processors per compute node.

Results and Discussion
We evaluated the performance of msParSm by analyzing the 
speedup and efficiency as a function of increasing numbers of 
compute nodes. The speedup is defined as Sp = T1/Tp, where 
p is the number of processors, T1 is the execution time of the 
sequential application, and Tp is the execution time of the 
parallel application with p processors. Efficiency is defined as 
Ep = Sp/p.

In Figure  1, the speedup of msParSm compared with 
the sequential Hudson’s ms version is shown, which was 
registered in case study 1. We observed a high parallel effi­
ciency of msParSm and a strong increase in speed in relation 

to sequential Hudson’s ms version. Nevertheless, for the case 
of maximal recombination (Fig.  1D), we observed a slight 
performance degradation. This happened because the node 
memory was mostly exhausted by the MPI processes (90 GB 
in use out of 96 GB available), implying a penalty because of 
the page swapping.

In Figure 2, the same graphic data as before are shown, 
but for the case study 2. Compared with the case study 1, we 
observed a worse performance for lower recombination rate 
(Fig. 2A), but there was a similar performance for upper values 
(ie, 2000, 4000, and 8000). An explanation for this behavior 
is associated with the message payload exchanged between 
MPI processes. Average message with sample data is 4.5 times 
higher for the case study 2, suggesting that the time spent in 
communication is less relevant as long as the recombination 
rate increases.

In Figure 3, the average consumed memory in function 
of the recombination rate and cores used for the computation 
is shown, which is registered in case study 1. In Figure 4, the 
same exact data are shown, but for the case study 2. From 
both figures, we can observe how the node’s main memory is 
exhausted when the maximal recombination rate is reached 
(Fig.  4D), irrespective of the number of involved cores, 
explaining why the efficiency is impacted given the current 
experimental setup.

The most important contribution for the geneticist is the 
reduction in the overall running time of the simulation pro­
cess. In Table 1, the average time Hudson’s ms, MaCS, msPar, 
and msParSm spent running both case studies using differ­
ent problem sizes (ie, recombination rate values) is given. We 
observe that how the execution time of msParSm is orders of 
magnitude faster than Hudson’s ms, faster by a factor than 
msPar, and significantly better than MaCS in most configura­
tions, mainly when mutation rate is higher.
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Figure 1. Speedup analysis of case study 1 in function of the number of cores used for computation, grouped by a scaled recombination rate (A to D), 
registered in case study 1. Subfigures show speedup of the application increases adding more computational cores, slowly decaying when considering 
recombination rates of 4Nρ = 8000.
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Figure 2. Obtained speedup of case study 2 in function of the number of cores used for computation, grouped by used recombination rate (A to D). As in 
the previous case study 1, this figure shows increasing speedups when adding more computational resources.
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Figure 3. Average consumed memory for case study 1 in function increasing the number of computational cores and recombination values, registered 
in case study 1. Each subfigure shows the consumed memory values when running the simulation using 12, 24, 48, and 96 cores, starting with a scaled 
recombination of 4Nρ = 1000 in (A), and doubling it through the remaining subfigures (C to D) until reaching a scaled recombination of 4Nρ = 8000.
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Figure 4. Average consumed memory for case study 2 in function increasing the number of cores used for computation. Each subfigure (A to D) shows 
the same information as in Figure 3, but with data registered when running the case study 2.
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Although the parallel execution of msParSm is behind 
MaCS, the scalability of presented msParSm is generally good 
when adding more computational resources with the possible 
limitation of the available memory of the nodes.

Conclusion
In this work, we developed a new application for parallelizing the 
Hudson’s ms, a standard coalescent simulator, coined as msParSm, 
addressing the sampling of long stretches of DNA sequences with 
large recombination rates, and we showed that this new applica­
tion has comparable performance with MaCS when working with 
large recombination rate, without the side effects of MaCS.

Interestingly, the application achieves high parallel effi­
ciency figures (.70%) when working with large recombination 
rate, suggesting that it could be run on more nodes than used 
for this work and get better execution times. In addition, our 
application can outperform MaCS in most of the cases, even 
when running the application in one single node.

We believe that this new application will facilitate simu­
lating coalescent processes with long genomic regions and 
large recombination rates in population genomics and evo­
lutionary biology, without compromising the accuracy of the 
standard coalescence.
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