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Abstract 26 

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle 27 

its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 28 

peer-reviewed articles and 1233 observations. Invasive plant species had globally higher 29 

N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison to 30 

their native competitors. Invasive plants were also associated with higher soil C and N 31 

stocks and N, P and K availabilities. The differences in N and P concentrations in 32 

photosynthetic tissues and in soil total C and N, soil N, P and K availabilities between 33 

invasive and native species decreased when the environment was richer in nutrient 34 

resources. The results thus suggested higher nutrient resorption efficiencies in invasive 35 

than in native species in nutrient-poor environments. There were differences in soil total N 36 

concentrations but not in total P concentrations, indicating that the differences associated 37 

to invasive plants were related with biological processes, not with geochemical processes. 38 

The results suggest that invasiveness is not only a driver of changes in ecosystem species 39 

composition but that it is also associated with significant changes in plant-soil elemental 40 

composition and stoichiometry.   41 

 42 

Keywords: C:N, soil fertility, N:P, nitrogen, phosphorus, potassium 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 



3 

Introduction 51 

The structure, diversity and production capacity of terrestrial ecosystems is strongly linked 52 

to the concentrations and stoichiometric ratios in the different ecosystemic compartments 53 

and the soil availability of nitrogen, phosphorus and potassium (Sterner & Elser, 2002; 54 

Reich & Oleksyn, 2004; Elser et al., 2007; Vitousek et al., 2010; Sardans et al., 2011; 55 

Peñuelas et al., 2013; Sardans & Peñuelas, 2013). Most drivers of global change, such as 56 

increasing atmospheric CO2 concentrations, N eutrophication, drought, warming or land-57 

use changes change those elemental compositions and stoichiometries of ecosystemic 58 

compartments and those relationships with ecological processes and species composition 59 

(Seabloom et al., 2006; Elser et al., 2010; Sardans & Peñuelas, 2012; Sardans et al., 60 

2012; Peñuelas et al., 2013; Yuan & Chen, 2015). The growing success of invasive plants 61 

in many regions; 20% or more of plant species are exotics in many continental areas and 62 

50% or more in islands (Seabloom et al., 2006), e.g. plant invaders are affecting 405,000 63 

Km2 in United States (Seabloom et al., 2015) is an emerging driver of Global Changes; 64 

however, it has not received the same level of attention at this regard of the impacts on 65 

plant-soil nutrient concentrations (Hulme et al., 2009, 2015).    66 

Previous studies have observed that several mechanisms involved in the uptake 67 

and nutrient use efficiency by plants underlie the success of invasive plants (Daehler, 68 

2003; González et al., 2010). The mechanisms seem to differ between nutrient-poor and 69 

nutrient-rich soils. In nutrient-poor soils most studies suggest that the success of invasive 70 

plants depends on conservative strategies, such as a higher nutrient-use efficiency 71 

(Ostertag & Verville, 2002; Funk & Vitousek, 2007; González et al., 2010; Matzek, 2011), 72 

especially on short time scales (Funk & Vitousek, 2007), long nutrient residence times 73 

(Laungani & Knops, 2009), high resistance to low levels of nutrients (Kueffer, 2009; 74 

Schumacher et al., 2000) and high plasticity of stoichiometric ratios (González et al., 75 
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2010). In fact, all these traits are consistent with those expected in stress tolerant species 76 

(Grime 1977), in this case by a stress due to nutrient limitation. The establishment of new 77 

symbiosis (Hiltbrunner et al., 2014) or the more effective use of existing symbiosis (Pringle 78 

et al., 2009) are other strategies frequently linked to plant invasiveness success, all them 79 

increasing the availability of limiting soil resources. In contrast, in nutrient-rich soils, there 80 

is an advantage of species with high rates of photosynthesis and growth (Schumacher et 81 

al., 2000; González et al., 2010), high reproductive outputs (González et al., 2010), large 82 

body size (Van Kleunen et al., 2010), low C:nutrient ratios in tissues (Schumacher et al., 83 

2000; Peñuelas et al., 2009; González et al., 2010), low costs of foliar construction (Nagel 84 

& Griffin, 2001; González et al., 2010), large investments of N in photosynthetic production 85 

(Ehrenfeld, 2003; Shen et al., 2011), high capacities of nutrient uptake (Zabinski et al., 86 

2002; Leffler et al., 2011; Peng et al., 2011)  and high levels of plasticity in the acquisition 87 

of resources as a function of pulses in nutrient availability (Leffler et al., 2011). Nutrient 88 

uptake and all foliar traits enabling rapid rates of growth (Zabinski et al., 2002; Leihsman et 89 

al., 2007) will thus help invading species to succeed when resources are not limited 90 

(Leihsman et al., 2007; Peng et al., 2011). Some authors have claimed that, independently 91 

of growth conditions, invaders are more likely to have higher foliar areas, lower tissue 92 

construction costs and greater phenotypical plasticity that increase the availability of soil 93 

resources (Daehler, 2003).  94 

Invasive-plant success has also been linked to differences in soil elemental 95 

composition. In a recent review, Pysek et al. (2012) reported that 192 of 436 case studies 96 

on the effects of invasive plants on soil nutrient concentrations found higher 97 

concentrations, 72 found lower concentrations and 158 found no significant differences. 98 

Sardans & Peñuelas (2012), by analyzing 65 case studies, showed that most processes of 99 

invasion had higher availability of soil nutrients. In addition to these previous qualitative 100 

studies, Vila et al. (2011) conducted a meta-analysis on the relationships of plant invasive 101 
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success with soil condition showing that invasive success is related with higher soil C, N 102 

and P stocks.  103 

There is, however, no general consensus on whether or not successful plant 104 

invaders have different elemental compositions than the native species, or, if present, 105 

whether differences are dependent or not on habitat nutrient richness. A quantitative study 106 

comparing plant, litter and soil nutrient concentrations, i.e. the whole plant-soil system, 107 

between invasive and their native competitors at the global scale is missing. Moreover, 108 

there are no studies analyzing the differences for other important elements, such as K. In 109 

addition to the possible influence of soil nutrient-richness, the possible influence of climate 110 

conditions on these relationships warrants investigation since climatic shifts affect invasive 111 

plant functional processes and in general invasion patterns (Lu et al., 2013; Zenni & 112 

Hoban, 2015), and thus could affect the differences in plant, litter and soil nutrient 113 

concentrations between invasive and native plants at the global scale. In regions where 114 

climate evolves towards characteristics more favorable to plant production (higher MAP 115 

and/or MAT) and where invasive success is expected to be related to higher rates of 116 

nutrient-uptake and in general to C and/or R ecological strategies (Grime, 1977), we 117 

should expect more investment of nutrients in plant growth and faster nutrient cycling rates 118 

in plant-soil system. Contrarily, in regions evolving towards more extreme and stressed 119 

climatic conditions, we should expect invassive success to be related to more conservative 120 

traits, less growth, traits typical of stress-tolerator biological strategy (T strategy, Grime 121 

1977) that are less linked with higher-uptake capacity, but to a higher resorption and 122 

retention of nutrients in the system and consequently with higher nutrient concentrations in 123 

plant-soil system. 124 

We have conducted a global meta-analysis of both the past and the most recent 125 

literature data on the nutrient concentrations in photosynthetic tissues, foliar litter and soil 126 

with the aims to determine whether or not invasive-plant success (i) is associated with 127 
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different elemental compositions of photosynthetic tissues and foliar litter between 128 

successful invasive plants and their native competitors, (ii) is associated with changes in 129 

soil elemental composition and nutrient availability and stoichiometry, and (iii) how these 130 

associations, if exist, depend on soil nutrient concentrations and availabilities, and climatic 131 

condition. 132 

 133 

Materials and methods  134 

Data collection  135 

We searched the ISI Web of Science using combinations of the following keywords: alien, 136 

availability, available, carbon, concentration, C:K, C:N, C:P, foliar, invasion, invasive, leaf, needle, 137 

nitrogen, N:K, N:P, phosphorus, plant, potassium, P:K, ratio, soil, solution, stoichiometric, 138 

stoichiometry, success. We only selected studies providing the same equivalent information for 139 

invasive successful species and their native competitors. Moreover, we only analyzed plant, litter 140 

and soil variables with a minimum of 45 different reports that included the information for invasive 141 

and the respective native species. These variables finally included N and P concentration and C:N 142 

concentration ratio in photosynthetic tissues, foliar-litter N concentration and C:N concentration 143 

ratio, and soil total C, N and P concentrations, total soil C:N concentration ratio, soil P-Olsen and 144 

soil extractable K
+
, NO3

-
 and NH4

+
 concentrations. In the few studies with different temporal data we 145 

used the average mean values. Finally, only field non manipulative studies have been considered. 146 

Applying these criteria we obtained 215 reports with 1233 observations across the world (Figure 147 

S1). 148 

 149 

Climatic data  150 

We extracted climatic data for each study site from the WorldClim database (Hijmans et al., 2005). 151 

This database provides global maps of interpolated variables of climatological variables 152 

extrapolated from extensive climatic time series (from 1950 to 2000), with a spatial resolution of 30 153 

arc seconds (~1 km at the equator). We used MAT and MAP as climatic predictor variables.  154 



7 

 155 

Data analyses  156 

We examined the effects of invasive-plant success on the differences of photosynthetic tissues 157 

elemental compositions and stoichiometries and soil nutrient status between successful invasive 158 

plants and their native competitors by calculating the ln response ratios from each study as 159 

described by Hedges et al. (1999). The natural ln response -ratio (lnRR) was calculated as ln (Xi/Xn) 160 

= lnXi  lnXn, where Xi and Xn are the values of each observation in the invaded soil or invasive 161 

plant and in the corresponding native situation, respectively. The sampling variance for each lnRR 162 

was calculated as ln[(1/ni) × (Si/Xi)
2
 + (1/nn) × (Sn/Xn)

2
] using the R package metafor 1.92, where 163 

ni, nn, Si, Sn, Xi and Xn are the invasive and native sample sizes, standard deviations, and mean 164 

response values, respectively. The natural ln response ratios were determined by specifying studies 165 

as random factors using the rma model in metafor. The effects on soil elemental variables and the 166 

difference between the elemental compositions of invasive and native plants were considered 167 

significant if the 95% confidence interval (CI) of lnRR did not overlap zero. All these statistical 168 

analyses were performed in R 3.1.2 (R Core Team, 2015). Despite for most studied variables there 169 

was a low proportion of studies containing N2-fixing species, we performed these analyses twice, 170 

once with the entire data another one with and after the removal of the studies that contained N2-171 

fixing plant species for detecting the possible importance of N2-fixing capacity in the ln response 172 

ratio effect of the plant and soil variables studied. We analyzed variables with more than 45 173 

observations available at the global scale. The number of reports and observations used by 174 

statistical analyses of each studied soil, plant and litter variable are shown in Figures 1 and 2, and 175 

described in Tables S1-S3.  176 

We also examined whether the differences in the ln response ratio of plants and soils depend 177 

on environmental circumstances such as climate or soil total nutrient concentration and soil 178 

available nutrient concentration. For these analyses, we related the ln response ratio effect 179 

mentioned above (lnRR) with climatic variables at each study site. We used MAP and MAT data 180 

from the WorldClim database (Hijmans et al., 2005). We also tested whether lnRR is dependent on 181 

native plant and soil total nutrient concentrations and soil nutrient availability. We conducted a 182 
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regression of the ln response ratio of the soil N concentration (ln invaded soil N value - ln native soil 183 

N value) relative to the concentration in the natural (native site) soil (ln native soil N value). In the 184 

case of foliar plant tissues, nutrient concentration has generally been well correlated with soil 185 

nutrient availability across natural gradients or fertilization experiments (Porder et al., 2005; Alvarez-186 

Clare & Mack, 2015). We thus used the native foliar concentrations as a proxy of site soil availability 187 

to relate the possible differences in the ln response ratio effect in foliar and foliar-litter variables (ln 188 

invasive plant N value - ln native plant N value), with the corresponding variable availability in soil 189 

(ln native foliar N value). We used regression type II for these analyses, because both dependent 190 

and independent variables were interchangeable and random, so the error of the independent 191 

variable could not be neglected. We ran a standardized major axis method (SMA) using the SMATR 192 

package (Warton et al., 2006) (http://www.bio.mq.edu.au/ecology/SMATR). 193 

Finally, in the cases of total soil N concentration, soil P-Olsen and foliar N and P 194 

concentrations, for which we have the larger number of observations, we divided the observations 195 

of each one of these variables according with their values in native soils or plants in three groups 196 

with similar number of observations. Thus, the groups corresponded to low, intermediate and high 197 

values in native conditions as a proxy of site nutrient richness. Thereafter we conducted an one-198 

way ANOVA with Bonferroni post-hoc test to detect possible differences in the ln response ratio 199 

among the three groups.  200 

http://www.bio.mq.edu.au/ecology/SMATR
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Results 201 

Differences in photosynthetic tissues and foliar litter  202 

A meta-analysis of the entire data set indicated that invasive plant species had higher N (z 203 

= 8.93, P < 0.0001) and P (z = 3.44, P < 0.001) concentrations (41% and 32%, 204 

respectively) and lower (26%) C:N ratios (z = - 5.02, P < 0.0001) in their photosynthetic 205 

tissues than the native competitors (Fig. 1a). An analysis of the same data set but without 206 

excluding N2-fixing species also indicated higher N (z = 6.57, P < 0.0001) and P (z = 2.67, 207 

P < 0.01) concentrations (29% and 32%, respectively) and lower (22%) C:N ratios (z = - 208 

4.84, P < 0.0001) in the photosynthetic tissues of the invasive species (Fig. 1b). The N 209 

concentration and the C:N ratio in foliar litter were, however, not significantly different 210 

either for the entire data set (Fig. 1c) or when the data for the N2-fixing plant species were 211 

excluded (Fig. 1d).  Not significant differences were either found for litter P concentrations 212 

(only 13 observations, data not shown). 213 

 214 

Differences in soil conditions  215 

The soil concentrations of extractable K (z = 2.53, P < 0.05), soluble nitrate (z = 7.40, P < 216 

0.0001), P-Olsen (z = 2.83, P < 0.01) and total N (z = 4.34, P < 0.0001) and C 217 

concentrations (z = 3.62, P < 0.001) were higher (13%, 117%, 21%, 19% and 12%, 218 

respectively) in soils of invasive plants than in soils of their corresponding native 219 

competitor species. The concentration of soluble ammonium was also marginally (z = 1.81, 220 

P = 0.07) higher (11%) in the soils of the invasive than the native species. The ln response 221 

ratio effects on the soil C:N ratio and total P concentration were not statistically significant.  222 

An analysis of the same data set but without the data for the N2-fixing species produced 223 

similar results (Fig. 2b). The soluble nitrate (z = 6.37, P < 0.0001), P-Olsen (z =2.83, P < 224 

0.001), total N (z = 2.32, P < 0.05) and C (z = 3.13, P < 0.001) concentrations, were higher 225 

(118%, 27%, 10% and 7%, respectively) in the soils of the invasive plants than in the soils 226 
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of the native competitors. The concentration of extractable K was marginally (z = 1.80, P = 227 

0.072) higher (11%) in the soils of the invasive species.   228 

 229 

Ln response ratios along gradients of nutrient availability and climate  230 

The ln response ratio of total N and P concentrations in photosynthetic tissues of invasive 231 

plants were negatively correlated to the corresponding values for the photosynthetic 232 

tissues of the native plant competitors (Figs. 3a and 3b). The ln response ratio of foliar N 233 

concentration was positively different from zero in sites with low and intermediate values, 234 

whereas for foliar P concentrations the ln response ratio was only positively different from 235 

zero in sites with low values (Figs. S2a and S2b). No significant relationships were 236 

observed between foliar litter N and P ln response ratio and the corresponding values for 237 

the foliar litter of the native plant competitors (Figs. 3c and 3d).   238 

The ln response ratio for soil total N, P-Olsen, soluble nitrate and extractable K 239 

concentrations in invaded soils were negatively correlated with the corresponding values in 240 

the soils of the native plant competitors (Figs. 4a–d). For soil nitrate concentration, total N 241 

concentration and soil P-Olsen, the ln response ratio was positively different than zero in 242 

sites with low and intermediate values, whereas for soil available K+ the ln response ratio 243 

was positively different than zero only in sites with low values (Fig. S3). 244 

Interestingly, few relationships between climatic gradients and ln response-ratio 245 

effects were detected. MAT was positively but weakly correlated with the ln response 246 

ratios for soil total N concentration (R = 0.27, P < 0.001) and with N concentration in 247 

photosynthetic tissues (R = 0.16, P < 0.05). MAP was positively and also weakly 248 

correlated with the ln response ratio for soil soluble nitrate concentration (R = 0.25, P < 249 

0.01) (Fig. S4). 250 
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Discussion 251 

Our study showed higher N and P concentrations in the photosynthetic tissues of invasive 252 

species in nutrient-poor environments. These higher concentrations were found in 253 

photosynthetic tissues but not in foliar litter, suggesting a higher N and P resorption 254 

capacity in resource-poor than in resource-rich environments. These results are consistent 255 

with previous studies observing that the competitive advantage over native plant species 256 

competitors and the success of invasive plants in resource-poor environments has 257 

frequently been correlated with a more conservative use of nutrients, higher residence 258 

time due to higher nutrient-resorption capacities (Ostertag & Verville, 2002),  and higher 259 

photosynthetic nitrogen use efficiency (Ens et al., 2015). 260 

The soils under the invasive plants had higher soil P-Olsen, soluble nitrate and 261 

potassium concentrations and therefore higher availability of the three most important soil 262 

macronutrients for plant growth. The higher soil NO3
- concentrations in soils under invasive 263 

species than under their native competitors is consistent with previous studies observing a 264 

positive relationship between soil NO3
- concentration and the intensity of plant species 265 

invasive success (Gilliam, 2006). The studies compiled in this meta-analysis did not allow 266 

a clear determination of whether these higher concentrations were the cause or the effect 267 

of the success of invasive plant species. The studies that have experimentally tested 268 

whether soil differences were the cause or the consequence of plant invasion, however, 269 

have reported that soil differences were mainly due to the effect of the success of the 270 

invasive species (Li et al., 2006; Dassonville et al., 2008; Elgersma et al., 2011; Lee et al., 271 

2012; Kuedding et al., 2014; Stark & Norton, 2014). A few number of reports that have 272 

studied the changes in soil conditions during 4 (Belnap et al., 2005) and 7 (Hawkes et al., 273 

2005) years have observed that the invasive species changed soil conditions over time. 274 

Several studies have also observed a direct impact of invasive-plant establishment on soil 275 
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function such as increases in soil enzymatic activities associated with increases in some 276 

soil elemental concentrations (Hawkes et al., 2005; Alison et al., 2006; Caldwell, 2006; 277 

Aragon et al., 2014; Kuebbing et al., 2014), mineralization (Haubensak & Parker, 2004; 278 

Fickbohm & Zhu, 2006;  Li et al., 2006) and respiration (Souza-Alonso et al., 2015). Other 279 

studies, although fewer than the above, did not observe these differences in soil enzymatic 280 

activity and mineralization (Zabinsky et al., 2002, Meisner et al., 2011) or found different 281 

results depending on species and site (Koutika et al., 2007) or on the enzymatic activities 282 

(Chacón et al., 2009). Kulmatiski et al. (2006) in 660 experimental plots in abandoned 283 

croplands (from 50 to 7 years ago) with different management histories observed that 284 

invasive success explained the soil C, N and P concentrations more significantly than the 285 

previous agricultural histories, suggesting that the invasive plants facilitated their own 286 

growth by maintaining beneficial fungal communities and fast nutrient-cycling rates.  287 

Our results showed a general globally higher soil total N concentration under 288 

invasive-plants than under their native competitors but we did not observe a higher total P 289 

concentration. Cycling and concentrations of soil N mainly depends on biological 290 

processes, whereas mineral rocks are the sources of soil P, and its soil total concentration 291 

is primarily driven by physicogeochemical processes (Gómez-Aparicio & Canhan, 2008; 292 

Vitousek et al., 2010; Peñuelas et al., 2013). Both N and P are important soil components 293 

that could be involved in facilitating plant invasion, but only soil total N concentration can 294 

thus be associated mostly with the biological process of plant invasion. This fact is 295 

consistent with the hypothesis that the differences between the soils under invasive and 296 

native plants are most likely due to the effects of species invasion itself. Rather 297 

surprisingly, the effects of plant-invasions on soil and plant N concentrations, C:N ratios 298 

and most other significant stoichiometry parameters were not different when including N2-299 

fixing plants than when excluding them from the global analysis. Changes in soil physical 300 
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conditions or in microbial communities, including soil N-fixing microbes, could be involved, 301 

warranting further research.  302 

The differences in soil total C and N, and in N, P and K availabilities and in N and P 303 

concentrations in photosynthetic tissues between invasive and native species decreased 304 

with increasing values of the corresponding variables in natural-native conditions to the 305 

point that the differences disappeared in resource-rich environments. These lower 306 

differences in resource-rich environments could be due to the higher nutrient up-take in 307 

invasive species being counteracted by its higher growth capacity, and the corresponding 308 

dilution effect. In nutrient-rich sites, moreover, native species are also highly competitive, 309 

having traits that enable native plants to be very effective in taking up resources. On the 310 

other hand, the frequently observed higher mineralization capacity and enzyme activity 311 

under invasive than under native species in nutrient-rich soils (Allison et al., 2006; Gómez-312 

Aparicio & Canham, 2008; Aragón et al., 2014) would increase the rates of nutrient 313 

released from organic matter, but this would be also counteracted by the higher plant 314 

nutrient uptake so that soil nutrient concentrations would remain similar than under native 315 

species.  316 

Climate variables had few correlations with the studied ln response ratio of the 317 

studied variables. MAT had weak but positive correlation with ln response ratio of total soil 318 

N concentration and N concentration in plant tissues and MAP had also a positive 319 

relationship with soil nitrate ln response ratio. These results suggest thus that climatic 320 

conditions are less influential on the ln response ratio of the studied soil total and available 321 

nutrient concentrations than the environmental nutrient richness. 322 

Summarizing, this is the first study that has analyzed globally the association 323 

between plant invasion and nutrient concentration and stoichiometry of photosynthetic 324 

tissues, leaf litter and soils. Invasive plant species had globally higher N and P 325 

concentrations in photosynthetic tissues but not in foliar litter, in comparison to their native 326 



14 

competitors. Invasive plants were also associated with higher soil C and N stocks and N, P 327 

and K availabilities. The differences in N and P concentrations in photosynthetic tissues 328 

and in soil total C and N, soil N, P and K availabilities between invasive and native species 329 

decreased when the environment was richer in nutrient resources. These global trends 330 

may be explained by (i) larger differences in resorption and nutrient-use efficiency between 331 

invasive and native species in nutrient-poor environments, and (ii) a higher competitive 332 

capacity associated with larger nutrient uptake and plant growth capacity with a dilution 333 

effect in invasive than in native species when environments become richer in resources. 334 

Moreover, some other mechanisms such as enhancement of soil enzymatic activity and 335 

mineralization, and more effective symbiotic relationships can be also involved in these 336 

global trends. Clearly determining whether invasive-plant success is the cause or the 337 

consequence of soil elemental composition and nutrient availability is currently not 338 

possible, but research up to now suggests that these plant and soil nutritional changes are 339 

more the consequence than the cause of plant invasion. Plant invasiveness should thus 340 

not be neglected as a driver of global change in plant-soil elemental and stoichiometric 341 

composition and soil fertility.   342 
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Figure captions 522 
 523 
Figure 1. Ln response ratios of N and P concentrations and the C:N ratio in photosynthetic tissues 524 
(including data for N2-fixing plants) (A), and excluding the data for N2-fixing plants (B). Ln responses 525 
ratios of N concentrations and the C:N ratio in foliar litter to plant invasion for the entire data set 526 
(including data for N2-fixing plants) (C) and excluding the data for N2-fixing plants (D) to plant 527 
invasion. Values are means and 95% confidence intervals. Plus (+) and minus (–) signs represent 528 
positive and negative log response ratios, respectively, when the corresponding ln response ratios 529 
confidence intervals do not overlap with zero value. Zero in the X-axes represents neutral response 530 
ratio that means equal values in native than in invasive species. The numbers between brackets 531 
indicate the number of articles and studies (each article can have more than one single study), 532 
respectively, used in the meta-analysis of each variable.  533 
 534 
Figure 2. Ln response ratios of soil concentrations of extractable potassium (K

+
), ammonium (NH4

+
), 535 

nitrate (NO3
-
), P-Olsen, and total P, N and C and the soil C:N ratio to plant invasion for the entire 536 

data set (including data for N2-fixing plants) (A) and excluding the data for N2-fixing plants (B). 537 
Values are means and 95% confidence intervals. Plus (+) and minus (–) signs represent positive 538 
and negative log response ratios, respectively, when the corresponding ln response ratios 539 
confidence intervals do not overlap with zero value. Zero in the X-axes represents neutral response 540 
ratio that means equal values in native than in invasive species. The numbers between brackets 541 
indicate the number of articles and studies, respectively, used in the meta-analysis of each variable.  542 

 543 
Figure 3. Relationships between ln response ratio of foliar N and P concentrations and the 544 
total N (A) and P (B) concentrations in the leaves of native plants, and relationships 545 
between the ln response ratio of the foliar-litter N and P concentrations and the total N (C) 546 
and P (D) concentrations in the leaf litter-tissues of native plants based on percent dry 547 
wright (%DW). Dotted line highlights the zero value of ln response ratio (equal values of 548 
the corresponding variable for native and in invasive species or for soils under them). 549 
 550 
Figure 4. Relationships between the ln response ratio of soil NO3

- and the site soil NO3
- 551 

concentration (A), between the ln response ratio of soil total N and site soil total N 552 

concentration (B), between ln response ratio of soil P-Olsen and site soil P-Olsen 553 

concentration (C) and between ln response ratio of soil K+ concentration and site soil K+ 554 

concentration (D). Dotted line highlights the zero value of ln response ratio (equal values 555 

of the corresponding variable for native and in invasive species or for soils under them. 556 
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