Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and 10Be terrestrial cosmogenic nuclides

Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and \(^{10}\text{Be}\) terrestrial cosmogenic nuclides

Lucía Struth\(^{1+}\), Antonio Teixell\(^{1}\), Lewis A. Owen\(^{2}\), Julien Babault\(^{1}\)

\(^{1}\)Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

\(^{2}\)Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA

+34935811035/+34935811263, Lucia.Struth@gmail.com

\(^{+}\)Corresponding author

ABSTRACT

Catchment-wide erosion rates were defined using \(^{10}\text{Be}\) terrestrial cosmogenic nuclides for the Eastern Cordillera of the Colombian Andes to help determine the nature of drainage development and landscape evolution. The Eastern Cordillera, characterized by a smooth axial plateau bordered by steep flanks, has a mean erosion rate of 11 ± 1 mm/ka across the plateau and 70 ± 10 mm/ka on its flanks, with local high rates of >400 mm/ka. The erosional contrast between the plateau and its flanks was produced by the increase in the orogen regional slope, derived from the progressive shortening and thickening of the Eastern Cordillera. The erosion rates together with digital topographic analysis show that the drainage network is dynamic and confirms the view that drainage divides in the Eastern Cordillera are migrating towards the interior of the
mountain belt resulting in progressive drainage reorganization from longitudinal to transverse-dominated rivers and areal reduction of the Sabana de Bogotá plateau.

Keywords: Cosmogenic nuclides; Erosion rates; Drainage evolution; Divide migration; Eastern Cordillera of Colombia.

1. Introduction

Rift inversion and/or crustal thickening result in dramatic topography and drainage network changes in mountain belts that are mainly controlled by major tectonic structures (e.g., Van der Beek et al., 2002). The evolution and development of drainage systems in active orogens has attracted much attention recently, particularly with regard to transverse and longitudinal drainages, and drainage divides (e.g., Willett et al., 2001, 2014; Pelletier 2004; Bonnet et al., 2009; Castelltort et al., 2012; Perron et al., 2012; Goren et al., 2014; Viaplana et al., 2015). Clear examples of drainage rearrangement in relation to progressive mountain building have been described in the inverted rifts of the High Atlas of Morocco (Babault et al., 2012) and Eastern Cordillera of Colombia (Babault et al., 2013; Struth et al., 2015). These studies highlight that drainage divides are dynamic features that progressively migrate and result in river capture events. Providing evidence for differential erosion rates on either side of a drainage divide adds much credence to developing and substantiating drainage evolution models for mountain belts (e.g., Willett et al., 2014). As such, the side of a mountain belt with the greatest erosion will progressively migrate and capture drainages from the side with the least erosion. Theoretically, a dynamic drainage network will evolve towards a steady state, maintaining a steady drainage network and stationary drainage divides (Howard, 1965).
The Eastern Cordillera of Colombia is an example of an orogen with a dynamic drainage network (Babault et al., 2013; Struth et al., 2015). This N-S oriented orogenic belt has two topographic domains: i) an axial zone with low relief associated with longitudinal rivers that have gentle gradients (the Sabana de Bogotá); and ii) high-relief flanks with steeper transverse rivers. These domains are separated by what we refer to as the eastern and western main drainage divides. Recent studies have suggested that the increase of regional slopes due to progressive crustal thickening results in fluvial reorganization from longitudinal to transverse dominated drainages in the Eastern Cordillera (Babault et al., 2013; Struth et al., 2015). On the basis of a morphometric analysis, field observations and a summary of paleodrainage data, these studies conclude that drainage reorganization takes place by progressive drainage divide migration toward the axial zone of the orogen by a step-by-step series of river captures.

In this study, we build on the work of Struth et al. (2015) by using 10Be terrestrial cosmogenic nuclides (TCNs) in fluvial sands to determine catchment-wide erosion rates for the Eastern Cordillera to investigate the contrasting erosion dynamics between the Sabana de Bogotá axial plateau and the flanks of the Eastern Cordillera. TCN analysis is combined with a comparative analysis of steepness index, specific stream power and the integral of the drainage area (χ values). We also examine the role of local tectonics, lithology, and climate conditions as a control on drainage evolution.

2. Geological, morphological and climatological setting

The Eastern Cordillera of Colombia is an inverted continental rift in the northern Andes. The cordillera is composed of Precambrian-Paleozoic basement and a succession of Mesozoic and early Cenozoic sedimentary rocks within a doubly-verging thrust system (Julivert, 1970; Colletta et al., 1990; Cooper et al., 1995; Fig. 1).
The Eastern Cordillera is flanked on both sides by lowlands composed of Cenozoic deposits, which infill the Magdalena Valley and the Llanos foreland basins that are at elevations of ~200-300 m above mean sea level (asl; Fig. 1A). The flanks of the Eastern Cordillera are dominated by alternating Cretaceous sandstone and shale formations. Isolated Precambrian-Paleozoic basement massifs with low- and medium-grade metamorphic rocks (mainly phyllite and schist) are present in the Quetame and Floresta massifs (Segovia, 1965; Ulloa and Rodríguez, 1979; Ulloa and Rodríguez, 1982; Parra et al., 2009a; Fig. 1A,B). The axial plateau of the Sabana de Bogotá is dominated by Cretaceous to Paleogene sandstone and shale that are deformed into open folds, whereas the Cordillera foothills have foreland facing thrust faults with large-displacement (e.g., Mora et al., 2008 and references therein; Fig. 1B). The local relief in the Sabana de Bogotá plateau is small because up to 600 m of unconformable Pliocene-Quaternary fluviolacustrine deposits partially fill the synclinal depressions (Tilatá and Sabana formations; Julivert, 1963; Andriessen et al., 1993; Torres et al., 2005). A moderate amount of orogenic shortening, 25 to 30%, across the Eastern Cordillera has been calculated along serial transects by Tesón et al. (2013) and Teixell et al. (2015).

There is a strong precipitation gradient across the western divide, whereas no precipitation gradient exists across the eastern divide (Fig. 2). Precipitation is greatest (> 3000 mm/yr) near Charalá, in the eastern and western foothills and in the Quetame Massif.

2.2 Summary of the deformation and paleodrainage evolution of the Eastern Cordillera

Paleogene data show a western and southwestern source for the Central Cordillera foreland basin sediments, which currently include the early successions of deposits in the Magdalena Valley and Llanos basins, and the intervening Eastern
Cordillera. Sediments moved NNE in the Central Cordillera foreland basin following the regional slope and the contemporaneous structures within the basin (e.g., Cooper et al., 1995; Bayona et al., 2008; Silva et al., 2013). The drainage was longitudinal, parallel to the current Eastern Cordillera, following growing folds that thermochronological data show started to form during the Eocene (e.g., Parra et al., 2009b; Mora et al., 2010; Moreno et al., 2011; Saylor et al., 2011; Caballero et al., 2013a, 2013b; Silva et al., 2013).

The Magdalena and the Llanos basins became disconnected by the uplift of the Eastern Cordillera as deformation propagated eastward during the Late Oligocene to Early Miocene (Parra et al., 2009b; Mora et al., 2010). This is supported by provenance data indicating that the Eastern Cordillera developed into an effective topographic barrier that separated the Central Cordillera from the Llanos basin before the Mid to Late Miocene (Horton et al., 2010). The axial Eastern Cordillera was likely a closed basin south of 6ºN during the late Oligocene-Miocene (Silva et al., 2013).

Base level started to rise in the Middle Magdalena Valley basin during the Late Oligocene to Mid Miocene, forcing its rivers to flow to the east, across the present location of the Eastern Cordillera, into the Llanos basin (Gómez et al., 2005b). The drainage in the Middle Magdalena Valley basin returned to flow to the north due to the continued uplift of the cordillera during the Mid-Late and Late Miocene. Since the Late Miocene, the paleoflow pattern in the eastern foreland of the Eastern Cordillera is characterized by a transverse drainage reflecting an eastward direction (Parra et al., 2010) and providing sediments for the Llanos and Middle Magdalena Valley basins.

Most external thrust sheets of the Cordillera are strongly deformed in recent times, and there are very young apatite fission track ages for the Quetame Massif along its eastern flank (0-3 Ma; Fig. 3). This attests to strong exhumation across the Eastern Cordillera margins in the latest Neogene and Quaternary (Mora et al., 2008).
Struth et al. (2015) argue that the Eastern Cordillera is experiencing fluvial drainage network reorganization by drainage divide migration. Longitudinal drainages created in the early stages of drainage developed paralleling the structural grain of the growing tectonic orogen. The potential energy and power of transverse rivers was enhanced as the regional slope progressively increased during crustal thickening. This resulted in headward erosion causing drainage divide migration towards the Sabana plateau and capturing longitudinal streams: ultimately leading to drainage network reorganization.

3. Methods

3.1. Analysis of the digital drainage network

We used digital elevation model (DEM) SRTM90v4 that has a horizontal resolution of 90 m (Jarvis et al., 2008) to analyze the drainage network for the Eastern Cordillera. The DEM was corrected in narrow areas that had low resolution using elevations from Instituto Geográfico Agustín Codazzi (IGAC) 1:100,000 topographic maps. Various geomorphic parameters provide information about erosion in channel networks and therefore information about the dynamism of the drainage. The most important parameters that we examine include stream power, steepness index and χ.

We calculated these parameters to characterize the contrast between the topographic domains of the Sabana de Bogotá plateau and its flanks, and to identify which one best correlates with the TCN-derived erosion rates. We propose that a correlation between geomorphic parameters and TCN-derived erosion rates may allow a first estimation of erosion rates in areas devoid of TCN data.

Stream power relates to the energy rate per unit distance along a river (Bagnold, 1966) and reflects the incision power of a river into bedrock under detachment-limited conditions (e.g., Howard and Kerby, 1983; Howard et al., 1994; Whipple and Tucker, 2007).
River incision is calculated according to the stream power model expressed as:

\[
\frac{\partial z(x,t)}{\partial t} = U(x,t) - (KA^mS^n)(x,t)
\]

where \((U)\) represents the bedrock uplift at \(x\), \((K)\) is the erosional efficiency, \((A)\) is local drainage area and \((S)\) is the channel slope. The positive exponents \(m\) and \(n\) describe the relative dependency of stream erosion rates on \(A\) and \(S\).

Analysis of slope-area has been frequently used to reveal erosion trends in channel networks defined as steepness index or \(Ksn\) (Kirby and Whipple, 2001; Kirby, 2003; Snyder et al., 2003; Wobus et al., 2006; Dibiase et al., 2010). However, local slope calculations undertaken for regions that have low DEM resolution such as the Eastern Cordillera of Colombia provide scattered and noisy results. For this reason, we calculate the channel slopes using the \(\chi\) gradient referred to as \(Mx\) (Perron and Royden, 2013; Mudd et al., 2014). To calculate \(Mx\), we use the river profile elevation instead of the slope as the dependent variable, against \(\chi\) as the independent variable. This approach produces more reliable results. We plot values of \(Mx\), i.e., the slope in \(\chi\)-elevation space (Mudd et al., 2014), a parameter related to the ratio between erosion rate and erodibility (Perron and Royden, 2013), as a proxy to identify the distribution and magnitude of erosion. We defined the best concavity of the river profiles based on AICc-collinearity tests and \(\chi\)-plots following the method of Mudd et al. (2014) to calculate \(Mx\) values. The AICc is a statistical method that selects a model that balances goodness of the fit against model complexity (Akaike Information Criterion, AICc; Akaike, 1974; Hurvich and Tsai, 1989; Burnham and Anderson, 2002). We extract the AICc-collinearity test and the \(\chi\) plots for each basin based on a range of concavity values for the main channel and tributaries to define the best-fit concavity. The concavity with the minimum AICc value will be the best fitting one using this method. The mean calculated concavity for all the basins is 0.45 (see http://mc.manuscriptcentral.com/esp
SD1). We compared the Mx values between different catchments by fixing the obtained concavity. Stream power theory predicts that river profiles will have a linear χ-plot and a Mx proportional to the erosion rates, assuming, firstly a steady-state condition, where rock uplift is balanced by erosion, and secondly, that erosion, erodibility and uplift are constant through time and space (Royden and Perron, 2013; Mudd et al., 2014). In reality, U and K can be variable in space and time, which are dependent upon the tectonic and climatic history, and rock type. We calculated the concavity for all the basins following the method of Mudd et al. (2014) by extracting the steepness index, knickpoints and localize all the known active structures as well as highly erodible lithologies to solve this problem. In the case of stepped channel profiles associated with spatial or temporal changes in uplift rates, we used the colinearity test to identify the best concavity for each catchment (Mudd et al., 2014). This technique allows the magnitude and distribution of the erosion rates to be identified.

We extract the χ−map following the method of Willett et al. (2014), and with a same base level determined by the elevation of the most external tectonic structures (300 m asl) and with a critical drainage area of 1 km² to extract information about the dynamics of the catchments. The main focus of this analysis rests on mapping differences in χ-coordinate values across drainage divides. Similar χ values on both sides of a drainage divide would suggest that the region is in equilibrium, while large differences in χ values across the drainage divide imply that river networks are in disequilibrium where divide migration or river capture is likely to occur (Willett et al., 2014). Drainage divides generally migrate towards the higher χ values to achieve equilibrium, and hence, catchments with high values are prone to capture and may eventually disappear (Willett et al., 2014). We extract the χ-map for the entire central segment of the Eastern Cordillera as a proxy for the dynamics of the drainage divides using a modified version of χ that makes a correction factor for the precipitation (Yang et al., 2015) such that the χ value is defined by the following

http://mc.manuscriptcentral.com/esp
These four samples are not included in the comparative analysis between the plateau domain and the eastern flank.

Larger sampled catchment areas have higher likelihoods of including mixed fluvial signatures. In such cases, the erosion rate obtained may not be representative of the specific catchment area. We also calculated an averaged specific stream power (SSP, eq 3, Knighton, 1999) for each catchment following the method described in Godard (2012) such that:

$$SSP = \frac{d g K_{sn} Q}{W}$$

where d is density, g is acceleration due to gravity, K_{sn} is the steepness index slope, Q is discharge and W is the channel width.

3.2. Terrestrial cosmogenic nuclides analysis

Sediment samples were collected for 10Be TCN analysis to investigate erosional contrasts between the Sabana plateau and its flanks, including the main streams and major tributaries in the Guayuriba and Turmequé (representing the eastern flank of the Cordillera), Bogotá (Sabana de Bogotá plateau) and upper Suárez catchments. We followed the sampling methods of Carretier et al. (2015) who collected fluvial sand from the subcatchments to minimize issues associated with local lithologic variations. Rivers in the eastern flank and plateau have their headwaters on the same drainage divide, which allows us to make direct comparison between them. We also analyzed four 10Be TCN samples in the lower Suárez and Chicamocha catchments (Fig. 3, Table 1) to examine the effect of a different vegetation cover, bedrock erodibility and climate. These four samples are not included in the comparative analysis between the plateau domain and the eastern flank.
of all the reaches of that river, which may have experienced a diverse reorganization history.

Catchments including a relict flat area in their upper parts (Chicamocha, Suárez, Bogotá and Turmequé) reflect two different erosion regimes separated by a knickpoint (white stars in Fig. 6). As such the upper part the catchment, above the mean knickpoints, should have lower erosion rates (related to lower relief, gentler slopes and lower Mx values) compared to those downstream. The Turmequé catchment illustrates this well, with an ancient plateau domain above the main knickpoint where the erosion rates are low (LUCN-45, 26) and higher erosion rates in its lower reaches (LUCN-25, 27, 28). We only sampled the upper part of the Bogotá catchment (LUCN-15, 19, 30, 31, 33) above the Tequendama Falls (see Fig.4 for location) to define the amount of erosion in it lowest erosion rate domain. We sampled its gently sloping upper reaches (LUCN-46, 50), and the steeper lower reaches below the knickpoint (LUCN-53, 55) in the Suárez catchment. Only one sample (LUCN-53) was collected in the Chicamocha valley catchment, which was located downstream of the main knickpoint.

We collected ~1 kg of sand for each sample. Catchment areas for each sample were large (>100 km²) as recommended by Niemi et al. (2005) and Yanites et al. (2005) to provide a good representation of the ⁴⁰Be TCN inventory and the erosion rates. We use the erosion values obtained in the upstream reaches of the rivers that flank the Eastern Cordillera to compare the erosion rates between the rivers of the Sabana and the flanks of the cordillera. These flank rivers and the located in the Sabana, flow through alternating sandstone and shale formations in proportions that are similar in each different catchment. This similarity reduces the possibility of lithological biasing in sampling between our chosen catchments. The erosion rates determined by ⁴⁰Be reflect erosion on timescales of tens of thousands of years (Blanckenburg, 2006). Additionally, we sampled rivers across the western flank of the Eastern Cordillera, but we could not determine ⁴⁰Be concentrations in this region.
because we were unable to extract quartz from samples which were dominated by argillaceous sediment.

We also collected five quartzite samples for 10Be TCN surface exposure dating from a well-preserved river terrace in the Guayuriba Basin (Fig. 3C, Table 2). Such landforms are rare in our study area. Our sampled river terrace, which lies at ~406 m above the current stream, is not deformed, and it shows no evidence of erosion or landsliding. We collected ~500 g rock from the upper surfaces of fresh quartzite boulders inset into the river terrace. Topographic shielding was calculated by measuring the inclination to the skyline for every cardinal and intercardinal direction following the approach by Balco and Stone (2007).

Quartz isolation, purification, dissolution and preparation of BeO were undertaken in the geochronology laboratories at the University of Cincinnati following the methods of Kohl and Nishiizumi (1992) and described in detail in Dortch et al. (2009). All river sediment and river terrace boulder samples were sieved and crushed to 250-500 µm for the analysis. Samples were cleaned using HNO$_3$, HCl and HF and passed through a Frantz magnetic separator. Density separation was undertaken using lithium heteropolytungstate followed by an additional HF leach (Brown et al., 1991; Kohl and Nishiizumi, 1992; Cerling and Craig, 1994). For each sample, 15-30 g of clean quartz grains was dissolved in HF and HNO$_3$ with 350 mg of 9Be carrier. Beryllium was separated using anion and cation exchange columns Beryllium hydroxide was obtained after fuming with HClO$_4$ acid and passing through anion and cation exchange columns (Bourlès, 1988; Brown et al., 1992). The Be(OH)$_2$ was heated in an oven at 750 °C to form BeO and then loaded in steel target mixed with of Niobium (Nb) powder. 10Be/9Be ratios were measured by Accelerator Mass Spectrometry in the Purdue Rare Isotope Measurement (PRIME) Laboratory at Purdue University, Indiana, USA.
We took the standard approach and assumed that the amount of 9Be in the
developed quartz was negligible. Sometimes this may not be the case, and quartz may
contain some 9Be. Such cases are rare, and almost invariably occur when quartz is
derived from beryl-bearing granites or pegmatites, so that traces of Be and/or small
amounts of beryl exist in the supposedly pure quartz sample, as documented in some
areas of the Himalaya (Portenga et al., 2015). However, pegmatites and beryl-bearing
granites are not present in our study area. Any significant native 9Be is therefore highly
unlikely in our sampled quartz. If native 9Be is present then denudation rates calculated
from 10Be concentrations will be overestimates, and the calculated erosion rates should
be considered as apparent; however these rates can still be used for comparisons of
variation across a region of similar lithologies (Corbett et al., 2013; Portenga et al.,
2015).

To model catchment-wide erosion rates from 10Be results we assumed that: i)
the sediment volume is proportional to the erosion rate, i.e., the catchment is close to
steady-state; ii) all the sediment collected at the sample locality was well mixed; iii) the
contribution of quartz was homogeneous in the catchment; iv) that there is an isotopic
equilibrium within the catchment, i.e., TCNs production in the catchment equals the
transport of TCNs out of the catchment; and v) the erosional timescale was significantly
larger than the sediment transfer through the catchment (e.g., Lal and Arnold, 1985;
Granger et al., 1966; von Blanckenburg, 2005).

The corrected catchment-averaged production rates for 10Be were calculated for
each catchment using the SRTM90 digital elevation model following the method of
Dortch et al. (2011) using MATLAB v. 2008 and the scaling factors provided in Lal
(1990) and Stone (2000). With this method, the production rate for each pixel is
calculated accounting for shielding to make an average for all the pixels in the
catchment to obtain a spatially average production rate for the entire catchment (Lal,
1991). We use a 10Be half-life of 1.36 ± 0.07 Ma (Nishiizumi et al., 2007), the scaling
We extend the Mx map for the Eastern Cordillera of Colombia of Struth et al. (2015) that was limited to the area between 4°N and 5°30'N to between 4ºN and 7ºN. The Mx values have a similar distribution to the SSP, with higher values on the flanks and in the northern part of the Sogamoso basin than in the axial zone. The incision capacity is low (with low SSP) and values of Mx are also generally low (Mx=0–3) in the Sabana plateau and the southern part of the Sogamoso basin. The eastern flank has average Mx values of between 5 and 12, with peak values between 20 and 27.

10Be ages for the river terrace samples were calculated using the CRONUS calculator (http://hess.ess.washington.edu/math/; Balco et al., 2008). These ages will be minimum values and hence the resulting incision rates are maximum values. We are aware that the production rates and scaling models for 10Be are being refined (Borchers et al., 2016; Marrero et al., 2016). Borchers et al. (2016) recently revised the production rate for sea level at high latitudes to 4.01 10Be atom/g SiO₂/a for Lal (1990)/Stone (2000) scaling model. However, we prefer to use the established scaling model and production rates in Balco et al. (2008) until there is community-wide agreement on the appropriate production and scaling. The new production rate results in an ~10% difference in the erosion rate from our preferred values.

4. Results

4.1. Digital drainage analysis

The axial zone, which includes the Sabana de Bogotá and the southern part of the Sogamoso basin, is characterized by the lowest SSP values (Fig. 4). In contrast, higher SSP values occur on the Eastern Cordillera flanks and in the northern areas of the Sogamoso basin, which argue for higher erosion rates than in the axial zone of the cordillera.

We extend the Mx map for the Eastern Cordillera of Colombia of Struth et al. (2015) that was limited to the area between 4°N and 5°30'N to between 4ºN and 7ºN. The Mx values have a similar distribution to the SSP, with higher values on the flanks and in the northern part of the Sogamoso basin than in the axial zone. The incision capacity is low (with low SSP) and values of Mx are also generally low (Mx=0–3) in the Sabana plateau and the southern part of the Sogamoso basin. The eastern flank has average Mx values of between 5 and 12, with peak values between 20 and 27. Areas
of recent tectonic uplift such as the Farallones and Santa Maria anticlines (Mora et al., 2008), or where rivers dramatically increase gradient when they exit the high-elevation plains such as at the Tequendama Falls or at Chingaza, have the highest Mx values. The upper Sogamoso basin, with northward drainage, has low Mx values and is similar to those for Sabana de Bogotá. The Suárez basin has values between 4 and 7, while the Chicamocha basin has values between 6 and 12. Local high Mx values are associated with deeply incised stretches of the Suárez and Chicamocha rivers. Mx values in the higher parts of the western flank, bordering the divide, where rivers are of transverse type, range from ~5 to 12; Mx values decrease to between 1 and 4 in the lower part of the flank where the rivers are of longitudinal type. River profiles in χ space are shown in the Supplementary Data (SD2) and were partly published in Struth et al. (2015).

The χ values in the axial region of Sabana de Bogotá of the Eastern Cordillera (Fig. 5) are higher than those for its flanks in the area of the drainage divide. A strong differentiation in χ values exists within the same domain: while the Sabana de Bogotá has low values near the central divide, the Sogamoso basin shows high values near the divide (Fig. 5B1). In addition, χ values indicate disequilibrium between the Turmequé (with low values) and the Chicamocha (with higher values near the divide) basins (Fig. 5B2).

Low SSP, Mx and precipitation, and high χ values in the headwaters of the rivers characterize the plateau, while high SSP, Mx and precipitation, and low χ values in the headwaters of the rivers characterize the flanks. In summary, the geomorphic indices clearly differentiate the plateau and flank domains within the Eastern Cordillera.
4.2. Landscape evolution rates

The large erosional contrast between the plateau and its flanks is evident from the variation in erosion rates derived from 10Be analysis (Fig. 6). The 10Be analysis shows that for similar drainage areas, the erosion rates are lower in the Sabana de Bogotá plateau region (< 20 mm/ka) than on its flanks (>400 mm/ka (Table 3). In more detail, the upper half of the Guayuriba catchment is eroding at a rate of ~75 mm/ka (samples LUCN-01, 03, 04, 08; Fig. 6), whereas downstream the erosion rates are ~100, 479 and 670 mm/ka (LUCN-07, LUCN-05 and LUCN-06). Two samples (LUCN-05 and LUCN-06) show that erosion rates are an order of magnitude higher than the rest of the flank samples and provide of the highest erosion rates (see discussion below). In the Turmequé catchment, the erosion rates increase progressively downstream from 5.5 mm/ka in the upper part of the catchment in the longitudinal tract (LUCN-45) to 15.7, 48, 53 and 59 mm/ka (LUCN-26, 28, 27 and 25) in the transverse tract (Fig.6).

The Sogamoso catchment drains the axial plateau of the Eastern Cordillera to the north, and is eroding at a rate of 167 mm/ka (LUCN-54; Fig. 6). This catchment is divided into the Suárez catchment in the west and the Chicamocha catchment in the east, which are eroding at a rate of 64 and 228 mm/ka (LUCN-55 and 56), respectively. The upper part of the Suárez catchment is eroding at a rate of 8 and 10 mm/ka (LUCN-46 and 50). The erosion rate for the middle part of the Sogamoso catchment is 46 mm/ka (LUCN-53), and is similar to the erosion rate for the Suárez catchment.

TCN exposure ages for terrace boulders in the Guayuriba basin, assuming zero erosion and considered as minimum ages, range from 257 to 697 ka. However, the ages will be significantly older if we estimate an erosion rate using the oldest boulder age (LUCN-12) by applying the methods of Lal (1991). The erosion rate obtained from the oldest boulder is ~1 mm/ka and if we assume that all the samples erode at this rate, the initial ages with zero erosion will increase by up 50% for ages up to ~700 ka.
However, since we sampled large boulders with no apparent weathering, we can assume that a correction factor for erosion is not really necessary for our ages.

The ranges of ages show significant scatter, but the three oldest samples (LUCN-11 to LUCN-13) clustered particularly well given their antiquity, with a mean age of 656 ± 69 ka. We argue that the two youngest ages probably reflect exhumation of the boulders from the terrace and so we do not use those ages in our incision rate calculation. Given the mean elevation of the three oldest samples is 2129 ± 3 m asl and the elevation in the adjacent valley is ~1723 m asl, we use a height difference of 406 ± 5 m to calculate an incision rate of ~62 mm/ka. This is comparable with the catchment-averaged erosion rates calculated from river sediment from the flank streams.

5. Discussion

Calculated erosion rates for the Eastern Cordillera using 10Be and values of SSP, Mx and χ show clear erosional contrasts between the axial plateau and its flanks. Intra-domain and intra-basin differences are also apparent between regions.

5.1. Drainage network dynamics

Rivers across the flanks of the Eastern Cordillera need more erosion capacity than the longitudinal rivers in the Sabana plateau for river capture to occur (Struth et al., 2015). Higher erosion rates along the flanks of the Eastern Cordillera (>50 mm/ka) compared to the Sabana plateau (<20 mm/ka) suggests that retreat of the main divides and capture of the longitudinal plateau rivers by the transverse flank rivers is occurring. The Guayuriba and the Bogotá catchments provide examples of flank catchments with a drainage area of 200 km² yielding an erosion rate of 79 mm/ka (LUCN-01), whereas the plateau catchments with comparable drainage areas of 163 and 245 km² yield...
erosion rates of 18 (LUCN-30) and 4 mm/ka (LUCN-31), respectively (Fig. 6). For a
plateau catchment with an area of 240 km², an erosion rate of 15 mm/ka (LUCN-15)
was determined, which is lower than a similar size catchment (293 km²) on the eastern
flank that has an erosion rate of 77 mm/ka (LUCN-08). Comparisons between the
Turmequé and Sogamoso catchments also illustrate this contrast; sampled catchments
for Suárez, with areas of 313 and 1186 km², provided rates of 7 and 10 mm/ka (LUCN-
46 and 50). This is markedly different from the Turmequé flank samples from drainage
areas of 460 and 1291 km² that have higher erosion rates of 48 and 59 mm/ka (LUCN-
28 and 25), respectively. These results confirm that the main drainage divides in the
Eastern Cordillera will migrate towards the axial plateau because rivers in the flanks
have more energy (indicted by SSP values) and erosion capacity (reflected in the Mx
values).

A special case is illustrated by comparing the Sabana catchment where sample
LUCN-19 was collected (with a drainage area of 265 km² and an erosion rate of 11
mm/ka) with the Turmequé catchment flank where samples LUCN-45 (65 km², 6
mm/ka) and LUCN-26 (346 km², 15 mm/ka) were collected. This sampled area round
these samples was interpreted by Struth et al. (2015) as a drainage capture zone on
the basis of topography, featuring a depressed topographic profile and a mapped
reentrant toward the west of the main divide, and of the occurrence of knickpoints
upstream of a fluvial elbow (sharp change in the river channel direction) in map view.
Similar erosion rates on both sides of the drainage divide in the Turmequé area argue
in favor of drainage capture. In addition, the \(\mathcal{I} \)-values map shows that the upper part of
the Turmequé catchment was part of the plateau area in the past and is now
incorporated into the flank domain (Fig. 5B1).

As documented by Struth et al. (2015), the Eastern Cordillera of Colombia has
clear geomorphic differences between its flanks and axial zone, which includes the
Sabana de Bogotá and the southern low-relief part of the upper Sogamoso catchment.

http://mc.manuscriptcentral.com/esp
Comparison of the geomorphic indices and the erosion rate results with the drainage divide features argue for capture processes. This confirms the view of Struth et al. (2015) and Babault et al. (2013) who proposed drainage divide migration and a longitudinal to transverse drainage rearrangement in the Eastern Cordillera.

Correlation of erosion rates with Mx values (Fig. 9) is stronger than with the SSP (Fig. 8). The SSP is, at a first order, a function of precipitation, slope and drainage area. Calculation of the SSP from a series of raster measurements and the low-resolution data of the DEM or the precipitation provide equivocal results. Mx is solely a function of the elevation and distance of the river profile, providing a more realistic value to describe the steepness of the river reaches.

5.2. Calibration of geomorphic parameters

The links between erosion rates and SSP or Mx have been examined in previous studies (e.g., Kirby and Whipple, 2012; Perron and Royden, 2013, 2003; Safran et al., 2005; Bookhagen and Strecker, 2012). Our data reveal high erosion rates derived from samples located on the flanks of the Eastern Cordillera (which show high SSP) and in the northern parts of the Sogamoso basin, and low rates for the axial plateau (Sabana de Bogotá, upper part of Turmequé basin and southern part of the Sogamoso basin).

Geomorphic indices cluster into four groups (A, B, and C in Fig. 8B). Group A comprises Sogamoso catchment samples from the most incised northern part of that catchment (LUCN-53, 54, 55, 56). Group B is associated with flanks that are characterized by high relief, and group C includes the lowest relief area samples. Group C is subdivided into C’, including samples with flank characteristics but with lower relief (LUCN-25, 27, 28 and 01), and C”, with plateau characteristics (LUCN-19, 26, 31, 33, 45, 46, 50).
Erosion rates and the catchment-wide average Mx values correlate positively (Fig. 9). Despite the four samples having different lithologies, climate and uplift conditions (dashed box in Fig. 9), a polynomial equation is defined for the rest of samples (Trend A = red line in Fig. 9). Trend A reflects samples with similar lithologies and in areas of similar precipitation and uplift. This trend is linear and can be expressed in the form:

\[E = a_1 \cdot Mx \] (4)

where \(a_1 \) is 12.28.

Equation 4 might be used as a proxy for estimating erosion rates when TCN data are not available or cannot be obtained. However, the applicability of equation 4 for the shale-rich western flank of the Eastern Cordillera of Colombia might be problematic. This is because the western flank is a shale-dominated area with more erodible rocks while the eastern flank is composed of alternating of sandstone and shale formations that are more resistant; hence application of equation 4 for the western side will provide underestimates of the erosion rates.

5.3. Local climatic, bedrock and tectonic effects

Classifying our samples into 4 groups, according to their erosion rates, provides an additional means of differentiating between the axial plateau and the cordillera flanks (Fig. 10):

GroupI represents the plateau domain, with the lower erosion rate values (<20 mm/ka). This area is a relatively little tectonically deformed belt of the cordillera (e.g., Mora et al., 2008, Teixell et al. 2015), and is associated with longitudinal, structure-controlled fluvial drainage. Samples LUCN-26 and 45 are not located on the plateau,
but the low relief of these catchments and the longitudinal trend of the rivers suggest they were part of the plateau in the past.

Group II samples represent an incised domain, including some of the samples located in the flanks and in the Sogamoso catchment (Suárez River). The samples located in this group are from high-energy rivers that are transverse to the chain, and cut across the structural grain.

Group III includes only two samples, LUCN-54 (167 mm/ka, Sogamoso river) and LUCN-56 (228 mm/ka, Chicamocha river). The difference between erosion rates for these samples and the adjacent catchments, 46 mm/ka (LUCN-53) compared to 64 mm/ka (LUCN-55), correlates with a difference in climate, vegetation cover and rock strength. Basement composed of low- and medium-grade metamorphic rocks is exposed in the upper and medium part of the Chicamocha basin (LUCN-56), and the region has little vegetation. In contrast, the Suárez river basin (LUCN-55) mainly traverses alternating Cretaceous sandstone and shale formations. In terms of erodibility, and according to Castro (1992) and González and Jiménez (2015), basement rocks are more erodible than Cretaceous sedimentary rocks. Moreover, erosion is enhanced because of the lack of vegetation cover in the upper and middle part of the Chicamocha basin. The Chicamocha valley has an arid microclimate unlike any other part of the Eastern Cordillera. The valley is very narrow and the obtained data (Fig. 2) from the few pluviometer stations do not reflect the real conditions inside it, resulting in overestimates of precipitation. The Cocuy-Santander massif to the east and the Floresta massif to the west bound the Chicamocha valley (Fig.1). These massifs form an orographic barrier and result in a rain shadow zone within the Chicamocha valley. The Chicamocha river is characterized by a very high mean Mx (~ 8.13) with steep hillslopes and an erosion rate of 228 ± 32 mm/ka. The Suárez river (sample LUCN-54) mainly flows across Cretaceous formations and Mx values are low (~ 5.92), with an erosion rate of 63.8 ± 8.6 mm/ka. The Chicamocha catchment, with higher...
erosion rate, has lower precipitation than the Suárez catchment, which is similar to the Sabana de Bogotá. If high precipitation results in large erosion rates, then higher erosion rates would be expected in the wetter Suárez catchment than in the Chicamocha catchment; but this is not the case. We propose that the high erosion rate in the Chicamocha valley is related to the local “semiarid” conditions, low vegetation cover and more erodible bedrock, all of which will enhance the erosion capacity. We underline the importance of rock type in determining the magnitude of the erosion within similar topographic domains, as shown in other studies in dynamic settings where higher denudation rates that have been related to high erodibility of the rocks (e.g., Salgado et al., 2008; Chadwick et al., 2013; Bierman et al., 2014; Pupim et al., 2015). Safran et al. (2005) showed that the rock type might play a secondary non-dominating role in catchment-averaged erosion rates in the Bolivian Andes, where high erosion rates were found in catchments that have weak or resistant bedrock. That work proposed that uplift had first order effect on erosion rates, with rock type playing a second order effect, and climate had little if any influence on erosion. However, rock type, vegetative cover and climate have a first order effect on erosion in the Eastern Cordillera of Colombia.

Group IV is composed only by two samples, LUCN-05 (479 mm/ka) and LUCN-06 (670 mm/ka), which yielded strongly different erosion rates compared with the rest of the Guayuriba catchment samples, as for example the sample LUCN-03 with an erosion of 73 mm/ka. Group IV samples are located in the Quetame basement massif (that is easily eroded), characterized by higher precipitation values and younger exhumation ages (e.g., Mora et al., 2008, 2010; Parra et al., 2009a) than in the upper part of the catchment, as indicated by greater erosion and incision (see Fig. 2). The combination of greater precipitation and exhumation defines a closed feedback erosive cycle, in accordance with the high erosion rates determined for this area.
Up to 150 mm/ka differences in erosion rates are observed in catchments within the same topographic domain (Fig. 6). The difference between the Suárez (64 ± 9 mm/ka) and Chicamocha (228 ± 32 mm/ka) catchments is likely due to a combination of precipitation and lithologic effects. Erosion rates in the eastern flank catchments are not homogeneous, as is, reflected by the Guayuriba basin showing higher erosion rates, relief and incision values than the Turmequé catchment (Figs. 2 and 11).

The contrast in erosion rates described above argues for different fluvial dynamics between the Guayuriba and Turmequé catchments. The upper part of the Turmequé catchment has clearly been captured, as suggested by geomorphic analysis in Struth et al. (2015). Our current work adds new analysis using the χ and SSP values suggesting a rearrangement of the axial longitudinal drainage by transverse rivers that traverse the flanks of the cordillera. The disequilibrium in the χ values for both sides of the eastern and central divides suggests drainage divide migration toward the inner part of the plateau’s interior and to the north, respectively. This drainage divide migration is more evident for the Turmequé catchment than for the Guayuriba catchment. This supports the view of Struth et al. (2015) who suggested that the Turmequé area was a captured reentrant.

The different geomorphic characteristics of the eastern drainage divide and between the two catchments are interpreted as the result of the competition between uplift and erosion. In the Guayuriba catchment, the erosive potential results from the high contrast between slopes during mountain building and the active tectonics in the basin that has young thermochronologic ages (Mora et al., 2008, 2010; Parra et al., 2009a; Fig. 2), arguing for high erosive potential to compensate the high uplift in the foothills of the flanks. In this way, the upstream propagation of erosion and then, the capture and divide migration is less probable in a catchment with low exhumation such as the Turmequé catchment.
Struth et al. (2015) interpret the different river dynamics between the flanks and the axial plateau of the Eastern Cordillera as a product of mountain building and drainage development. As such there was progressive increase in the regional slope caused by the accumulation of crustal shortening and thickening, as documented for the Moroccan High Atlas (Babault et al., 2012). Essentially, the contrast in regional slopes results in different erosion rates and topographic dynamics across the Eastern Cordillera. Variations in local precipitation, tectonics and bedrock within a basin may also influence its erosion dynamics, and may have played a secondary role in the dynamism of divide migration and landscape evolution.

6. Conclusions

A smooth axial plateau flanked by steep topographic belts characterizes the Eastern Cordillera of Colombia. New \(^{10}\)Be TCN data reveal high erosion rates for catchments along the high-relief flanks of the Eastern Cordillera, with a mean value of 70 \(\pm\) 10 mm/ka (exceeding 400 mm/ka in some catchments). In contrast, the mean erosion rate is of 11 \(\pm\) 1 mm/ka for the low-relief axial plateau. This argues for erosional contrasts between the two domains and a migration towards the plateau of the N-S oriented plateau-flanks drainage divides. Results of digital morphometric analysis, including specific stream power, steepness index and \(\chi\) values confirm the view that the drainage divide in the Eastern Cordillera is asymmetric and is moving by processes of river capture. Drainage reorganization from longitudinal to transverse, dominated by means of a series of river capture events, will lead to a progressive reduction of the extension of the axial plateau of the Eastern Cordillera. The erosional contrast between the two morphologic domains of the Eastern Cordillera was primarily driven by the increase in the orogen regional slope by progressive accumulation of crustal shortening and thickening. Local climate, tectonics and rock type play a secondary role in controlling the erosion rates and the basin dynamics at a local scale.

http://mc.manuscriptcentral.com/esp
Comparison of the TCN-derived erosion rates with the geomorphic digital parameters show positive correlations with SSP and/or Mx. Using our derived equation (4) the Mx-erosion rate plot for the Eastern Cordillera can be applied to help acquire first-order estimates of erosion rates in areas where there are similar lithologic (layered sedimentary rocks in alternating competent and incompetent formations) and pluviometric characteristics, but where no TCN data are available.

Acknowledgments
This work was financed by Spanish MINECO projects CGL2010-15416 and CGL2014-54180-P. L. Struth was supported by a FPI PhD grant (BES-2011-050262) from MECD (Spain). The stay at the University of Cincinnati for TCN analysis was supported by MECD grant EEBB-I-14-08485. We acknowledge Sarah Hammer for laboratory assistance in the University of Cincinnati, and Andrés Mora, Andrés Valencia, Eliseo Tesón and Maria Luisa Arboleya for assistance and discussion during fieldwork. We thank the two reviewers of the manuscript for very constructive comments that significantly improved the original text.

Supporting Information
Supporting figures: Figure S1, Figure S2

References

Geological Society of America Bulletin 120: 1171–1197. DOI: 10.1130/B26187.1

GSA Today 24: 4–11. DOI: 10.1130/GSATG206A.1

Bonnet S. 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geoscience 2: 766–771. DOI: 10.1038/ngeo666

http://mc.manuscriptcentral.com/esp
Godard V, Burbank DW, Bourls DL, Bookhagen B, Braucher R, Fisher GB. 2012. Impact of

Caballero V, Parra M, Mora a., Lopez C, Rojas LE, Quintero I. 2013b. Factors controlling
selective abandonment and reactivation in thick-skin orogens: a case study in the

DOI: 10.1002/esp.3514

http://mc.manuscriptcentral.com/esp

http://mc.manuscriptcentral.com/esp

http://mc.manuscriptcentral.com/esp

http://mc.manuscriptcentral.com/esp
Table 1. Be sample details for rivers of the Eastern Cordillera including location, Be carrier weight and \(^{10}\)Be concentrations measured. Carrier concentration was 1.023 ppm. See sample location in the map of Fig. 3.
Table 2. Description and 10Be ages for the quartzite boulders on a river terrace in the Guayuriba valley with a carrier concentration of 1023 ppm.

See sample location in the map of Figure 3C.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample catchment area (km²)</th>
<th>Avg. elevation (m)</th>
<th>Standard deviation (m)</th>
<th>MATLAB Be P-rate</th>
<th>¹⁰⁷⁷Be concentration (10⁵ at/g)</th>
<th>Attenuation length (m)</th>
<th>Erosion rate (mm/ka)</th>
<th>Rainfall rate (mm/a)</th>
<th>SSP (GJ/m²/a)</th>
<th>Mx (mm/ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUCN-01</td>
<td>200.5</td>
<td>3671</td>
<td>397</td>
<td>21.3 ± 2.8</td>
<td>1.621 ± 0.065</td>
<td>0.6</td>
<td>79.2 ± 10.9</td>
<td>1331 ± 112</td>
<td>39.28 ± 5.08</td>
<td>7.87 ± 2.77</td>
</tr>
<tr>
<td>LUCN-03</td>
<td>526.3</td>
<td>2808</td>
<td>512</td>
<td>18.6 ± 2.4</td>
<td>1.529 ± 0.092</td>
<td>0.6</td>
<td>73.2 ± 10.6</td>
<td>1337 ± 177</td>
<td>51.59 ± 14.28</td>
<td>8.18 ± 2.18</td>
</tr>
<tr>
<td>LUCN-04</td>
<td>658.8</td>
<td>2760</td>
<td>531</td>
<td>18.2 ± 2.4</td>
<td>1.506 ± 0.064</td>
<td>0.6</td>
<td>72.5 ± 10.1</td>
<td>1318 ± 186</td>
<td>53.66 ± 16.34</td>
<td>8.43 ± 2.45</td>
</tr>
<tr>
<td>LUCN-05</td>
<td>2559.7</td>
<td>2726</td>
<td>701</td>
<td>18.1 ± 2.4</td>
<td>0.227 ± 0.034</td>
<td>0.6</td>
<td>479.4 ± 95.8</td>
<td>1678 ± 684</td>
<td>99.71 ± 63.88</td>
<td>9.28 ± 2.93</td>
</tr>
<tr>
<td>LUCN-06</td>
<td>1010.1</td>
<td>3054</td>
<td>685</td>
<td>21.5 ± 2.8</td>
<td>0.193 ± 0.019</td>
<td>0.6</td>
<td>670.7 ± 111.9</td>
<td>1648 ± 453</td>
<td>106.27 ± 53.89</td>
<td>9.81 ± 3.33</td>
</tr>
<tr>
<td>LUCN-07</td>
<td>1334.5</td>
<td>2610</td>
<td>560</td>
<td>16.7 ± 2.2</td>
<td>1.006 ± 0.069</td>
<td>0.6</td>
<td>100.1 ± 14.9</td>
<td>1445 ± 327</td>
<td>71.90 ± 35.86</td>
<td>8.64 ± 2.61</td>
</tr>
<tr>
<td>LUCN-08</td>
<td>293.1</td>
<td>2645</td>
<td>526</td>
<td>17.0 ± 2.2</td>
<td>1.323 ± 0.053</td>
<td>0.6</td>
<td>77.5 ± 10.7</td>
<td>1280 ± 192</td>
<td>57.60 ± 20.30</td>
<td>9.72 ± 2.51</td>
</tr>
<tr>
<td>LUCN-15</td>
<td>259.9</td>
<td>3352</td>
<td>278</td>
<td>24.7 ± 3.2</td>
<td>9.630 ± 0.152</td>
<td>0.6</td>
<td>15.4 ± 2.0</td>
<td>1202 ± 149</td>
<td>33.33 ± 2.16</td>
<td>5.08 ± 1.57</td>
</tr>
<tr>
<td>LUCN-19</td>
<td>205.3</td>
<td>2910</td>
<td>189</td>
<td>19.4 ± 2.5</td>
<td>10.247 ± 0.219</td>
<td>0.6</td>
<td>11.4 ± 1.5</td>
<td>923 ± 151</td>
<td>17.62 ± 3.77</td>
<td>2.44 ± 1.46</td>
</tr>
<tr>
<td>LUCN-25</td>
<td>1291.2</td>
<td>2605</td>
<td>394</td>
<td>16.5 ± 2.1</td>
<td>1.668 ± 0.051</td>
<td>0.6</td>
<td>59.5 ± 8.0</td>
<td>1094 ± 207</td>
<td>39.53 ± 18.37</td>
<td>5.32 ± 2.37</td>
</tr>
<tr>
<td>LUCN-26</td>
<td>345.6</td>
<td>2742</td>
<td>286</td>
<td>17.7 ± 2.3</td>
<td>6.790 ± 0.121</td>
<td>0.6</td>
<td>15.7 ± 2.0</td>
<td>982 ± 81</td>
<td>30.12 ± 8.77</td>
<td>3.73 ± 1.42</td>
</tr>
<tr>
<td>LUCN-27</td>
<td>977.2</td>
<td>2798</td>
<td>325</td>
<td>17.4 ± 2.3</td>
<td>1.974 ± 0.055</td>
<td>0.6</td>
<td>53.1 ± 7.1</td>
<td>1008 ± 98</td>
<td>31.79 ± 11.81</td>
<td>4.66 ± 1.85</td>
</tr>
<tr>
<td>LUCN-28</td>
<td>459.9</td>
<td>2749</td>
<td>325</td>
<td>17.9 ± 2.3</td>
<td>2.234 ± 0.074</td>
<td>0.6</td>
<td>48.1 ± 6.5</td>
<td>957 ± 98</td>
<td>25.94 ± 5.48</td>
<td>4.82 ± 1.59</td>
</tr>
<tr>
<td>LUCN-30</td>
<td>162.5</td>
<td>3010</td>
<td>200</td>
<td>20.5 ± 2.7</td>
<td>6.777 ± 0.177</td>
<td>0.6</td>
<td>182.2 ± 2.4</td>
<td>1045 ± 110</td>
<td>21.58 ± 6.12</td>
<td>6.48 ± 1.11</td>
</tr>
<tr>
<td>LUCN-31</td>
<td>244.6</td>
<td>2961</td>
<td>264</td>
<td>20.0 ± 2.6</td>
<td>30.527 ± 0.398</td>
<td>0.6</td>
<td>3.9 ± 0.5</td>
<td>1522 ± 180</td>
<td>19.26 ± 7.52</td>
<td>3.35 ± 1.43</td>
</tr>
<tr>
<td>LUCN-33</td>
<td>134.9</td>
<td>3072</td>
<td>250</td>
<td>21.2 ± 2.8</td>
<td>15.483 ± 0.415</td>
<td>0.6</td>
<td>8.3 ± 1.1</td>
<td>1054 ± 125</td>
<td>19.54 ± 2.98</td>
<td>3.12 ± 1.83</td>
</tr>
<tr>
<td>LUCN-45</td>
<td>64.9</td>
<td>3119</td>
<td>174</td>
<td>21.8 ± 2.8</td>
<td>23.828 ± 0.665</td>
<td>0.6</td>
<td>5.5 ± 0.7</td>
<td>1097 ± 133</td>
<td>20.52 ± 0.57</td>
<td>2.8 ± 0.57</td>
</tr>
<tr>
<td>LUCN-46</td>
<td>313.4</td>
<td>2592</td>
<td>305</td>
<td>16.3 ± 2.1</td>
<td>12.878 ± 0.284</td>
<td>0.6</td>
<td>7.6 ± 1.0</td>
<td>1072 ± 90</td>
<td>17.46 ± 3.02</td>
<td>1.89 ± 1.28</td>
</tr>
<tr>
<td>LUCN-50</td>
<td>1185.8</td>
<td>2545</td>
<td>401</td>
<td>16.0 ± 2.1</td>
<td>9.816 ± 0.191</td>
<td>0.6</td>
<td>9.8 ± 1.3</td>
<td>1221.61 ± 268.18</td>
<td>34.50 ± 22.07</td>
<td>3.58 ± 3.07</td>
</tr>
<tr>
<td>LUCN-53</td>
<td>2083.3</td>
<td>2251</td>
<td>738</td>
<td>14.0 ± 1.8</td>
<td>1.822 ± 0.044</td>
<td>0.6</td>
<td>46.4 ± 6.2</td>
<td>2101.85 ± 577.49</td>
<td>80.70 ± 29.59</td>
<td>5.72 ± 2.12</td>
</tr>
<tr>
<td>LUCN-54</td>
<td>20153.1</td>
<td>2441</td>
<td>777</td>
<td>15.9 ± 2.1</td>
<td>0.572 ± 0.067</td>
<td>0.6</td>
<td>167.1 ± 29.6</td>
<td>1618.68 ± 630.75</td>
<td>95.79 ± 91.41</td>
<td>7.01 ± 4.78</td>
</tr>
<tr>
<td>LUCN-55</td>
<td>9789.2</td>
<td>2232</td>
<td>650</td>
<td>13.7 ± 1.8</td>
<td>1.295 ± 0.039</td>
<td>0.6</td>
<td>63.8 ± 8.6</td>
<td>1889.11 ± 716.5</td>
<td>78.81 ± 60.33</td>
<td>5.92 ± 4.78</td>
</tr>
<tr>
<td>LUCN-56</td>
<td>9307.1</td>
<td>2792</td>
<td>720</td>
<td>15.1 ± 2.5</td>
<td>0.504 ± 0.021</td>
<td>0.6</td>
<td>228.4 ± 31.7</td>
<td>1360.68 ± 399.12</td>
<td>86.02 ± 59.49</td>
<td>8.13 ± 4.72</td>
</tr>
</tbody>
</table>

Table 3. ^¹⁰⁷⁷Be TCN data for samples of the Eastern Cordillera. Also shown are rainfall, SSP and Mx values for each sampled basin.
Supplementary Data

SD1: AICc versus m/n plots for the studied basins. The main value is 0.45
SD2: Chi plots for m/n ratio of 0.45 and the Figure 1 of the main text for location reference.
ERROR: syntaxerror
OFFENDING COMMAND: --nostringval--

STACK:
false