

1 **Building-Integrated Rooftop Greenhouses: An Energy and Environmental Assessment in the**
2 **Mediterranean Context**

3 Ana Nadal^{1*}, Pere Llorach-Massana^{1,2}, Eva Cuerva³, Elisa López-Capel⁴, Juan Ignacio Montero⁵,
4 Alejandro Josa^{6,7}, Joan Rieradevall^{1,8}, Mohammad Royapoor⁹.

5 ¹Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (ICTA), Universitat
6 Autònoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain.

7 ²ELISAVA Barcelona School of Design and Engineering, La Rambla 30-32, 08002 Barcelona, Spain

8 ³Group of Construction Research and Innovation (GRIC). Department of Projects and Construction Engineering,
9 Universitat Politècnica de Catalunya-BarcelonaTech. Diagonal 647, Ed. H, 08028, Barcelona, Spain.

10 ⁴School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

11 ⁴ Institute of Food and Agricultural Research (IRTA), Carretera de Cabrils, km 2, 08348 Barcelona, Spain

12 ⁶Department of Civil and Environmental Engineering, School of Civil Engineering, Universitat Politècnica de
13 Catalunya (UPC-BarcelonaTech), Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Spain.

14 ⁷Institut of Sustainability (IS.UPC), Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Campus Nord, C/Jordi
15 Girona 31, 08034 Barcelona, España.

16 ⁸Department of Chemical Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra,
17 Barcelona, Spain.

18 ⁹Sir Joseph Swan Centre for Energy Research, Stephenson Building, Newcastle University, Newcastle upon Tyne NE1
19 7RU, United Kingdom.

20 * Corresponding author. Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain. Tel: +34
21 935868644.

22 E-mail addresses: ana.nadal@uab.cat, ana.nadal.fuentes@gmail.com (A.Nadal)

23 Mohammad.Royapoor@newcastle.ac.uk (M. Royapoor)

25 **Abstract**

26 A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in
27 several of The United Nations' 17 sustainable development goals. The integration of urban agriculture in
28 buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully
29 integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the
30 Autonomous University of Barcelona. This design seeks to interchange heat, CO₂ and rainwater between
31 the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5°C
32 (winter) and 25.79°C (summer), making the iRTG an ideal growing environment. Using detailed
33 thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil
34 temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent
35 'freestanding' greenhouse. The validated result shows that the thermal interchange between the iRTG and
36 the ICTA-ICP building has considerable moderating effects on the iRTG's indoor climate; since average
37 hourly temperatures in an equivalent freestanding greenhouse would have been 4.1°C colder in winter and
38 4.4°C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the
39 iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m²/yr) from the main building in
40 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses heated with
41 oil, gas or biomass systems, the iRTG delivered an equivalent carbon savings of 113.8, 82.4 or 5.5
42 kg.CO₂(eq)/m²/yr, respectively, and economic savings of 19.63, 15.88 or 17.33 €/m²/yr, respectively. Under

43 similar climatic conditions, this symbiosis between buildings and urban agriculture makes an iRTG an
44 efficient resource-management model and supports the promotion of a new typology or concept of buildings
45 with a nexus or symbiosis between energy efficiency and food production.

46

47 **Keywords**

48 Rooftop greenhouse, Building performance simulation, Measured energy data, Energy Plus, Energy-food
49 nexus, Building-rooftop greenhouse symbiosis.

50 **Abbreviations:**

51 ICTA-ICP, Institute of Environmental Science and Technology (ICTA) and Catalan Institute of
52 Paleontology (ICP).

53 iRTG, Integrated rooftop greenhouse

54 RTG, Rooftop greenhouse

55 UA, Urban agriculture

56

57

Post-print of Nadal, Ana et al. «Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context» in Applied Energy (Elsevier), Vol. 187 (February 2017), p. 338-351. The final version is available at DOI [10.1016/j.apenergy.2016.11.051](https://doi.org/10.1016/j.apenergy.2016.11.051)

58 **1 Introduction**
59

60 Buildings account for approximately half of the world's primary energy consumption [1–3], and agriculture
61 and food production are reported to consume between 13–15% of total energy in developed countries [4–
62 6]. Greenhouses are one of the most energy-demanding components of the agricultural industry [7–9]
63 because ideal climatic conditions are created by closely controlling internal temperature and humidity levels
64 for satisfactory plant growth in central and northern Europe.

65 While the decarbonisations of these two sectors require different solutions, an interesting possibility exists
66 with an urban agriculture concept in which additional efficiencies can be derived from the integration of
67 buildings and food production. A rooftop greenhouse (RTG), whereby soil-free farming methods such as
68 hydroponics or aeroponics [10–12] may be integrated into a building, is an example. Although considerable
69 amounts of non-renewable energy are conventionally used to operate greenhouses in central Europe, an
70 integrated method could help decarbonise greenhouse-based food production and promote more efficient
71 and sustainable greenhouse heating [13,14]. Empirical data are missing in this area, and this has formed the
72 foundation of this work: full annual results are presented for the operational characteristics of the world's
73 first case of a fully-integrated rooftop greenhouse for scientific research. Within this article, ICTA-ICP
74 refers to the entire building under study; the integrated rooftop greenhouse (iRTG) is used to refer to the
75 rooftop greenhouse.

76 The objective of this paper is, therefore, (a) to report the measured annual data that outlines the symbiosis
77 between the iRTG and the building in energy terms and (b) using computer simulation, to quantify the
78 heating energy that iRTG has passively and actively recycled from the ICTA-ICP. The reduced
79 environmental impact resulting from this integration is then calculated using $\text{kg.CO}_2(\text{eq})/\text{m}^2/\text{yr}$ as the index.
80 In doing so, the advantages offered by the iRTG concept relative to a conventional freestanding greenhouse
81 are highlighted. While reporting the first scientific case for support on the application and feasibility of an
82 iRTG; the findings also redefine a unique typology or concept of building design that can have a nexus or
83 symbiosis between energy efficiency and food production worldwide as a strategy in support of food
84 security and green urbanism. While seeking to offer an original perspective on the theme of integration of
85 greenhouses in buildings and demonstrating the viability of this concept, this work also highlights the need
86 for further research in the adaptation of iRTG concept under various urban energy and operational systems
87 and climatic conditions around the world.

88 **1.1 Global urbanisation and the food challenge**

89 The United Nations, in its 2010 perspective, noted that more people live in urban settings than in rural
90 areas. The projection of this trend is that world urbanisation will increase from 50% in 2009 to 69% in 2050
91 [15]. A total of 75% of the EU population currently lives in cities, a percentage that is expected to rise to
92 80% by 2020 [16]. This high concentration of people in cities has major socio-economic ramifications, and
93 food production and its supply and security requires closer examination [17].

94 According to figures provided by the Food and Agriculture Organization of the United Nations (FAO),
95 almost a billion people suffer from malnutrition, and four hundred million are chronically undernourished
96 [18]. Conversely, urbanisation has generated a two-pronged nutritional burden: nutritional deficiencies and
97 the emergence of over-nutrition among vulnerable groups in urban areas [19]. In recognition of this, the
98 concept of urban agriculture (UA) seeks to offer innovative solutions to ensure the environmental and
99 economic sustainability of food supplies within urban contexts and also to promote food of high nutritional
100 quality.

101 Urban agriculture ranges from entirely commercialised agricultural facilities to production at the household
102 level [20] and usually complements rural agriculture [21]. Urban agriculture is a historical reality in
103 developing countries [22,23], where even today 800 million people are engaged in urban agriculture,
104 producing 15 to 20% of the world's food [24]. It is believed that 10-20% of the nutritional needs of families
105 living in urban areas in developing countries are met by the consumption of fruits and vegetables from
106 urban agriculture [21].

107 Because of its adaptability to any built environment and typology, urban agriculture's benefits encompass
108 economic, social and environmental elements [25]. In urban areas of relatively high residential density with
109 mixed land use and limited access to green spaces for food production, rooftop greenhouses (RTGs) can
110 provide the opportunity for cities to produce high-nutrient food with maximum efficiency, minimising
111 production and transport costs and optimising space use in a built environment where buildings can foster
112 food production.

113 **1.2. Conventional greenhouses**

114 Greenhouses, regardless of their degrees of complexity, attempt to provide ideal conditions for adequate
115 plant growth throughout the year [26,27]. The principal regulated parameters are light, temperature,
116 humidity and air quality [28–30]. The origin of the greenhouse goes back to ancient times. They were

117 popular during 15th to 18th centuries in France, England and the Netherlands, but their use for commercial
118 production began only in the mid-19th century, increasing after 1945 [26] and culminating in today's
119 widespread deployment in Europe. More specifically, the estimate for the European Mediterranean region
120 is more than 200,000 ha of in-use greenhouses in 2006 and 1,950,000 ha by 2010. Spain had 53,842 ha
121 during 2005, and in 2009, Almería possessed a total of 27,000 ha [31].

122 Specifically, the Mediterranean area ecosystems have the characteristics of several regions in the world,
123 such as southern Chile, California, the European Mediterranean basin, Cape Province in South Africa, and
124 southwest Australia [32,33]. In the European Mediterranean basin, the development of Mediterranean
125 horticulture was reshaped by the energy crisis in the 1970s, when low-cost plastics and local materials were
126 used to build the first generation of widely deployed greenhouses. A basic Mediterranean greenhouse is
127 characterised by large inner volumes within a low-cost structure (i.e., low-cost polyethylene roof and walls),
128 total transparency, natural ventilation, no heating, limited use of climate control systems, and stability with
129 respect to wind and thermal screens [34,35]. The seasonal operational regime of Mediterranean greenhouses
130 seeks the maximisation of solar irradiation and the minimisation of thermal energy loss (autumn and
131 winter), as well as the reduction of excess temperatures in spring and summer [36–38]. High temperatures
132 and high solar radiation can affect the development of crops, especially tomatoes [39,40], so the use of
133 shading and efficient ventilation systems is required. Natural ventilation is the most economical method to
134 reduce excess heat build-up in greenhouses, but as it is totally dependent on external conditions, it may be
135 insufficient [41]. The most efficient systems use electrically powered forced ventilation, which
136 understandably require electricity estimated at 100,000 kWh annually per greenhouse hectare, under high
137 outside temperatures and intense solar radiation (common summer conditions in Mediterranean countries);
138 such systems use a static ventilation fan pressure of approximately 30 Pa on the leeside or the lee end of
139 the greenhouse with two fans placed 8–10 m apart and an inlet opening on the opposite side of least 1.25
140 times the fan area and an air speed of 0.5 m/s [37].

141 Generally, some energy use is unavoidable and results in energy accounting for 10–30 percent of total
142 production costs (depending on the region). In Mediterranean areas, the annual energy consumption for
143 space conditioning is 139–444 kWh/m², which arises from winter night heating requirements (and is
144 increasingly being adopted [37]), although the majority of Mediterranean greenhouses remain unheated.

145 The high cost of energy, climate concerns and new environmental policies have brought about the challenge
146 of reducing the energy input into the greenhouse system while maintaining or increasing production per
147 unit of energy [37,42].

148 **1.3 Energy and food production in buildings**

149 Modern cities are unfortunately dependent for the most part on a consistent supply of fossil fuels, and the
150 urban lifestyle is becoming more energy-intensive worldwide [43]. Global demand for fossil fuels has risen
151 more rapidly than production; in the build-up to 2014, energy use worldwide grew by one-third, driven
152 primarily by developing areas such as India, China, Africa, the Middle East and Southeast Asia [44].

153 The energy used by the building sector continues to increase; worldwide, 30-40% of all primary energy is
154 used in buildings [45]. One third of energy-related CO₂ emissions and two thirds of halocarbon emissions
155 worldwide are attributed to buildings [46]. Electricity consumption in the commercial building sector
156 doubled between 1980 and 2000 and is expected to increase by another 50% by 2025 [47]. Nonetheless,
157 the Intergovernmental Panel on Climate Change indicates that buildings provide the most economic
158 mitigation potential for reducing CO₂ emissions, with a global potential of cost-effectively reducing
159 approximately 29% of the projected baseline emissions by 2020 in the residential and commercial sectors
160 [48].

161 On the other hand, food supply to urban areas is a complex issue and a major energy consumer. The flow
162 of food to cities follows a complex and linear model [10] defined by importing resources and exporting
163 emissions, leading to high lifecycle utilisation per kg food unit of energy resources, waste and CO₂
164 emissions [49]. Where the concept of food production and building energy use has been united is in the use
165 of the rooftop greenhouse (RTG) in Mediterranean cities; these have reduced building cooling and heating
166 loads due to improved roof insulation, with reductions of up to 40 percent being reported for specific case
167 studies [50].

168 The RTG concept has also been adapted in urban areas of Canada and the US, with examples including
169 Lufa Farms (31,000 m² RTG in Montreal), The Vinegar Factory (830 m² RTG in Manhattan, NYC),
170 Gotham Greens (15,000 m² RTG in New York) [51,52], and Sky vegetables (743 m²) [53] and The
171 Greenhouse (130 m²) on the roof of Public School 333 [54], both in NYC. Also in NYC, the Arbor House
172 with a 1000 m² greenhouse, using waste heat from below to heat a greenhouse building [55], captures 225
173 MWh / year of waste heat (26 kW avg). Research or social benefits have remained the driving forces for

RTG adaption in other countries; for example, Japan, specifically Tokyo, has developed Pasona HQ Tokyo Urban Farm (4,000 m² RTG) [56]. In Europe, Germany has some examples of implementation (In Farming of Fraunhofer, UMSICHT) [57]; the United Kingdom is currently constructing the new Urban Science Building at Newcastle University with a rooftop greenhouse planned [58], and Urban farmers in Switzerland (250 m²) and the opening in 2016 in The Hague of the UF002 De Schilde (1900 m²) [59] are also examples. Spain has the first building designed principally from the start to have an integrated building RTG (i-RTG), the ICTA-iRTG at the Autonomous University of Barcelona (UAB) [60]. The driving design principles were the creation of a building that enabled a synergetic relationship between food production and building management by recycling and integration of energy, CO₂ and water. Such a symbiosis is hoped to reduce the environmental impacts of buildings and ultimately cities. Inaugurated in 2014, this integrated greenhouse is producing four crops per year: two crops of tomatoes “*cor de bou*” (ox heart at a productivity rate of 16.2 kg per m²) and two intermediate crops of lettuce. This innovative agricultural production system showcases how the building integration of a rooftop greenhouse (i-RTG) improves a building ‘metabolism’ by the direct flow exchange of energy, water and CO₂ [60].

1.4 The iRTG concept

The *Integrated Rooftop Greenhouse* (iRTG) is presented from an industrial ecology perspective as a system that incorporates urban agriculture into new or existing building rooftops in the city and consists of a greenhouse interconnected with its host building in terms of energy, water and CO₂ flows. As a new approach to sustainable urban food production, iRTG is based on four main pillars: (1) the incorporation of the concept of symbiosis between a rooftop greenhouse and the building by means of reusing residual resource flows (energy, water and CO₂), (2) the inter-connectivity of resource flows between iRTG and the building, in that the greenhouse is not an isolated element outside the main building envelope, but an integral part that requires consideration at the concept stage of building design, (3) environmental impact reduction and high energy efficiency as a critical concept, (4) facilitation of the production of quality food using building rooftops and generation of food production self- sufficiency in the urban context. Given the global need for responsible energy consumption in buildings and the urgency to secure food supplies, the contribution of this project is principally a design concept that creates a nexus or symbiosis between building energy flow and food production. Thus, the expansions of cities can be seen as an opportunity and not as an obstacle to maintain a secure food supply and energy efficiency.

203 The iRTG concept seeks to generate changes in the current conception of buildings as unproductive
204 elements. Through iRTG, a building can be viewed as an element that, in addition to meeting the need for
205 cover and protection, has the ability to support food production - regardless of its location around the world.
206 Megacities (Shanghai, Mexico City, Osaka, Beijing, NYC and others) and developing cities have
207 considerable artificialised areas and huge populations; the development of iRTG's affords the opportunity
208 to produce and consume zero km vegetables with no increases in the energy consumptions of the buildings.
209 That is, the concept of iRTG seeks to change the heterotrophic ecosystem of cities to an autotrophic urban
210 ecosystem that does not require food imports from rural areas.

211 Despite the various benefits that can derive from the iRTG, there are only a limited number of studies
212 around the world that address the issue, and these are from a mostly theoretical point of view. In Singapore,
213 Astee (2010)[61] explored the feasibility of the implementation of an iRTG for growing vegetables in
214 blocks of public housing in the city of Tampines; in New York, the architectural firm Kiss + Cathcart
215 Architects provides the services of integrating food production into the building through hydroponics
216 farming systems, though there is no information on actual cases [62]. In Brussels, the architectural firm
217 Lateral Thinking Factory has proposed the theoretical design of an Integrated Building Greenhouse in the
218 city of Louvain la Neuve, but the information is limited [63]. In Berlin, the Watergy Prototype 2 is being
219 built, in which the greenhouse provides fruit by utilising the residual air of the building [64]. To date
220 however, the only case designed and built for scientific research in urban agriculture is the ICTA-iRTG.
221 Part of the importance of this case study lies in it being the only scientifically documented case that provides
222 current data for comparison with other urban agriculture projects.

223 **2 The case-study building**
224

225 **2.1 Overview**

226 Located at the Autonomous University of Barcelona (UAB) campus (Bellaterra, Barcelona), the ICTA-ICP
227 building (see Fig. 1) houses the headquarters of the Institute of Environmental Science and Technology
228 (ICTA) and the Catalan Institute of Paleontology (ICP). The building was awarded LEED-Gold®
229 certification (Leadership in Energy & Environmental Design) by the U.S. Green Building Council for its
230 building-integrated agriculture philosophy, multifunctionality and passive systems that promote energy
231 efficiency.

232 The building has a surface area of 7,200 m² distributed over 7 floors (5 levels above ground and 2 below).
233 The two sub-ground levels are used for car parking and storage, while the first four levels above ground are
234 equipped with offices, laboratories and common areas; and the fifth level houses four greenhouses for food
235 production (measuring 128 m² each). Currently, only two of the four greenhouses are functional; this work
236 reports data from one of these (referred to as the iRTG). The main structure and floors of the ICTA-ICP
237 building are of reinforced concrete; the internal walls are recycled wood, and the roof and outer skins are
238 made of polycarbonate, which facilitates an ideal environment for crop growth and daylighting the interior
239 spaces.

240 The translucent nature of the building fabric facilitates passive heating in winter and aids displacement
241 ventilation during summer (via 4 internal atriums and a double-skin facade). Displacement natural
242 ventilation is facilitated through the opening of windows and skylights in the building outer skin. The
243 ventilation simply renews the air as outer skin inlets allow fresh intake to travel horizontally into offices
244 (via internal windows) and rise vertically via four internal atria before exhausting through the skylights
245 (zenith ventilation). A concrete structure with high thermal inertia, coupled with building passive comfort
246 systems, maintains a thermal anchor to minimise the active heating and cooling input of a ground-source
247 heat pump (only to the internal workspaces and the laboratories). The iRTG does not have designated
248 mechanical heating but, as outlined in the next section, benefits from the building's thermal stability. Its
249 integration with the building is unidirectional (from building to greenhouse only). In this sense, the iRTG
250 utilises exhaust air from the building for heating; the higher CO₂ concentration and humidity of this residual
251 air also act as natural fertilisers to increase crop yields. The integration is direct if the residual air comes
252 from laboratories (discharged directly into the iRTG via service ducts) or indirect if it comes from the
253 common areas of the building (arriving into the iRTG via four atria).

254

255 Fig. 1. The ICTA-ICP building and the iRTG.

256 The iRTG greenhouse has modifications in form and building materials compared to the standard typology
 257 of traditional Mediterranean greenhouses to reflect its building-integrated nature. To comply with the
 258 Spanish Technical Edification Code (CTE) (RD 314/2006 (BOE 2006)) and fire safety laws (RD 2267/2004
 259 (BOE 2004), Law 3/2010 (BOE 2010), the greenhouse galvanised steel structure was reinforced to
 260 withstand horizontal wind loads. Polycarbonate sheeting was used for the roof and walls because of its high
 261 solar transmittance.

262 The iRTG reported in this work has an area of 128 m² (6.55 m wide × 19.55 m long) with a two-span gable
 263 roof with 45° roof slopes (4.20 m high at the gutter and 5.80 m at the ridge). Awning windows mounted on
 264 sidewalls with a maximum opening angle of 45 degrees provide ventilation. The crop area is 84.34 m² and
 265 achieved a total production of 989 kg of tomatoes during the spring-summer period, 85% of which met
 266 commercial product requirements (with the remainder edible but not marketable). The greenhouse uses a
 267 thermal screen and low-density polyethylene (LDPE) curtains to both improve internal heat conditions and
 268 insulate the space from the rest the building and excessive influence of the outer skin. The thermal screen
 269 is similar to those deployed across the Mediterranean region to reduce incident solar radiation. Both the
 270 curtains and the thermal screen are operated automatically as a function of the temperature inside the
 271 greenhouse.

272

273 **2.2 Thermal exchanges and controls**

274 There are two thermal interaction paths between the iRTG and the building: the ventilation air from
 275 occupied spaces delivered to iRTG via air handling units (AHUs) and the displacement ventilation and air
 276 heated by solar radiation rising through the double skin cavity (that terminates at the iRTG - see Fig. 2).

277 The objective is that the cumulative effect of these heat transfers provide the iRTG with optimal thermal
 278 conditions (14-26°C) for Mediterranean horticultural crop production in a closed system throughout the
 279 year [65].

Building mode	Season	Date	Heating or cooling
1- Winter	Winter	1 Dec. - 31 Mar.	Yes
2-Intermediate A	Spring	1 Apr. - 31 May.	No
3-Summer	Summer	1 Jun. - 30 Sept.	Yes
4 -Intermediate B	Autumn	1 Oct. - 30 Nov.	No
5- Passive mode	Weekends and holidays	All year	No

Laboratories	All year	(Depends on ongoing research)	Depends on ongoing research
--------------	----------	-------------------------------	-----------------------------

286

287 At any point in the annual calendar, the ICTA-ICP building has 5 internal climates adapted to the functions
288 of the spaces:

289 1- Laboratories, with heating/cooling to achieve a temperature range of 21-25°C to satisfy the
290 changing needs of lab work.

291 2- Workspaces and offices, with heating/cooling and a temperature range of 17-26°C, depending on
292 the season and the HVAC mode of operation.

293 3- Communal spaces, unheated/uncooled; the temperature is allowed to fluctuate with the season.

294 4- iRTG, unheated/uncooled; the temperature range varies as a function of the outside conditions and
295 thermal interactions outlined in Fig. 2.

296 5- Parking and underground cellars, in freefloat mode; their temperature ranges vary as a function of
297 outside conditions.

298

299 **2.3 Monitoring tools**

300 Two independent and complementary monitoring systems are instrumented in iRTG that were specified
301 and programmed exclusively for this space: Siemens control software and a Campbell continuous data
302 acquisition system. The Siemens software offers independent controls of the ICTA-ICP building and the
303 iRTG thermal condition. Sensors and probes inside and outside the building continuously collect
304 temperature, humidity, air quality, solar radiation and air velocity data, allowing the system to make
305 automated decisions and interventions. The researchers are able to override automated controls and adjust
306 the settings in response to user and crop requirements (i.e., overriding the opening of windows, temperature
307 set points, greenhouse solar covers, etc.).

308 The Campbell data acquisition system comprises 12 temperature probes (Campbell 107 with an accuracy
309 of $\pm 0.18^\circ\text{C}$), 3 combined temperature and humidity probes (Campbell CS215 with accuracies of $\pm 0.3^\circ\text{C}$
310 and $\pm 2\%$, respectively), 2 pyranometers (Campbell LP02 with expected accuracy for daily sums of $\pm 10\%$)
311 and 2 surface-temperature probes (Campbell 110PV with an accuracy of $\pm 0.2^\circ\text{C}$) for energy monitoring.
312 Additional Campbell probes also include sensors that monitor air quality, pH and conductivity of irrigation

313 water. A data logger (Campbell CR3000 with $\pm 0.04\%$ of accuracy) takes measurements every 5 s and
314 records the averages at 10 min intervals.

315 All sensors were pre-calibrated by Campbell. External data are obtained from the meteorological station of
316 the building and are checked/compared with Sabadell Agricultural Park weather station (part of the
317 Meteorological Service of Catalonia data) 5 km from iRTG. The meteorological station provides hourly
318 averaged values.

319 All these probes are evenly distributed on four vertical supports that are erected at 0.40 m, 1.20 m, 1.70 m
320 and 2.20 m above the iRTG floor level (see Fig. 3). Each vertical support has three temperature probes and
321 a combined temperature and RH probe. The supports are located inside the iRTG and in the upper atrium
322 of the ICTA-ICP building.

323
324 Fig. 3. Probe locations within the iRTG and atrium spaces.

325 **3 Simulation Method**
326

327 **3.1 Purpose and software description**

328 To highlight the operational energy and indoor-climate benefits derived from the integration of the iRTG
329 greenhouse with the ICTA-ICP building, two virtual models were created; the first is a complete model of
330 ICTA-ICP building to validate building and model fidelity, and the second is a 'freestanding' virtual model
331 of the iRTG to quantify the heating loads of an equivalent but freestanding greenhouse (see Fig. 4). Detailed
332 iRTG fabric thermo-physical properties and exact operational regimes provided parameter input into

333 Design Builder version 4.6 (used to create the iRTG geometry). The completed Design Builder model was
334 used to create the input data file (IDF) for EnergyPlus (E+) Version 8.4, which enabled the energy
335 simulation. E+ was selected because of the following:

336 1- The E+ weather statistics and conversions program allow the creation of 2015 weather files using
337 ICTA-ICP site-specific dry bulb air temperatures and relative humidity. However, solar
338 irradiation, wind and precipitation data were compiled using the 2015 Sabadell station.

339 2- The transparent nature of the ICTA-iRTG fabric leads to substantial space-climate interactions.
340 E+ has the ability to accept the detailed spectral optical properties of the transparent fabric and
341 user-specified window and shading controls (see Table 2).

342 3- Schedule: the file facility in E+ can accept hourly space target temperatures, allowing the accurate
343 replication of the iRTG internal climate and subsequent heating demand.

344 4- Zone and soil heat exchange are critical in simulating the performance of a greenhouse; KIVA
345 software version 0.3 [66] was used to generate hourly soil temperatures and informed the
346 freestanding iRTG model.

347 5- E+ has been demonstrated to have high accuracies for internal temperatures and load predictions
348 [67].

349
350 Fig. 4. (a) Design Builder model of the ICTA-ICP building to validate model prediction accuracy, (b)
351 freestanding iRTG used to examine freestanding greenhouse conditions.

352 The manufacturer's literature and (where unavailable) the Cambridge University 2015 CES database and
353 2013 ASHRAE Handbook (Fundamentals) were consulted to compile detailed input parameters (see
354 Appendix Table A1). Similarly, the occupancy pattern, artificial lighting arrangement, exact operating
355 schedules for the windows and retractable aluminised screen of the iRTG informed both the validation and
356 freestanding modelling work.

357 Table 2. Opening regimes of the iRTG windows and retractable aluminised screen.

358

	Internal temperature (°C)	Opening
Roof Windows	22	10°
	23	20°
	24	30°
	27	45° ^[1]
Facade Windows	22	5°
	23	10°
	24	20°
	27	45° ^[1]
Reflective aluminised screen ^[4]	31	25% ^[2]
	31,8	50% ^[2]
	32,6	75% ^[2]
	34	100% ^[2]
	<16	100% ^[3]
[1] Maximum opening angle		
[2] Summer-only operations to prevent overheating		
[3] Winter-only closure to prevent thermal inversion (thermal loss)		
[4] Reflective screen opening refers to the screen expanding to cover the iRTG below		

359

360 3.2 Optical properties of translucent material

361 Altogether, 111 data entry points were used to describe the optical properties of the translucent fabric
362 component of the iRTG using the manufacturer's data (wavelength range: 125-15,000 nm). This proprietary
363 corrugated polycarbonate sheet is designed for maximum light transmission in the visible spectrum. Full
364 spectral properties were used in E+ within a bilinear interpolation using Glazing's U-Value and Solar Heat
365 Gain Coefficient (SHGC) to calculate solar transmittance at normal incidence. Angular performance was
366 then calculated in 10° increments and stored in E+ and interpolated for in-between values during the
367 simulations [68].

368 3.3 Crop transpiration coefficient

369 Crop transpiration plays a significant role in the greenhouse climate. During the day, the crop canopy
370 absorbs a significant amount of the solar radiation it receives and uses this energy to evaporate water
371 through transpiration. As a result, the temperature of the greenhouse air decreases, and its humidity content
372 increases.

373 Several formulae have been used in the literature to calculate crop transpiration. Bonachela et al. (2006)
374 [69] provided an empirical formula for Mediterranean greenhouses as follows:

375 $ET_0 = (0.288 + 0.0019 \times JD)G_0 \times \tau$ (For Julian days (JD) ≤ 220) [1]

376 $ET_0 = (1.339 - 0.00288 \times JD) G_0 \times \tau$ (For Julian days (JD) > 220) [2]

377 where ET_0 is the transpiration of a reference crop defined as an extensive surface of green well-watered
378 grass. Transpiration of other crops is derived by multiplying reference transpiration by specific crop
379 coefficients. JD is the Julian Day number, G_0 is the outside solar radiation, and τ is the overall greenhouse
380 transmissivity to solar radiation. By using the JD for every central day of each month, it was possible to
381 calculate the percentage of outside solar radiation that the crop used for transpiration, which forms the plant
382 cooling effect. The Energy Management System in E+ was used to create control logic that uses an
383 independent variable (i.e., solar irradiance arriving in the greenhouse) to compute corresponding plant
384 transpiration cooling capacity using equations 1 and 2.

385 **3.4 Surface convective coefficients**

386 Considerable uncertainties exist in convective heat transfer coefficient (CHTC) values applied in building
387 models that are transferred into and cause large errors in the energy-prediction results [70]. Given its
388 significance, an outline of the calculation selection is covered here. CHTC is a major energy transfer
389 mechanism, and a multitude of different analytical and experimental methods exist that describe internal or
390 external surface coefficients at various air velocity profiles and surface geometries. The rate by which an
391 internal building surface loses heat is predominantly dictated by its convective coefficients, whereas
392 external surface heat loss is dominated by air movements.

393 E+ documentation recommends the DOE-2 model to calculate CHTC values for smooth vertical surfaces
394 with windward or leeward orientations in low-rise buildings, which closely represents the iRTG structure.
395 DOE-2 is a hybrid full-scale CHTC model that combines the MoWiTT [71] and BLAST [19] models to
396 dynamically calculate external CHTC using the following:

397
$$h_{c,ext} = \sqrt{h_{c,nat}^2 + (aV_{10}^b)^2} \quad [3]$$

398
$$h_{c,nat} = 9.482 \frac{(|T_s - T_a|)^{1/3}}{7.238 - |\cos \phi|} \quad (\text{for ascending flows (Ts>Ta)}) \quad [4]$$

399
$$h_{c,nat} = 1.810 \frac{(|T_s - T_a|)^{1/3}}{1.382 + |\cos \phi|} \quad (\text{for descending flows (Ts<Ta)}) \quad [5]$$

400

401 where $H_{c,ext}$ denotes external CHTC, $h_{c,nat}$ accounts for buoyancy-driven flows (W/m²K), T_s and T_a are
 402 surface and air temperatures (°C), and ϕ is the surface plane slope angle in relation to the ground plane (°),
 403 which makes equations 4 and 5 equal at 90° (for a vertical wall). a and b are constants outlined in Table 3,
 404 and V_{10} represents the undisturbed wind speed measured at 10 m above ground level (m/s). E+ calculates
 405 the roof CHTC in the same manner.

406 Interior CHTC was dynamically calculated using the TARP [72] method that computes the sum of forced
 407 and natural convection components, with the natural component derived from expressions 4 and 5, while
 408 the forced component is as follows:

409
$$h_{c,for} = 2.537 W_f R_f \left(\frac{PV_f}{A} \right)^2 \quad [6]$$

410 where $h_{c,for}$ is the forced CHTC component (W/m²K), W_f is the wind-direction modifier, R_f is the surface-
 411 roughness multiplier, and P and A are the perimeter and area of the surface (m and m²), respectively.

412 Table 3. Constant parameters for MoWiTT model.

Surface orientation	a	b
Windward	2.38 ± 0.036	0.89 ± 0.009
Leeward	2.36 ± 0.098	0.617 ± 0.017

413

414 **3.5 Model validation**

415 For model validation, site-specific direct and diffused solar irradiance, outdoor temperature and humidity
 416 and sky conditions were used within a complete model of the ICTA-ICP building with actual indoor
 417 temperatures and operational regimes. The complete building model enables accounting for the impact of
 418 the main building structure and envelope on the iRTG. A succession of 17 models, each with incremental
 419 adjustments, were used to best satisfy ASHRAE Guideline 14 (2002) on model validation using actual and
 420 simulated hourly data [73]. This entailed determining the two dimensionless indicators of errors, mean bias
 421 error (MBE) and cumulative variation of root-mean-square error (CV (RMSE)) using the following:

422
$$MBE = \frac{\sum_{i=1}^{N_i} (M_i - S_i)}{\sum_{i=1}^{N_i} M_i}$$
 [7]

423
$$CV(RMSE) = \frac{\sqrt{\sum_{i=1}^{N_i} [(M_i - S_i)^2 / N_i]}}{\frac{1}{N_i} \sum_{i=1}^{N_i} M_i}$$
 [8]

424 where M_i and S_i are the measured and simulated data, respectively, at instance i, and N_i is the count of the
 425 number of values used in the calculation. The ASHRAE building model calibration limits on hourly data
 426 are $\pm 10\%$ (for MBE) and $<30\%$ (for CV (RMSE)).

427 **4 Results and discussion**

428

429 **4.1 iRTG annual space condition**

430 The iRTG temperature data compiled by monitoring systems for the first operational year are summarised
 431 in Table 4. This captures seasonal averages, as well as maximum and minimum temperatures, from
 432 December 2014 to December 2015. Seasonal average temperatures range from 16.5°C in winter to 25.9°C
 433 in summer, with a winter minimum of 6.3°C and a summer maximum of 39.7°C. Average iRTG
 434 temperatures are, therefore, within the FAO's recommended optimum average range of 14-26°C and satisfy
 435 the Mediterranean horticultural closed systems recommendations.

436 Table 4. Weekly iRTG and outdoor average temperatures in each season of 2015.

	Winter		Spring		Summer		Autumn					
	21 Dec. 2014	19 Mar. 2015	ICTA-iRTG	Outdoor	20 Mar. 2015	20 Jun. 2015	ICTA-iRTG	Outdoor	21 Jun. 2015	22 Sept. 2015	ICTA-iRTG	Outdoor
Average Temperature (°C)	16.5	7.5	21.6	16.7	25.9	24.4	18.8	13.1				
Maximum Temperature (°C)	29.6	22.8	34.5	34.6	39.7	38.1	31.0	29.2				
Minimum Temperature (°C)	6.3	-3.6	13.5	1.2	15.7	11.8	10.2	-2.3				

437

438 During the coldest 2015 winter night when the temperature fell to -3.6°C, the corresponding iRTG
 439 temperature (also its lowest recorded temperature) was 6.3°C. This is lower than the recommended value
 440 of 14 °C, but higher, than the minimum winter night temperatures measured in conventional greenhouses
 441 in the Mediterranean area (note that average iRTG winter temperatures are 9°C warmer than the average
 442 external temperatures). This significant difference is due largely to the thermal inertia provided by the
 443 concrete floor of the greenhouse and the use of the thermal screen and LDPE curtains at night, which
 444 minimise thermal loss.

445 Conventional Mediterranean greenhouses do not commonly deploy heating [74], so the nocturnal
446 temperatures in winter are usually the same or lower than those recorded outside [75,76]; this phenomenon
447 does not occur in the iRTG. In this sense, the iRTG has a notable thermal advantage over the conventional
448 greenhouses of the Mediterranean region during winter nights; this advantage translates into energy savings
449 and better thermal conditions for crops in winter.

450 The iRTG weekly average summer temperature was 25.9 °C, with a maximum of 39.7°C (the outside
451 weekly average and maximum were 24.4°C and 38.1°C, respectively). This is common in passive
452 greenhouses in the Mediterranean region, due to the hot summers where mostly natural ventilation is used
453 to dissipate the accumulated internal heat. As a last resort in passive greenhouses, shade nets are used to
454 reduce the intensity of solar radiation received by the crop [26].

455 The risk of crop failure due to overheating ($T_a > 40^\circ\text{C}$) could be mitigated through a rapid building control
456 response to open greenhouse shutters for ventilation or closing the sun screen cover to reduce solar
457 radiation. However, because of the integrated nature of the iRTG with the building, the thermal response
458 would be slower. Therefore, given that 2015 was the first operational year, lack of experience with the
459 controls meant that adapting to the outside weather conditions occasionally did not occur at the desired
460 speed. The knowledge of the thermal behaviour of the iRTG gained during 2015 will be instrumental in
461 solving the overheating challenge during its second operational summer (2016).

462 During spring and autumn, the iRTG had the most stable average temperatures (21.6 °C and 18.8°C,
463 respectively), which are ideal for growing crops in Mediterranean areas. Despite having ideal thermal
464 conditions, the intensity of solar radiation is not at its best, especially in autumn.

465

466 **4.2 Annual thermal performance (4 seasons in 2015)**

467 To expand the scope of examination beyond the iRTG, it is necessary to explore the influence of the
468 temperature of the rest of the building (common spaces without heating) on iRTG's thermal behaviour. Fig.
469 5 outlines different average temperatures across 4 seasons during 2015 recorded in the iRTG, in common
470 spaces without heating (atrium) and the outdoor temperature.

471

472 Fig. 5. Averaged hourly 2015 temperatures of 3 probe stations positioned inside the iRTG, the atrium and
473 externally.

474 The 2015 thermal behaviour of the iRTG more closely resembles the atrium of the building than the outside
475 conditions. Note that the atrium is open to the communal areas that are not conditioned. The conditioned
476 offices and laboratories, however, interact with communal areas when doors and windows are left open.
477 The greatest difference between the iRTG and the outside temperatures is in winter and autumn, due largely
478 to the interaction between the building and the iRTG. The resulting 'elevated temperatures' in the iRTG
479 offer an advantage over conventional greenhouses, which experience indoor temperatures sub-optimal for
480 crop development during colder months.

481 **4.3 Model validation**

482 Figures 6 and 7 outline actual versus simulated hourly air temperature and humidity results for typical
483 winter and summer weeks (using 2015 data) when the iRTG is modelled to replicate reality as a rooftop
484 part of the ICTA-ICP building (Fig. 4-(a)). Respective MBE and CV(RMSE) values for air temperature are
485 2.6% and 11.5% and for humidity are 2.9% and 15.9%; MBE figures provide an indication of errors
486 averaged to the mean of the measured values, but they suffer from the cancellation effect. The CV (RMSE)
487 index, however, 'accumulates' errors and normalises them to the mean of the measured values, which
488 explains the difference in magnitude of the reported error indices. An error is defined as the actual value
489 subtracted from the model prediction (i.e., $M_i - S_i$) [77]. Overall, the largest model errors occur in the daytime
490 (7 am-6 pm) under clear sky conditions when internal temperatures are on average over-predicted by 5.4%.
491 The second largest errors are, similarly, temperatures in the absence of solar irradiation (night values) that
492 are on average under-predicted by 5.24%. This suggests that the actual iRTG internal climate is more
493 moderate than the E+ model prediction. One explanation is that the ICTA laboratories discharge their

494 ‘closely controlled’ ventilation air into the iRTG. Recall from section 1-3 that the laboratory controls are
 495 adjusted to achieve 21-25°C in an ad-hoc manner to satisfy the daily research agenda, and this ‘random’
 496 discharge of ventilation air into the iRTG cannot be matched exactly by the deterministic control schedules
 497 used in E+. In addition, researchers intervene to readjust the controls of the iRTG; that again departs from
 498 the deterministic E+ schedules of the iRTG model. Nonetheless, both the temperature and humidity results
 499 fall within ASHRAE guide 14 limits, and as per the concluding remarks of Royapoor et al. (2015), the
 500 model can be considered validated.

501

502 Fig. 6. Hourly actual versus simulated air temperature results for the iRTG for winter and summer weeks.

503

504 Fig. 7. Hourly actual versus simulated humidity results for the iRTG for winter and summer weeks.

505

506 **4.4 iRTG in a free-standing condition**

507 This section reports the simulation results for an exact geometrical equivalent of the iRTG if it were a
 508 freestanding structure erected on soil and independent from the ICTA building. In doing so, this section
 509 first compares the annual indoor air temperatures of the actual iRTG with the freestanding model and
 510 secondly reports the heating energy required to maintain the minimum 2015 air temperatures logged in the
 511 actual iRTG.

512 Taking an optimum temperature range of 14-26 °C for the Mediterranean horticultural closed system
 513 context, in 2015, the actual iRTG indoor climate met this condition in over 76.3% of annual hours. The
 514 simulation result shows that under the same climatic conditions, an unheated freestanding structure identical
 515 to the iRTG would have met the optimum range in only 42.4% of the annual hours; if heated, it would
 516 satisfy the optimum range in 65.1% of annual hours (note that the heating target temperatures for the
 517 freestanding model were actual hourly temperatures recorded in the iRTG during 2015). If model validation
 518 errors are imposed on the results (i.e., correcting day over-predictions by -5.4% and night under-predictions
 519 by +5.24%), the freestanding models meet the optimum range of 14-26°C for 47.5% and 66.3% of the
 520 annual time in unheated and heated modes, respectively. This demonstrates that the error margins are too
 521 small to alter the results in a dramatic way. Fig. 8 is a graph of instances when 14-26°C optimum range is
 522 not met. As is evident, the freestanding greenhouse in both heated and unheated modes shows many more
 523 instances of overheating in summer.

524

528

529 Fig. 8. % annual time with space air temperature falling outside the optimum range.

530 Therefore, the moderating effect that the integration of the iRTG with the building has had is not limited to
531 higher winter temperatures. The actual iRTG has additionally not suffered as many instances of overheating
532 that a freestanding structure would have experienced, thanks largely to the building thermal inertia and
533 cooler exhaust air discharged into the iRTG in the summer. This is also evident from the plot of annual
534 hourly temperatures (Fig. 9) in which the freestanding model would have had winter lows of 2°C in the
535 unheated mode and summer highs of approximately 45°C in both modes (this occurs at times of high solar
536 irradiance and high external temperatures).

537

538 Fig. 9. Hourly annual temperatures in (a) the actual iRTG (measured), (b) an unheated freestanding model
539 of an iRTG (simulated) and (c) a heated freestanding model of an iRTG (simulated).

540 Fig. 10 is a plot of the hourly annual heating demand required to heat the freestanding model to achieve the
541 minimum threshold temperatures recorded in the actual iRTG. Assuming a 100% fuel conversion
542 efficiency, the total heating demand for the freestanding model would be 43.78 kWh under 2015 climatic
543 conditions. This ideal heating requirement has a maximum of 66.62 kW with instances of heating required
544 even in summer months (in early morning hours). This provides a scale of the total heating recycled by the
545 actual iRTG from the ICTA-ICP building. Although the iRTG has also benefited from the summer cooling
546 effect from the building, equivalent cooling loads were not calculated as this was deemed unrealistic in a
547 commercial greenhouse context.

548

549 Fig. 10. Hourly annual heating requirements assuming 100% fuel conversion efficiency.

550

551 Maintaining a 100% energy-conversion efficiency, the simulation results were used to calculate the
 552 financial and carbon savings of an iRTG relative to an equivalent heated greenhouse using associated
 553 carbon intensities derived from regional sources [78–80]. The results show that an oil boiler meeting the
 554 heating demands would produce 113.8 Kg.CO_{2(eq)}/m²/yr, at a cost of 19.63 €/m²/yr. A gas boiler would
 555 produce 82.4 Kg.CO_{2(eq)}/m²/yr, costing 15.88 €/m²/yr; finally, a biomass boiler would result in 5.5
 556 Kg.CO_{2(eq)}/m²/yr at a cost of 17.33 €/m²/yr.

557 These economic and CO₂ savings demonstrate the feasibility of integrating greenhouses into buildings as a
 558 new strategy, forming a resilient and low-carbon civic infrastructure in which the capacity to meet urban
 559 food supplies exists locally, supporting food security and sovereignty of the most vulnerable sectors of the
 560 urban population. In doing so, the traditional idea of urban zones with inadequate green areas can be
 561 challenged because even when substantial concrete and masonry building surfaces exist, it is possible to re-
 562 function under-utilised rooftops for the cultivation of various fruits and vegetables in cities around the
 563 world, particularly in cities with growing populations, a lack of space for growth, a very large constructed
 564 area and a high dependence on importing vegetables, such as Shanghai, Beijing and Guangzhou in China
 565 and several cities in the USA, Japan and Canada.

566
567

5 Conclusions and future work

568 The urgency to reduce the environmental impact of civic life requires solutions that achieve greater
569 efficiencies, in particular, by minimising waste and maximising the use of finite resources. The energy-
570 intensive nature of agriculture and the built environment offers opportunities in which an integrated
571 approach can lead to more efficient resource management. An iRTG at the ICTA-ICP building within the
572 UAB university campus demonstrated an ideal closed system greenhouse facility in which (its first
573 operational year) 16.2 kg/m² of *cor de bou* tomato and two successive crops of lettuce were produced in
574 2015. A validated model demonstrated that the integrated nature of the iRTG resulted in 341.93 kWh/m²/yr
575 of heating energy being ‘recycled’ from the rest of ICTA building; this is within 139–444 kWh/m²/yr of
576 the reported power requirements for heated Mediterranean greenhouses. Although the iRTG is not actively
577 conditioned and has a transparent fabric, its internal temperatures are greatly stabilised through thermal
578 ‘coupling’ with the rest of the ICTA building. This was evident as the actual recorded air temperatures
579 within the iRTG were much closer to the recorded building thermal mass and indoor air temperatures than
580 to the external climatic conditions. Validated simulation results also showed that under the same climatic
581 conditions and control regimes, instances of ‘sub-optimal’ temperatures (outside the 14–26°C range) would
582 have been 33.5% higher in a freestanding greenhouse (in the form of low winter and excessive summer
583 temperatures). Eliminating limited instances of summer overheating altogether remains the main challenge
584 for the iRTG research team; this highlights the need for detailed planning at the design stage and consistent
585 monitoring after commissioning if similar building-integrated greenhouses are inaugurated elsewhere.
586 While the empirical foundation of this paper relies on data from Southern Europe and specifically a
587 Mediterranean context, the validated results offer a broader scope. Archetypes of buildings and climatic
588 variations across the world can be exploited to enable building-integrated greenhouses to function
589 adequately, and as such, pilot projects to verify the socio-economic and energy benefits of greenhouse
590 integration in the urban space remain invaluable. At the same time, major conurbations across the U.S.
591 (California in particular), southern Chile, Cape Province in South Africa, and the southwest of Australia all
592 share ecosystem characteristics similar to the Mediterranean area in which the iRTG has been demonstrated
593 as a viable concept. Future research will focus on the characterisation of bidirectional energy performance
594 between the greenhouse and the building to quantify potential heating energy savings in the ICTA-ICP
595 building derived from the rooftop greenhouse and to analyse the implementation of the iRTG concept in
596 different geographical areas of the world where urban agriculture and improved energy efficiency in the
597 built environment can be combined.

598 **Acknowledgements**

599 The authors would like to thank all participants in this study for sharing their expertise, the National Council
 600 for Science and Technology of Mexico (CONACYT) and the Council for Science, Innovation and
 601 Technology, State of Yucatan (CONCIYTEY) for awarding a research scholarship to Ana Nadal and the
 602 Spanish Ministerio de Economía y Competitividad (MINECO) for financial support to the research project
 603 “Agrourban sustainability through rooftop greenhouses. Ecoinnovation on residual flows of energy, water
 604 and CO₂ for food production” (CTM2013-47067-C2-1-R). The authors appreciate the technical help of
 605 Carla Planas (Group of Construction Research and Innovation (GRIC), Department of Projects and
 606 Construction Engineering, Universitat Politècnica de Catalunya-BarcelonaTech).

607 **Appendix**

608 Table A1: Thermo-physical and surface properties of the fabric construction of the ICTA-iRTG model.

609

Clear Polycarbonate fabric material	Thickness (mm)	0.8 ^[1]
	Conductivity (W/mK)	0.2 ^[1]
	Solar transmittance	0.835 ^[1]
	External surface solar reflectance	0.075 ^[2]
	Internal surface solar reflectance	0.075 ^[2]
	Visible light transmittance	0.883 ^[1]
	External visible light reflectance	0.061 ^[2]
	Internal visible light reflectance	0.060 ^[2]
	Total Infrared transmittance	0.800 ^[1]
	External surface emissivity (IR)	0.900 ^[2]
	Internal Surface emissivity (IR)	0.900 ^[2]
Galvanised Steel framing	U-value (W/m ² K)	5.7 ^[1]
	Thickness (mm)	4 ^[1]
	Inside convective heat transfer coefficient (W/m ² K)	TARP ^[6]
	Internal radiative heat transfer coefficient (W/m ² K)	1.847 ^[2]
	External surface resistance (m ² K/W)	0.135 ^[2]
	External convective heat transfer coefficient (W/m ² K)	DOE-2 ^[6]
	External radiative heat transfer coefficient (W/m ² K)	1.71 ^[2]
High-Density Polyethylene	Surface resistance (m ² K/W)	0.04 ^[2]
	U-value (W/m ² K)	5.84 ^[2]
	Thickness (mm)	0.65
	Thermal conductivity (W/m.K)	0.5
Floor cover	Specific heat (J/Kg.K)	1800
	Density (Kg/m ²)	980

Partition Polyethylene Curtains	Surface thermal absorbance	0.9
	Surface solar absorbance	0.7
	Internal Convective heat transfer coefficient (W/m ² K)	11.54
	U-value (W/m ² K)	2.45
Soil Condition ^[5]	Emissivity	0.69 ^[1]
	Transmissivity	0.19 ^[1]
	Reflectivity	0.12 ^[1]
Other	Active thickness (mm)	490
	Conductivity (W/m.K)	1.28
	Specific heat (J/Kg.K)	880
	Density (Kg/m ²)	1460
	Thermal absorbance	0.9
	Solar absorbance	0.7
	Vapour resistivity (MNs/g)	10
	U-value (W/m ² K)	2.45
Footnotes:	Lighting (W/m ²)	3 ^[3]
	Occupant Density (people/m ²)	0.6 ^[4]
	Discharge coefficient for openable windows	0.65

[1]

Manufacturers product technical literature

[2]

Cambridge University CES EduPack 2015 database (reference data)

[3]

6x T5 Fluorescents (60 W each) over a total area of 142 m²

[4]

A total of 30 half hourly visits by 3 to 5 researchers at various office hours

[5]

ASHRAE Handbook -- Fundamentals - Physical Properties of Materials

[6]

See method section

610

611 References

612 [1] U.S. Department of Energy. Buildings energy data book. 2010.

613 [2] DOE D of E. Buildings energy data book. 2011.

614 [3] Asadi E, Silva MG Da, Antunes CH, Dias L, Glicksman L. Multi-objective optimization for
615 building retrofit: A model using genetic algorithm and artificial neural network and an
616 application. Energy Build 2014;81:444–56. doi:10.1016/j.enbuild.2014.06.009.

617 [4] White R. Carbon governance from a systems perspective: an investigation of food production and
618 consumption in the UK. ECEEE 2007 summer study, Sav. energy – just do it!, United Kingdom:
619 2008, p. 103–10. doi:978-91-633-0899-4.

620 [5] Steinhart JS, Steinhart CE. Energy Use in the U.S. Food System. Econ Res Rep 2010;94:39.

621 [6] Wallgren C, Höjer M. Eating energy-Identifying possibilities for reduced energy use in the future
622 food supply system. Energy Policy 2009;37:5803–13. doi:10.1016/j.enpol.2009.08.046.

623 [7] Armstrong H. Shut the roof and save energy: greenhouses. Fruit Veg Tech 2003;3:69.

624 [8] Vadiee A, Martin V. Thermal energy storage strategies for effective closed greenhouse design.
625 Appl Energy 2013;109:337–43. doi:10.1016/j.apenergy.2012.12.065.

626 [9] van Beveren PJM, Bontsema J, van Straten G, van Henten EJ. Optimal control of greenhouse

627 climate using minimal energy and grower defined bounds. *Appl Energy* 2015;159:509–19.
628 doi:10.1016/j.apenergy.2015.09.012.

629 [10] Cerón-Palma I, Sanyé-Mengual E, Oliver-Solà J, Montero J-I, Rieradevall J. Barriers and
630 opportunities regarding the implementation of Rooftop Eco.Greenhouses (RTEG) in
631 Mediterranean cities of Europe. *J Urban Technol* 2012;19:1–17.
632 doi:10.1080/10630732.2012.717685.

633 [11] Sanyé-Mengual E, Cerón-Palma I, Oliver-Solà J, Montero JI, Rieradevall J. Integrating
634 Horticulture into Cities: A Guide for Assessing the Implementation Potential of Rooftop
635 Greenhouses (RTGs) in Industrial and Logistics Parks. *J Urban Technol* 2015;1–25.
636 doi:10.1080/10630732.2014.942095.

637 [12] Pons O, Nadal A, Sanyé-Mengual E, Llorach-Massana P, Cuerva E, Sanjuan-Delmouth D, et al.
638 Roofs of the Future: Rooftop Greenhouses to Improve Buildings Metabolism. *Procedia Eng.*, vol.
639 123, 2015, p. 441–8. doi:10.1016/j.proeng.2015.10.084.

640 [13] Llorach-Massana P, Peña J, Rieradevall J, Montero JI. LCA & LCCA of a PCM application to
641 control root zone temperatures of hydroponic crops in comparison with conventional root zone
642 heating systems. *Renew Energy* 2016;85:1079–89. doi:10.1016/j.renene.2015.07.064.

643 [14] Chen J, Yang J, Zhao J, Xu F, Shen Z, Zhang L. Energy demand forecasting of the greenhouses
644 using nonlinear models based on model optimized prediction method. *Neurocomputing*
645 2016;174:1087–100. doi:10.1016/j.neucom.2015.09.105.

646 [15] UN. *World Urbanization Prospects: The 2009 Revision*. *Popul Dev Rev* 2010;24:883.
647 doi:10.2307/2808041.

648 [16] Comission E. Making our cities attractive and sustainable. How the EU contributes to improving
649 the urban environment 2010:9. doi:10.2779/42720.

650 [17] FAO (Food and Agricultural Organizations of the United Nations). *Food , Agriculture and Cities.*
651 Challenges of food and nutrition security, agriculture and ecosystem management in an
652 urbanizing world. 2011.

653 [18] FAO, IFAD, WFP. *The State of Food Insecurity in the World: Meeting the 2015 international*
654 *hunger targets: taking stock of uneven progress*. 2015. doi:10.1016/j.ifad.2015.05.15.

655 [19] McClellan TM, Pedersen CO. Investigation of outside heat balance models for use in a heat
656 balance cooling load calculation procedure. *ASHRAE Trans.*, vol. 103, 1997, p. 469–84.

657 [20] Veenhuizen R van. *Cities Farming for the Future - Urban Agriculture for Green and Productive*
658 *Cities* (2006). *Cities Farming Futur. - Urban Agric. Green Product. Cities*, 2006, p. 1–17.

659 [21] Management A, Paper O. Profitability and sustainability of urban and peri-urban agriculture.
660 *Finance* 2007;1–109.

661 [22] Dubbeling M, Zeeuw H, Veenhuizen R. Cities, poverty and food: multi-stakeholder policy and
662 planning in urban agriculture. *Cities Poverty Food Multistakeholder Policy Plan Urban Agric*
663 2010:192.

664 [23] Renting H. Learning from best practices in the Global South for sustainable (peri)urban food
665 systems in Europe. *Urban Agric Mag* 2013;11–2.

666 [24] FAO. *City region food systems: Sustainable food systems and urbanization* 2014.

667 [25] Nadal A, Cerón I, Cuerva E, Gabarrell X, Josa A, Pons O, et al. *Urban Agriculture in the*
668 *Framework of Sustainable Urbanism*. *Temes de Disseny* 2015;0:92–103.

669 [26] von Elsner B, Briassoulis D, Waaijenberg D, Mistriotis A, von Zabeltitz C, Grataud J, et al.
670 *Review of Structural and Functional Characteristics of Greenhouses in European Union*
671 *Countries, Part II: Typical Designs*. *J Agric Eng Res* 2000;75:111–26.
672 doi:10.1006/jaer.1999.0512.

673 [27] Xu J, Li Y, Wang RZ, Liu W, Zhou P. Experimental performance of evaporative cooling pad
674 systems in greenhouses in humid subtropical climates. *Appl Energy* 2015;138:291–301.

675 doi:10.1016/j.apenergy.2014.10.061.

676 [28] Bailey BJ, Chalabi ZS. Improving the cost effectiveness of greenhouse climate control. *Comput*
677 *Electron Agric* 1994;10:203–14. doi:10.1016/0168-1699(94)90041-8.

678 [29] Jain D, Tiwari GN. Modeling and optimal design of evaporative cooling system in controlled
679 environment greenhouse. *Energy Convers Manag* 2002;43:2235–50. doi:10.1016/S0196-
680 8904(01)00151-0.

681 [30] Kendirli B. Structural analysis of greenhouses: A case study in Turkey. *Build Environ*
682 2006;41:864–71. doi:10.1016/j.buildenv.2005.04.013.

683 [31] Baudoin W, Nono-Womdim R, Lataladio N, Hodder A, Castilla N, Leonardi C, et al. Good
684 agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas.
685 Food and Agriculture Organization of the United Nations; 2013.

686 [32] Di Castri F. Mediterranean-type shrublands of the world. *Ecosyst World L1 Mediterr Shrublands*
687 1981:1–52.

688 [33] Orshan G. Approaches to the Definition of Mediterranean Growth Forms. *Mediterr. Ecosyst.*, vol.
689 43, 1983, p. 86–100. doi:10.1007/978-3-642-68935-2_5.

690 [34] Castilla N, Montero JI. Environmental control and crop production in Mediterranean
691 greenhouses. *Acta Hortic.*, vol. 797, 2008, p. 25–36.

692 [35] Castilla N. *Greenhouse technology and management*. Cabi; 2013.

693 [36] De Pascale S, Maggio A. Sustainable protected cultivation at a mediterranean climate.
694 perspectives and challenges. *Acta Hortic.*, vol. 691, 2005, p. 29–42.

695 [37] Kittas C, Katsoulas N, Bartzanas T. Greenhouse climate control in mediterranean greenhouses.
696 *Cuad Estud Agroaliment* 2012:89–114.

697 [38] Caruso G, Fantozzi F, Leccese F. Optimal theoretical building form to minimize direct solar
698 irradiation. *Sol Energy* 2013;97:128–37. doi:10.1016/j.solener.2013.08.010.

699 [39] Katsoulas N, Kittas C. Impact of greenhouse microclimate on plant growth and development with
700 special reference to the Solanaceae. *Eur J Plant Sci Biotechnol* 2008;2:45–61.

701 [40] Marucci A, Cappuccini A. Dynamic photovoltaic greenhouse: Energy efficiency in clear sky
702 conditions. *Appl Energy* 2016;170:362–76. doi:10.1016/j.apenergy.2016.02.138.

703 [41] Baeza EJ, Pérez-Parra JJ, Montero JI, Bailey BJ, López JC, Gázquez JC. Analysis of the role of
704 sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and
705 without insect screens using computational fluid dynamics. *Biosyst Eng* 2009;104:86–96.
706 doi:10.1016/j.biosystemseng.2009.04.008.

707 [42] Kittas C, Katsoulas N, Bartzanas T. Energy needs and energy saving in Mediterranean
708 greenhouses. *Acta Hortic.*, vol. 1054, 2014, p. 25–30.

709 [43] Omer AM. Energy, environment and sustainable development. *Renew Sustain Energy Rev*
710 2008;12:2265–300. doi:10.1016/j.rser.2007.05.001.

711 [44] International Energy Agency. *World Energy Outlook 2015. Executive Summary*. Int Energy
712 Agency Books Online 2015:1–9. doi:10.1787/weo-2005-en.

713 [45] United Nations Environment Programme. *Buildings and climate change: a summary for decision-
714 makers*. 2009. doi:ISBN: 987-92-807-3064-7 DTI/1240/PA.

715 [46] Ipcc. *Mitigation of climate change: Contribution of working group III to the fourth assessment
716 report of the Intergovernmental Panel on Climate Change*. 2007.

717 [47] International Energy Agency. *Annual Energy Review 2004. 2005*.

718 [48] Levine M, Ürge-Vorsatz D, Blok K, Geng L, Harvey D, Lang S, et al. Residential and
719 commercial buildings. *Clim. Chang. 2007 Mitigation. Contrib. Work. Gr. III to Fourth Assess.
720 Rep. Intergov. Panel Clim. Chang.*, 2007, p. 387–446.

721 [49] Eea. The European environment — state and outlook 2010 (SOER 2010). 2010.
 722 doi:10.1111/j.1468-1331.2010.03280.x.

723 [50] Sanyé-Mengual E, Cerón-Palma I, Oliver-Solá J, Montero JI, Rieradevall J. Environmental
 724 analysis of the logistics of agricultural products from roof top greenhouses in mediterranean
 725 urban areas. *J Sci Food Agric* 2013;93:100–9. doi:10.1002/jsfa.5736.

726 [51] Specht K, Siebert R, Thomaier S, Freisinger UB, Sawicka M, Dierich A, et al. Zero-Acreage
 727 farming in the city of Berlin: An aggregated stakeholder perspective on potential benefits and
 728 challenges. *Sustain* 2015;7:4511–23. doi:10.3390/su7044511.

729 [52] Sanyé-Mengual E, Anguelovski I, Oliver-Solà J, Montero JI, Rieradevall J. Resolving differing
 730 stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food
 731 production as a driver for innovative forms of urban agriculture. *Agric Human Values*
 732 2016;33:101–20. doi:10.1007/s10460-015-9594-y.

733 [53] Sky Vegetables Inc. Sky Vegetables 2009. <http://www.skyvegetables.com/> (accessed October 19,
 734 2016).

735 [54] Urban Gardens. New York City Public School's Rooftop Hydroponic Garden and Urban Farm
 736 Classroom 2011. <http://www.urbangardensweb.com/2011/11/16/nyc-classroom-in-an-urban->
 737 rooftop-farm/ (accessed October 19, 2016).

738 [55] Eco building pulse. Developer Raises the Bar in the Bronx. Hanley Wood Media, Inc 2013.
 739 http://www.ecobuildingpulse.com/news/developer-raises-the-bar-in-the-bronx_o (accessed
 740 October 24, 2016).

741 [56] Inc PG. PASONA Group Inc 2016.
 742 <https://www.pasonagroup.co.jp/Portals/0/resources/english/index.html> (accessed January 21,
 743 2016).

744 [57] UMSICHT F. Infarming 2016. <http://infarming.de/> (accessed April 11, 2016).

745 [58] Newcastle University. Urban Sciences Building 2016. <http://www.ncl.ac.uk/sciencecentral/urban/>
 746 (accessed February 19, 2016).

747 [59] UrbanFarmers AG. Urban Farmers 2013. <https://urbanfarmers.com/> (accessed October 19, 2016).

748 [60] Sostenipra S i PA-I. Fertilecity 2016. <http://fertilecity.com/> (accessed January 21, 2016).

749 [61] Astee LY, Kishnani NT. Building Integrated Agriculture: Utilising rooftops for Sustainable Food
 750 Crop Cultivation in Singapore. *J Green Build* 2010;5:105–13. doi:10.3992/jgb.5.2.105.

751 [62] Kiss + Cathcart Architects. Integrated agriculture 2016.
 752 http://www.kisscathcart.com/integrated_agriculture.html (accessed October 24, 2016).

753 [63] Lateral Thinking Factory Consulting SCRL. Building Integrated Greenhouse In Louvain La
 754 Neuve 2015. http://www.lateralthinkingfactory.com/?page_id=551 (accessed October 24, 2016).

755 [64] Zaragoza G, Buchholz M, Jochum P, Pérez-Parra J. Watergy project: Towards a rational use of
 756 water in greenhouse agriculture and sustainable architecture. *Desalination* 2007;211:296–303.
 757 doi:10.1016/j.desal.2006.03.599.

758 [65] FAO. El cultivo protegido en clima mediterráneo. *Estud FAO, Prod Y\protección Veg* 90
 759 2002:344. doi:ISBN 92-5-302719-3.

760 [66] Kruis N. Development and Application of a Numerical Framework for Improving Building
 761 Foundation Heat Transfer Calculations. University of Colorado, 2015.

762 [67] Royapoor M, Roskilly T. Building model calibration using energy and environmental data.
 763 *Energy Build* 2015;94:109–20. doi:10.1016/j.enbuild.2015.02.050.

764 [68] Laboratory LBN. Window Calculation Module. n.d. <http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/window-calculation-module.html#window-calculation-module>. (accessed
 765 April 11, 2016).

767 [69] Bonachela S, González AM, Fernández MD. Irrigation scheduling of plastic greenhouse
768 vegetable crops based on historical weather data. *Irrig Sci* 2006;25:53–62. doi:10.1007/s00271-
769 006-0034-z.

770 [70] Mirsadeghi M, Cóstola D, Blocken B, Hensen JLM. Review of external convective heat transfer
771 coefficient models in building energy simulation programs: Implementation and uncertainty. *Appl*
772 *Therm Eng* 2013;56:134–51. doi:10.1016/j.applthermaleng.2013.03.003.

773 [71] Yazdanian M, Klems JH. Measurement of the exterior convective film coefficient for windows in
774 low-rise buildings. *ASHRAE Trans.*, vol. 100, 1994, p. 1087–96.

775 [72] Walton GN. Thermal Analysis Research Program Reference Manual. *Natl Bur Stand* 1993:43–50.

776 [73] Ashrae. *ASHRAE Guideline 14 -2002: Measurement of Energy and Demand Savings*. Am Soc
777 Heating, Vent Air Cond 2002;8400.

778 [74] Piscia D, Montero JI, Baeza E, Bailey BJ. A CFD greenhouse night-time condensation model.
779 *Biosyst Eng* 2012;111:141–54. doi:10.1016/j.biosystemseng.2011.11.006.

780 [75] Montero JI, Muñoz P, Antón A, Iglesias N. Computational fluid dynamic modelling of night-time
781 energy fluxes in unheated greenhouses. *Acta Hortic.*, vol. 691, 2005, p. 403–10.

782 [76] Montero JI, Muñoz P, Sánchez-Guerrero MC, Medrano E, Piscia D, Lorenzo P. Shading screens
783 for the improvement of the night-time climate of unheated greenhouses. *Spanish J Agric Res*
784 2013;11:32–46. doi:10.5424/sjar/2013111-411-11.

785 [77] Christie M, Glimm J, Grove JW, Higdon DM, Sharp DH, Wood-schultz MM. Error Analysis and
786 Simulations of Complex Phenomena. *Los Alamos Sci* 2005:6–25.

787 [78] Biomasa A-AE de VE. Pellets prices in Spain 2014.
788 <http://www.avebiom.org/es/noticias/News/show/precios-del-pellet-en-espana-653> (accessed
789 January 7, 2016).

790 [79] Endesa S.A. Electricity rates 2014. <http://www.endesaonline.com/ES/hogares/index.asp> (accessed
791 April 12, 2014).

792 [80] Fenosa GN. Natural Gas Rates 2016.
793 http://www.gasnaturalfenosa.es/html/esp_neg/superplanes/index.html?id=es (accessed January 7,
794 2016).

795

796

797