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Abstract 

 

Background: Associative memory impairment is an early clinical feature of dementia patients, but 

the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, 

we investigated the functional regulation of the CREB-regulated transcription coactivator-1 (CRTC1) 

by associative learning in physiological and neurodegenerative conditions.  
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Methods: We evaluated the activation of CRTC1 in the hippocampus of control mice and mice 

lacking the Alzheimer´s disease-linked presenilin genes (PS cDKO) after one trial contextual fear 

conditioning by using biochemical, immunohistochemical and gene expression analyses. PS cDKO 

display classical features of neurodegeneration occurring in Alzheimer´s disease including age-

dependent cortical atrophy, neuron loss, dendritic degeneration and memory deficits. 

Results: Context associative learning, but not single context or unconditioned stimuli, induces rapid 

dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of 

hippocampal neurons in the mouse brain. Accordingly, context associative learning induces 

differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) 

genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE 

promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation and transcriptional 

function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, 

CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and 

dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model.  

Conclusions: These findings reveal a critical role of CRTC1 in the hippocampus during associative 

memory, and provide evidence that CRTC1 deregulation underlies memory deficits during 

neurodegeneration. 

 

Introduction 

 

Alzheimer´s disease (AD) is a neurodegenerative disorder characterized by neuropsychiatric 

symptoms and amnesia. Dementia patients develop early deficits in encoding and retrieval of 

associative episodic memories (1, 2), a clinical feature already present in persons at risk for 

developing AD (3, 4). Functional magnetic resonance imaging studies show decreased activity and 

connectivity of the medial temporal lobe, particularly the hippocampus, during associative and 

emotional memory tasks in AD patients (2, 4-8). Memory decline is accompanied by the presence of 
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pathological features, including degeneration of synapses, dendrites and neurons in memory encoding 

brain regions (9). Despite the evidences of associative memory impairments and neurodegeneration in 

the hippocampus of dementia patients, the cellular and molecular mechanisms linking these features 

are largely unclear. 

Associative memories related to learning new information of people, places or locations is 

common in daily human activities. Fear conditioning is an associative learning paradigm that allows 

acquisition and consolidation of emotional-related context memories that depends on a neural 

circuitry that includes the hippocampus, amygdala and prefrontal cortex (10). The hippocampus 

encodes context representations and sends projections to the amygdala, which encodes, stores and 

retrieves contextual cues associated with aversive stimulus (11, 12). Whereas different hippocampal 

regions contribute to acquisition of fear contextual memory (13, 14), the CA3 subregion is activated 

during associative encoding and critical for initial context representations (15, 16). Besides 

participating in adaptive behavior, fear conditioning is implicated in the mechanisms that mediate 

psychopathological fear and anxiety (17), whereas dementia patients develop associative memory 

impairments in fear conditioning (18, 19). 

The transcription factor cAMP-response element binding protein (CREB) plays a crucial role 

in contextual memory encoding, consolidation and reconsolidation (20-22). Contextual learning 

induces CREB phosphorylation at Ser133 and gene transcription (23). However, CREB 

phosphorylation is essential but not sufficient for gene transcription (24, 25), a process that requires 

the specific transcriptional coactivators CREB binding protein (CBP) and CREB-regulated 

transcription coactivators (CRTCs). CRTCs act as selective regulators of CREB-dependent gene 

expression by directing CREB occupancy to specific gene promoters (26-28). Consistent with its role 

in CREB signaling, CRTC1 modulates dendritic growth, long-term synaptic plasticity and memory 

consolidation through still unclear downstream mechanisms (27, 29-33). Disruption of CREB/CRTC 

association impairs CREB-dependent transcription, synaptic plasticity and long-term memory (34), 

whereas CRTC1 dysfunction causes transcriptional changes leading to memory impairments in an AD 
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mouse model (35, 36). Given this scenario, this study was aimed to investigate the specific role of 

CRTC1 signaling in the hippocampus during associative memory encoding in physiological and 

pathological conditions. 

 

Methods and Materials 

Mice  

2-6 month-old male mice (C57BL/6 background) and WT or PS cDKO mice (C57BL/6/129 hybrid 

background) lacking expression of both PS genes (PS1 and PS2) in forebrain glutamatergic neurons 

were used (37). Littermate control (WT; fPS1/fPS1; PS2+/+ or fPS1/fPS1; PS2+/-) and PS cDKO 

mice (fPS1/fPS1; PS2-/-; CaMKIIα-Cre) were obtained by crossing floxed PS1/PS2-/- (fPS1/fPS1; 

PS2-/-) or PS2+/- (fPS1/fPS1; PS2+/-) males to heterozygous PS1 cKO; PS2+/- females (fPS1/fPS1; 

PS2+/-; CaMKIIα-Cre). Experimental procedures were conducted according to the Animal and Human 

Ethical Committee of the Universitat Autònoma de Barcelona (CEEAH 1783 and 2896) following the 

European Union guidelines (2010/63/EU). 

 

Behavioral studies 

For contextual fear conditioning, mice handled for three days (3 min/day) were placed in a 

conditioning chamber (15.9 x 14 x 12.7 cm; Med Associates, St. Albans, Vermont) for 3 min, foot-

shocked (1s/1mA) and retained in the chamber for 2 min (immediate freezing) (38). Fear memory was 

tested as freezing behavior, which was defined as a complete cessation of all movement except for 

respiration, in the same conditioning chamber for 4 min 2 h or 24 h after trainingusing Video Freeze 

Software (Med Associates) (Fig. 1A). Naïve mice were handled but neither exposed to the 

conditioning chamber nor shocked, context groups were placed in the chamber without receiving 

footshock and shocked groups were shocked and immediately returned to their home cages. For 

biochemical and immunohistochemical analyses mice were sacrificed 15 min after context training or 

memory retention by dislocation or a lethal dose of pentobarbital, respectively. 
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Adeno-associated virus injections  

Adeno-associated virus (AAV2/10) from rhesus macaque (AAVrh.10) containing Crtc1-myc under 

the E-actin promoter was generated by subcloning pcDNA3-Crtc1-myc (27) into pVAX1 (Thermo 

Fisher Scientific, USA) and pGV-IRES2-GFP vectors as described (35). For viral injections, 4-4.5 

month-old mice (n= 6-8 mice/group) were anesthetized with isofluorane and injected bilaterally into 

the dorsal hippocampus with AAV-GFP or AAV-Crtc1-myc (3 μl; 5.1x1011gc/ml; 0.5 μl/min). The 

sterotaxic injection coordinates were (in mm) as follows: anteroposterior: -2.0 from Bregma; 

mediolateral: ±1.8 from Bregma; ventral: -1.8 from dural surface, according to (Paxinos and Franklin, 

2004). Mice were tested six weeks after injection in contextual fear conditioning before processed for 

histological and biochemical analyses. 

 

Gene expression analysis  

Primary neurons (4 DIV) were infected with scramble or Crtc1 ShRNAs lentiviral vectors (1–2 

transducing units/cell) and treated (12 DIV) with vehicle or KCl (30 mM) plus forskolin (20 μM; 

Sigma) for 0-12 h. CRE luciferase assays were performed by triplicate in at least three independent 

experiments (36). RNA was purified using the PureLink RNA Mini Kit (Thermo Fisher Scientific, 

USA). RNA integrity number (RIN) was measured using the Agilent 2100 bioanalyser (Agilent 

Technologies). RNA (1 μg; RIN > 8.0) was reverse-transcribed in 50 μl of a reaction mix containing 1 

μM of Oligo (dT) primers, 1 μM random hexamers, 0.5 mM dNTP, 0.45 mM DTT, RNAseOut (10 

units) and SuperScriptTM II reverse transcriptase (Thermo Fisher Scientific) at 25ºC for 10 min, 42ºC 

for 60 min and 72ºC for 10 min. Quantitative real time RT-PCR (qRT-PCR) was performed in 

duplicate in at least 3-5 samples using an Applied Biosystems 7500 Fast Real-Time PCR system 

(Thermo Fisher Scientific). Data analysis was performed by the comparative ΔCt method using the Ct 

values and the average value of PCR efficiencies obtained from LinRegPCR software (39). Gene 

expression was normalized to Gapdh for cultured neurons or the geometric mean of Gapdh, 

hypoxanthine guanine phosphoribosyl transferase (Hprt) and peptidylprolyl isomerase A (Ppia) for 

brain samples (40). 
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Biochemical analysis  

Tissue was lysed in cold-lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% 

Triton X-100, 1% NP-40, 0.1% SDS, 1mM Na3VO4, 50 mM NaF, 1 mM PMSF) containing protease 

and phosphatase inhibitors (Roche España, Barcelona, Spain). Proteins were quantified with the BCA 

protein assay kit (Thermo Fisher Scientific), resolved on SDS-polyacrylamide gel electrophoresis 

(PAGE) and blotted with the following antibodies: rabbit anti-CRTC1 (1:5,000), CREB (1:250), 

phosphorylated CREB (Ser133; 1:1,000) from Cell Signaling (Danvers, Massachusetts); 

phosphorylated Ser151 CRTC1 (1:1,000) (36) and ABE560 (Merck-Millipore, Darmstadt, Germany) 

and mouse anti-GAPDH (1:5,000; Abcam, Cambridge,UK). Protein bands were quantified with 

ImageJ software. 

 

ChiP-qPCR analysis  

Cortical neurons (12 DIV) were crosslinked with 1% formaldehyde before lysis and sonication in 

ChIP buffer (50 mM Tris-HCl pH 8.1, 100 mM NaCl, 5mM EDTA, 1% SDS, 0,1% Na deoxycholate 

and protease/phosphatase inhibitors). Fragmented chromatin (200-500 bp) was analyzed using the 

High Sensitivity DNA Kit (Agilent Technologies). Chromatin immunoprecipitation (2.5 μg) was 

performed overnight in diluted ChIP buffer (0.1% SDS, 1,1% Triton X-100) with or without rabbit 

anti-CRTC1 and CREB antibodies (Cell Signaling) (35). Input and immunoprecipitated DNA were 

decrosslinked and amplified by real-time qPCR using specific primers, and the fold enrichment was 

calculated over an irrelevant region.  

 
Histological, immunohistochemical and immunofluorescence staining  

For CRTC1 translocation analysis, mice in home conditions or exposed to shock, context or context 

plus shock were anesthesized with a lethal dose of pentobarbital (200 mg/kg, i.p.) 15 min after CFC 

training. Mice were perfused intracardially with 0.9% NaCl followed by 4% buffered formalin for 2 h. 

Coronal or saggital brain sections (5 μm) were deparaffinized in xylene, rehydrated and microwave 
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heated for 10 min in citrate buffer (10 mM, pH=6.0). Sections were incubated with rabbit anti-CRTC1 

antibody (1:300; Cell Signaling), rabbit anti-CBP (1:200; Santa Cruz Biotechnology, Santa Cruz, 

California) and mouse NeuN (1:2,000; Merck-Millipore) or MAP2 (1:200; Sigma, St. Louis, 

Missouri) antibodies and AlexaFluor-488/594-conjugated goat IgGs (1:400) and Hoechst (1:10,000; 

Thermo Fisher Scientific). Nissl staining was performed in floating sections (40 μm) after incubation 

with cresil violet solution (5 g/l) for 5 min, and cortical thickness of somatosensory cortex was 

measured using ImageJ (n=4-5 mice/group; n=3 sections/mouse). 

 

Confocal image acquisition and analysis 

Images (20x; zoom 0.5) obtained with a Zeiss Axio Examiner D1 LSM700 laser scanning microscope 

(Carl Zeiss Microcopy, Jena, Germany) were analyzed with ImageJ software (v.1.6x). CRTC1 

staining intensity in the selected regions was measured using a sum projection of six Z-sections (1 

μm/section). Hoescht staining was used to determine the nuclear area, whereas the area comprising 2 

μm around the nucleus was considered cytoplasmic CRTC1. Nuclear/cytosol CRTC1 staining 

intensity ratio in caudal, medial and rostral hippocampal regions was used as measure of CRTC1 

nuclear translocation (n=3-4 sections/mouse; n=3-5 mice/group). Dendritic CRTC1 was analyzed by 

quantifying CRTC1/MAP2 colocalization in the rostral CA3 hippocampus (n=3 sections/mouse; n= 

8/group). Dendrite analysis was measured using MAP2 staining intensity in a sum projection of five 

Z-sections (1 μm/section) and dendritic fiber thickness was measured automatically by generating a 

Plot Profile of the pixels and peak thickness intensity along a grid line using ImageJ (n=3 

sections/mouse; n=4-6 mice/group).  

 

Statistical analysis  

Statistical analysis was performed using one- or two-way analysis of variance (ANOVA) and 

Bonferroni or Tukey´s post hoc tests for multiple comparisons using GraphPad. Behavioral results 

were analyzed by using two-way ANOVA with repeated measures and Bonferroni or Scheffé’s S post 

hoc with SuperANOVA v1.11. Differences with P < 0.05 were considered significant. 
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Results 

Contextual fear conditioning induces CRTC1 dephosphorylation, nuclear translocation and 

transcriptional activity in the hippocampus 

 

Previous studies have shown that CRTC1 activation is mediated by activity-dependent CRTC1 

dephosphorylation and nuclear translocation (31, 35, 41). We first investigated the regulation of 

CRTC1 by associative learning in the hippocampus, a region essential for early context 

representations (15, 42). Contextual fear conditioning, but not context alone, induces a time-

dependent increase of freezing responses in mice after training, indicating efficient contextual 

memory association (P < 0.0001, one-way ANOVA; Figures 1A,B). Consistent with previous reports 

(23, 43), CREB phosphorylation at Ser133 was increased in the mouse hippocampus after context or 

context plus shock compared with naïve conditions (P < 0.05), whereas CRTC1 phosphorylation at 

Ser151, a residue involved in CRTC1 inactivation (33, 36), was significantly decreased 15 min-2 h 

after contextual training (P < 0.05, one-way ANOVA; Figures 1C, D).  

To explore the possibility that CRTC1 dephosphorylation could mediate CREB-dependent 

transcription in the hippocampus during associative learning, we analyzed mRNA levels of CREB 

target genes implicated in contextual learning, including Arc, c-fos and Nr4a 1, 2 and 3 (44). In 

agreement with previous reports Arc is similarly induced by a novel context and contextual 

conditioning (45, 46). By contrast, levels of c-fos, Nr4a1 and Nr4a2 transcripts, but not Nr4a3, are 

significantly increased after fear conditioning (P< 0.05-0.01, one-way ANOVA) but not by context or 

shock alone (Figure 2A). Quantitative real-time RT-PCR analysis revealed that neuronal activity 

rapidly increases (t1/2 < 1 h) transcript levels of Arc (10 fold), c-fos (40 fold), Nr4a1 (40 fold), Nr4a2 

(50 fold) and Nr4a3 (4 fold) (P< 0.001, one-way ANOVA; Figure 2B). Since Crtc1 inactivation 

using Crtc1 ShRNAs significantly decreases activity-induced expression of Arc, c-fos, Nr4a1 and 

Nr4a 2 (P < 0.05), whereas Nr4a3 mRNA levels are minimally affected (Figure 2B), we explored the 

possibility that CRTC1 could bind differentially to the promoter regions of Nr4a genes. Quantitative 
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chromatin immunoprecipitation (ChiP-qPCR) analyses demonstrated an activity-dependent 

recruitment of CRTC1 to the proximal CRE-TATA promoter regions of c-fos, Nr4a1 and Nr4a2 (P < 

0.001, one-way ANOVA) but not to the CRE-TATA-deficient region of Nr4a3 (P > 0.05; Figure 2C). 

By contrast, CREB strongly binds to c-fos, Nr4a1 and Nr4a2 promoters in basal non-stimulated 

conditions (Figure 2C). This result suggests that activation of CREB/CRTC1-dependent transcription 

is mediated by binding of CRTC1 to proximal CRE-TATA rich gene promoters after contextual 

learning in the dorsal hippocampus. 

CRTC1 is mostly expressed in cell bodies and fibers of neurons in the mouse hippocampus 

(CA1, CA3 and dentate gyrus), cortex, striatum, thalamus and amygdala (Figure 3A; data not shown). 

The pattern of CRTC1 staining is similar in naïve, context or shock conditions (P > 0.05; Figures 3A 

and 3C). Interestingly, CRTC1 is abundantly localized in the nucleus of CA3 pyramidal neurons and 

moderately in CA1 neurons 15 min after contextual fear conditioning compared with in naïve, context 

or shock conditions (P < 0.01, one-way ANOVA; Figures 3A,C and data not shown). Indeed, CRTC1 

colocalizes with MAP2 in dendrites of CA3 hippocampal neurons in naïve conditions, whereas this 

colocalization is significantly reduced 15 min after CFC (P < 0.02; Figures 3B,C). These results 

suggest that contextual learning induces a rapid translocation of CRTC1 from the cytosol and 

dendrites to the nucleus of neurons in the mouse hippocampus. 

 

Altered CRTC1-dependent transcription and nuclear translocation are associated with contextual 

memory deficits during neurodegeneration 

 

Since associative memory deficits and reduced hippocampal activity occur in AD patients (2, 

4-7), we next investigated the role of CRTC1-dependent transcription in contextual fear memory 

deficits in presenilin (PS) cDKO mice lacking both PS1 and PS2 genes in neurons of the postnatal 

forebrain (37). PS cDKO mice display classical features of neurodegeneration occurring in AD 

including age-dependent cortical atrophy, enlargement of lateral ventricles, neuron loss associated 

with increased apoptosis and activation of caspases 3 and 9, neuroinflammation, dendritic 
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degeneration and synapse loss (37, 47, 48). Indeed, control (WT) and PS cDKO mice at 2 months of 

age display similar freezing responses 2 h and 24 h after contextual fear conditioning (P > 0.05, two-

way ANOVA; Figure 4A). By contrast, 6 month-old PS cDKO mice show reduced freezing responses 

2 h (P < 0.05) and 24 h (P < 0.001) after contextual training compared with control mice (two-way 

ANOVA; Figure 4A), which indicates short- and long-term contextual memory deficits in PS cDKO 

mice.  

Gene expression analysis shows that Arc (P < 0.05) and c-fos (P < 0.0001) transcripts are 

significantly increased after contextual training but without significant differences between genotypes 

(P > 0.05, two-way ANOVA; Figure 4B). Nr4a1 and Nr4a2 transcripts, but not Nr4a3, are 

significantly increased 24 h after contextual learning in control and PS cDKO mice (P < 0.001, two-

way ANOVA) but with significant differences between genotypes. Post hoc analysis revealed a 

significant reduction of Nr4a1 (P < 0.001) and Nr4a2 (P < 0.05) transcripts, but not those of Nr4a3, in 

the hippocampus of 6 month-old PS cDKO mice at 24 h (Figure 4B). Levels of CRTC1 are not 

significantly different (P = 0.13) whereas CREB is slightly decreased (P < 0.02) in the hippocampus 

of PS cDKO mice. After contextual training, phosphorylated Ser151 CRTC1/CRTC1 levels are 

significantly decreased in control mice (P < 0.01) but not in PS cDKO mice (P = 0.47), whereas 

phosphorylated CREB was increased in both WT and PS cDKO mice but with significant changes 

between genotypes (P < 0.005, two-way ANOVA; Figure 4C). These results demonstrate age-related 

memory impairments associated with differential downregulation of CRTC1/CREB target genes in the 

hippocampus of PS cDKO mice. 

We next investigated the relationship between CRTC1 nuclear translocation and contextual 

memory deficits in PS cDKO mice. Contextual fear learning induces after 15 min a significant 

translocation of CRTC1 to the nucleus of CA3 pyramidal neurons in control (WT) mice (P < 0.05), 

whereas CRTC1 staining is found mainly in the cytosol and sporadically in the nucleus in PS cDKO 

mice (P < 0.05, two-way ANOVA; Figures 5A, C). Moreover, CRTC1 is significantly decreased in 

dendrites in control but not PS cDKO mice 15 min after contextual learning (P < 0.05; two-way 
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ANOVA; Figures 5B, C). Together, these results suggest deficient CRTC1 nuclear translocation and 

transcriptional function associated with contextual memory deficits in PS cDKO mice. 

 

CRTC1 gene therapy ameliorates transcriptional and contextual memory deficits in PS cDKO mice 

 

To evaluate whether CRTC1 dysfunction contributes to associative memory deficits in PS 

cDKO mice, we overexpressed CRTC1 in vivo by using adeno-associated virus (AAV) 2/10, a 

serotype that allows stable long-term (> 2 months) neuronal gene expression (49)and enhances nuclear 

translocation of CRTC1-myc and CRE-dependent transcription in cultured neurons (Supplementary 

Figure S1). 4-4.5 month-old mice were injected with AAV-GFP (control) and AAV-Crtc1-myc in the 

CA3 hippocampus and evaluated six weeks later. AAV-Crtc1-myc injection allowed high expression 

of CRTC1-myc mRNA and protein mainly in neurons of CA1, CA3 and dentate gyrus (Figures 6A, B 

and Supplementary Figure S2). CRTC1 overexpression does not affect basal freezing responses of 

WT and PS cDKO mice exposed in a novel context (P = 0.78, two-way ANOVA; Figure 6C). By 

contrast, AAV-Crtc1 increases significantly freezing responses 24 h after contextual training both in 

WT (P < 0.05) and PS cDKO mice (P < 0.03) (two-way ANOVA; Figure 6D). These results suggest 

a memory-enhancing rather than an anxiety effect of CRTC1 overexpression in the hippocampus. 

Contextual fear conditioning significantly induces Nr4a1 and Nr4a2 mRNAs in the hippocampus of 

all groups (P < 0.001). Importantly, CRTC1 overexpression increases significantly Nr4a1 and Nr4a2 

mRNAs in PS cDKO mice compared to GFP-injected PS cDKO mice (P < 0.05, two-way ANOVA; 

Figure 6E). This result indicates that CRTC1 gene therapy in the hippocampus ameliorates 

transcriptional and long-term contextual memory deficits in PS cDKO mice. 

 

CRTC1 ameliorates dendritic degeneration in the hippocampus  

PS cDKO mice develop cortical neuron loss and dendritic degeneration in the neocortex and 

hippocampus during aging (37, 48). In agreement, 6 month-old PS cDKO mice injected with AAV-

GFP or -Crtc1 in the hippocampus show similar enlargement of lateral ventricles and reduced cortical 
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thickness and dendritic MAP2-stained fibers in the neocortex (Figures 7A,B). Quantitative confocal 

imaging analysis reveals significant reduction of total MAP2 staining intensity and dendritic fibers in 

CA3 hippocampus of PS cDKO-GFP mice compared with WT-GFP mice (P < 0.05, two-way 

ANOVA; Figure 7B). Interestingly, AAV-Crtc1 increases total MAP2 intensity staining and also 

moderately dendrite thickness in CA3 hippocampus of PS cDKO mice (two-way ANOVA; Figure 

7B). Notably, MAP2 staining intensity and dendrite thickness in CA3 hippocampus of PS cDKO-

Crtc1 mice are not significant different from WT-GFP mice (P > 0.05, two-way ANOVA). These 

results indicate that CRTC1 gene therapy ameliorates dendritic degeneration in the hippocampus 

without affecting cortical neurodegeneration. 

 

Discussion 

 

The transcription factor CREB facilitates contextual memory by regulating neuronal 

excitability and recruitment of neurons into active memory networks (50-53). However, the CREB-

dependent transcriptional programs and their regulatory mechanisms that mediate associative memory 

encoding are largely unclear. In this study, we found that contextual learning induces time-dependent 

dephosphorylation (Ser151), nuclear translocation and transcriptional activation of CRTC1 in the 

hippocampus. Importantly, deregulation of CRTC1 nuclear translocation and function in the 

hippocampus is associated with contextual memory impairments and dendrite degeneration in a 

mouse model of neurodegeneration, whereas CRTC1 gene therapy reverses these deficits. These 

results strongly suggest that CRTC1-dependent transcription in the hippocampus is critical for long-

term associative memory encoding in normal and pathological conditions.  

A relevant finding of our study is that associative learning activates CRTC1 in the 

hippocampus by a mechanism that involves CRTC1 dephosphorylation and translocation from the 

cytosol and dendrites to the nucleus. Contextual learning, but not context or shock alone, induces 

CRTC1 nuclear translocation in CA3 hippocampus, and to a minor extent in CA1 region (not shown), 

suggesting that CRTC1 activation in the hippocampus can mediate rapid spatial context acquisition 
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during memory encoding. Indeed, CRTC1 inactivation in the hippocampus by using AAV-Crtc1 

ShRNA negatively affects long-term associative memory in control mice (unpublished). A role of 

CRTC1 in associative memory is further supported by previous findings indicating that spatial 

memory training induces CRTC1 nuclear translocation in the hippocampus (35), and that CRTC1 

overexpression in the dorsal hippocampus enhances contextual fear memory (30, 31) (Figure 6C). In 

agreement, contextual learning induces CREB-mediated transcription in CA1/CA3 hippocampus, 

whereas cued fear-conditioning activates CREB in the amygdala (23). Alternatively, CRTC1 is 

activated in the amygdala one day after contextual learning, i.e. during memory consolidation (31), 

which is consistent with a role of this circuit in associating contextual cues with aversive events (11, 

12). Based on these results, we suggest that CRTC1 participates in transcriptional events mediating 

contextual memory in the dorsal hippocampus, a region required for contextual memory encoding (15, 

54).   

Consistent with a role of CRTC1 in associative memory encoding, contextual fear learning 

induces expression of memory-related CRTC1/CREB target genes in the hippocampus. We found a 

time-dependent differential induction of CREB target Nr4a family genes Nr4a1-3 in the hippocampus, 

a result that agrees with the requirement of Nr4a genes for contextual memory (44, 55). CRTC1-

mediated transcription may involve CRTC1 dephosphorylation at Ser151, a critical event for activity-

induced CREB-mediated transcription (33, 36). Since the histone deacetylase CBP mediates CREB-

dependent transcription through cooperative interactions with CRTC2 and CREB (26), it is possible 

that CRTC1 dephosphorylation and nuclear translocation could mediate its recruitment to CREB 

target promoters through cooperative interactions with CBP and CREB. This idea is reinforced by 

recent results indicating that a constitutive CRTC1 S151A/S245A mutant enhances contextual 

memory by increasing CREB-dependent transcription in the hippocampus (31). However, it is still 

unclear whether CBP-mediated histone acetylation plays a role on CRTC1/2/CREB complex 

formation. Other alternative regulatory transcriptional mechanisms may include kinase/phosphatase 

activities, synapse-nuclear translocation, acetylation or CREB glycosylation (34, 36, 56, 57). 
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Genetic and biochemical evidences suggest a role of CREB signaling in cognitive and 

neurodegenerative disorders (58). The age-related CRTC1-dependent transcription and nuclear 

translocation deficits in PS cDKO mice is the first evidence linking CRTC1 dysfunction and 

associative memory impairments during neurodegeneration. Although the molecular mechanisms 

linking PS and CRTC1 are still largely unclear, reduced calcium influx caused by loss of PS function 

(59) could potentially lead to reduced calcineurin/PP2B activity resulting in the observed reduced 

CRTC1phosphorylation in PS cDKO mice. Indeed, memory deficits in PS cDKO mice were 

previously associated with CBP dysfunction (37), which is consistent with fear memory deficits 

observed in CBP-deficient mice (60-63). Since selective expression of CREB target genes requires 

cooperative interaction of CRTC/CBP with CREB (26), a correct balance of this complex may be 

crucial for activity-dependent gene transcription during memory processing. Indeed, 

CBP/CRTC1/CREB-dependent transcriptional deregulation is associated with cognitive deficits and 

neurodegeneration in Huntington´s disease (57, 64). Interestingly, PS cDKO mice show contextual 

memory impairments associated with hippocampal deficits of the CRTC1 target genes Nr4a1 and 

Nr4a2. Particularly, Nr4a2 (Nurr1) is required for CREB-dependent neuronal survival induced by a 

number of neural signals (65, 66). Since Nr4a genes (i.e. Nr4a2) are downregulated in sporadic AD 

and Parkinson´s disease brains and mouse models (67), our result may have important pathological 

and therapeutic implications in neurodegenerative diseases. 

Do CRTC1-dependent transcription changes contribute to associative memory deficits in 

neurodegeneration? CRTC1-dependent transcriptional deficits were recently associated with early 

pathological and memory changes in APP mice and a rat AD model that do not develop 

neurodegeneration (35, 68). Pharmacological activation of CREB signaling has been useful to reverse 

memory and synaptic deficits in AD mice (69-71). Our current gene therapy strategy indicates that 

enhancing especifically CRTC1 in the hippocampus ameliorates long-term contextual memory 

deficits and CRTC1-dependent transcriptional deficits in PS cDKO mice during neurodegeneration. 

As shown previously (31), CRTC1 significantly increased associative memory although had minor 

effects on Nr4a1/2 levels in control mice. It is possible that CRTC1 overexpression in vivo: (1) may 
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affect differentially the timing of gene induction, (2) cause a differential expression of particular set of 

genes as observed after spatial memory training (35), and/or (3) does not affect Nr4a1/2 levels  in 

conditions where induction is maximal as happens after memory training. Interestingly, CRTC1 

overexpression in the hippocampus ameliorated dendrite degeneration in PS cDKO mice suggesting a 

direct link between CRTC1 dysfunction and dendrite degeneration. Although the exact mechanism by 

which CRTC1 ameliorates dendrite degeneration needs further investigation, one possibility is that 

CRTC1 improves dendrite morphology through BDNF signaling (72).  

 

In conclusion, CRTC1 gene transfer ameliorates dendrite degeneration, transcriptional deficits 

and associative memory symptoms during neurodegeneration. These results are highly relevant for 

AD therapy since dementia patients develop early deficits in associative memory encoding and 

retrieval caused by decreased activity of the hippocampus. Targeting CRTC1 to increase selectively 

expression of genes mediating neuronal excitability and associative memory may represent a 

promising avenue for future therapeutics in AD and other cognitive-related disorders.  
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Figure Legends  

Figure 1. Contextual fear learning induces CRTC1 dephosphorylation in the hippocampus  

A, Design of the contextual fear conditioning (CFC) test used in this study. B, Freezing responses of 

2-3 month-old mice exposed to context (n=20) or context plus shock and measured immediately 

(n=16), 2 h (n=5) or 24 h (n=5) after training. Statistical analysis shows a significant increase of 

freezing after training (F(3, 42)= 9.26, P = 0.0001). C, D, Western blot and quantitative analyses of 

CRTC1, pCRTC1 (Ser151), CREB and pCREB (Ser133) in the hippocampus of home cage (naïve), 

context, shocked and CFC (15 min, 2 h and 24 h) groups. pCRTC1 levels are significantly decreased 

15 min and 2 h after training (F(4, 16) = 4.34, P = 0.01). Values represent fold changes ± s.e.m (n=4-5 

mice/group). Statistical analysis was determined by one-way ANOVA followed by Scheffé´s S (A) or 

Bonferroni (B) post hoc tests. *P < 0.05, ** P < 0.01 and ** *P < 0.0001 compared to naïve mice. 

 

Figure 2. Contextual learning induces expression of CRTC1 target genes in the hippocampus  

A, Hippocampal mRNA levels of CREB target genes in 2-3 month-old mice in naïve, context, shock 

and CFC groups analyzed by qRT-PCR. Contextual fear conditioning induces a significant overall 

effect on hippocampal levels of Arc (F(5,30) = 2.4, P = 0.05), c-fos (F(5,30) = 6.7, P = 0.0003), Nr4a1 (F(5,30) 

= 3.5, P = 0.01) and Nr4a2 (F(5,30) = 2.8, P = 0.03), but not Nr4a3 (F(5,30) = 0.8 P = 0.55). Values are 

normalized to the geometric mean of Gapdh, Hprt1 and Ppia. Data represent mean ± s.e.m (n=4-6 

mice/group). B, Western blot analysis of CRTC1 (top) and qRT-PCR analysis of CREB target genes 

normalized to Gapdh (bottom) in non-infected (NI)-, scramble (Scr)- and Crtc1 ShRNA-treated 

hippocampal neurons. Data are the mean ± SD of three independent experiments. C, Chromatin 

immunoprecipitation (IP) analysis of c-fos, Nr4a1, 2 and 3 gene promoters using anti-CRTC1 (left) 

and anti-CREB (right) antibodies in vehicle- and FSK/KCl-treated primary neurons. *P < 0.05, ** P < 

0.01, *** P < 0.001, compared to naïve (A) or vehicle control (B,C), and #P < 0.05, compared to 

FSK/KCl scramble ShRNA (B) or IP CRTC1 vehicle (C) as determined by one-way ANOVA 

followed by Bonferroni (A,C) or Dunnett's (B) post hoc tests. 
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Figure 3. Contextual fear learning induces CRTC1 dendritic delocalization and nuclear 

translocation in the hippocampus 

A, Confocal microscopy images showing CRTC1 (green), MAP2 (red) and nuclear (Hoescht, blue) 

staining in CA3 hippocampal neurons of mice in naïve or context, shocked and CFC conditions 15 

min after training. Scale bar: 50 μm. B, Confocal microscopy images showing CRTC1 (green), 

MAP2-stained dendrites (red) and nuclei (Hoescht, blue) in CA3 hippocampal neurons. MAP2 

staining is detected as punctuate staining pattern due to its transversal position in coronal sections.  

Insets: magnified images of the dashed regions showing localization (yellow) of CRTC1 in MAP2 

fibers in naïve conditions and its nuclear redistribution (arrowheads) 15 min after CFC. Scale bar:  50 

μm. C, Quantitative analysis of CRTC1 in the nucleus (top) and dendrites (bottom). Values represent 

mean ± s.e.m (nucleus: n=4-5 mice/group, n=6-12 sections/mouse; dendrites: n=8 mice/group, 4-6 

sections/mouse). *P < 0.05, ** P < 0.01 and n.s. (non-significant) compared to naïve mice. Statistical 

analysis was determined by one-way ANOVA followed by Bonferroni post hoc test (nucleus) and t-

test (dendritic). 

 

Figure 4. Age-dependent contextual memory and CRTC1-mediated transcription deficits in PS 

cDKO mice 

A, Freezing responses of control (WT) and PS cDKO mice at 2 or 6 months of age tested in contextual 

fear conditioning. Mice were tested immediately (context, n=14-24), 2 h (n=5-10) or 24 h (n=5-10) 

after contextual training. Two-way ANOVA reveals a training effect (F(3,72) = 22.6, P = 0.0001) but not 

a genotype effect (F(1,72) = 0.005, P = 0.94) at 2 months of age, whereas there are training  (F(3,121) = 25, 

P = 0.0001) and genotype (F(1,121) = 21, P = 0.0001) effects at  6 months. B, Hippocampal levels of 

mRNAs in naïve and CFC trained WT and PS cDKO mice at 6 months of age. Two-way ANOVA 

indicates a significant time-dependent effect for Arc (F(2, 29) = 6.9, P < 0.003), c-fos (F(2, 29) = 20.0, P < 

0.0001), Nr4a1 (F(2, 29) = 33.0,  P < 0.0001) and  Nr4a2 (F(2, 29) = 27.9, P < 0.0001) but not Nr4a3 (F(2, 29) 
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=2.5 , P = 0.1), and a genotype effect for  Nr4a1 (F(1, 29) = 18.1,  P < 0.0002),  Nr4a2 (F(1, 29) = 14.8, P < 

0.001) and  Nr4a3 (F(1, 29) = 14.6 , P < 0.001) but not for Arc (F(1,29) = 0.85, P = 0.36) and c-fos (F(1, 29) = 

0.3, P = 0.6). mRNA levels were quantified by real-time qRT-PCR and normalized to the geometric 

mean of standard genes Gapdh, Hprt1 and Ppia. C, Western blot and quantitative analyses of CRTC1, 

pCRTC1 (Ser151), CREB and pCREB (Ser133) in the hippocampus of naïve and CFC (2 h) WT and 

PS cDKO mice at 6 months. Statistical analyses shows a group effect in pCREB/CREB (F(1, 26) = 10.1, 

P < 0.004), CREB (F(1, 26) = 5.4, P < 0.03) and pCRTC1/CRTC1 treatment effect (F(1, 26) = 6.1, P < 

0.02). Values represent mean of fold changes ± s.e.m (A, B: n=4-6 mice/group; C: n=6-9 mice/group). 

*P < 0.05, ** P < 0.005, *** P < 0.0001, compared to WT mice or the indicated group. Statistical 

analyses were performed by two-way ANOVA followed by Scheffé´s S (A,C) or Bonferroni (B) post 

hoc tests. 

 

Figure 5. Reduced translocation of CRTC1 to the nucleus of hippocampal neurons in PS cDKO 

mice   

A, Confocal microscopy images showing CRTC1 (green, left images) and merged CRTC1/NeuN (red) 

(right image) staining in CA3 pyramidal neurons of 6 month-old WT and PS cDKO mice. 

Arrowheads indicate some neurons showing nuclear CRTC1. Scale bar: 80 μm. B, Confocal images 

showing CRTC1 (green) and MAP2 (red) staining in CA3 hippocampal neurons of 6 month-old WT 

and PS cDKO mice in naïve and CFC (15 min) conditions. Arrowheads indicate nuclear CRTC1. 

Scale bar: 60 μm, 15 μm (inset).  C, Quantitative analysis of nuclear (left) and dendritic (right) 

CRTC1 in CA3 hippocampal neurons in WT and PS cDKO mice. Statistical analysis shows a 

genotype effect on CRTC1 nuclear localization (F(1, 24) = 4.03,  P = 0.05). Values represent mean ± 

s.e.m of multiple mice (n=4-8 mice/group), each analyzed in multiple brain sections (n= 4-6 per 

mouse). *P < 0.05, compared to naïve control. Statistical analysis was determined by two-way 

ANOVA followed by Bonferroni multiple comparison post hoc test.  
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Figure 6. CRTC1 gene therapy ameliorates hippocampal CRTC1-dependent transcription and 

associative memory deficits in PS cDKO mice 

A, AAV2/10-CRTC1-myc injection increases CRTC1-myc levels in the adult mouse dorsal 

hippocampus.  Confocal images showing expression of exogenous GFP (green, left) or CRTC1-myc 

(green, right) in CA3 pyramidal neurons of 6 month-old WT and PS cDKO mice six weeks after AAV 

injection. Mice were sacrificed 24 h after CFC training. Insets are magnified images of the dashed 

regions showing expression of GFP and CRTC1-myc in NeuN-positive neurons. Hoescht (blue): 

nucleus. Scale bar: 100 μm. B, CRTC1-myc protein (top) and mRNA (bottom) levels in the 

hippocampus of WT and PS cDKO mice six weeks after AAV injection. C, Effect of CRTC1 

overexpression in freezing responses in WT and PS cDKO mice in a novel context (n=6-7 

mice/group). No significant differences were found among groups (group effect: F(1,21) = 1.7, P = 0.2, 

treatment effect: F(1,21) = 0.07, P = 0.8). D, Contextual fear conditioning in control and PS cDKO mice 

(n=6-7 mice/group) six weeks after AAV-GFP and -Crtc1 injection. Two-way ANOVA reveals 

significant effects of groups (F(3,42) = 4.3, P < 0.01), time (F(1,42) =  36.8, P < 0.0001) and group x time 

interaction (F(3,42) = 3.5, P < 0.02). E, Levels of Nr4a1 and Nr4a2 transcripts in the hippocampus of 

AVV-GFP or-Crtc1 injected mice. Values normalized to the geometric mean of Gapdh, Hprt1 and 

Ppia represent mean ± s.e.m (n=4-6 mice/group). Data. *P < 0.05, ** P < 0.01, *** P < 0.0001, 

compared to WT GFP or the indicated group. Statistical analyses were determined by two-way 

ANOVA and Scheffé´s S (behavior) or Bonferroni (gene expression) post hoc tests.  

 

Figure 7. CRTC1 overexpression ameliorates dendritic degeneration in the hippocampus of PS 

cDKO mice 

A, Reduced cortical thickness in PS cDKO mice at 6 months. Left: Nissl staining of neocortex (top) 

and hippocampus (bottom) showing reduced cortical thickness (dashed lines) but normal hippocampal 

morphology in AAV-GFP- and -Crtc1 injected PS cDKO mice. Scale bar: 200 μm. Right: 

Quantification of cortical thickness indicates a significant group effect (F(1,14) = 8.5, P < 0.01) but not 

treatment effect (F(1,14) =  0.003, P = 0.96). B, Dendritic degeneration in the hippocampus is reduced 
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after AAV-Crtc1 injection in PS cDKO mice. Left: Confocal microscope images showing MAP2-

stained fibers (red) in the neocortex (top) and CA3 hippocampus (middle) in brain sections of AAV-

GFP- and -Crtc1-injected mice. Magnified dendrites in CA3 region are shown at the bottom. Scale 

bars: 20 μm (Cortex) or 10 μm (CA3). Right: Quantification of MAP2 staining intensity and dendrite 

thickness in CA3 hippocampus. Data represent percentage of control ± s.e.m of cortical thickness and 

MAP2 staining intensity or average of dendrite thickness (μm) in multiple mouse brains (n=4-5 

mice/group; n=3 sections/mouse). *P < 0.05, ** P < 0.01, *** P < 0.0001, compared to WT GFP 

mice or the indicated group. #P = 0.05. Statistical analyses were determined by two-way ANOVA and 

Scheffé´s S post hoc test. 
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