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Abstract 

The antimicrobial and wear behaviour of metallic glass composites corresponding to the Cu50+x(Zr44Al6)50-x 

system with x=(0, 3 and 6) has been studied. The three compositions consist of crystalline phases 

embedded in an amorphous matrix and they exhibit crystallinity increase with increasing copper content, 

i.e., decrease of the glass-forming ability. The wear resistance also increases with the addition of copper 

as indirectly assessed from H/Er and H3/Er
2 parameters obtained from nanoindentation tests. These results 

are in agreement with scratch tests since for the alloy with highest Cu content, i.e., Cu56Zr38.7Al5.3, reveals 

a crack increase, lower pile-up, prone adhesion wear in dry sliding and higher scratch groove volume to 

pile-up volume. Samples with higher Cu content revealed higher hydrophilicity. Time-kill studies revealed 

higher reduction in colony-forming units for E. coli (gram-negative) and B. subtilis (gram-positive) after 60 

min of contact time for the Cu56Zr38.7Al5.3 alloy and all the samples achieved a complete elimination of 

bacteria in 250 min. 

 

1.  Introduction 

Nosocomial infections (i.e., hospital-acquired infections, HAI) and bacterial resistance to antibiotics are 

topics of utmost importance in [1]. For this reason, numerous studies about the economic and social 

impact of HAI have been performed over the years [2-4]. For example, a European survey from 2011–

2012 estimated that the total annual number of patients with HAI in European acute care hospitals was 3.2 

million [5]. The most common method to tackle this challenge in hospitals is to clean touch surfaces using 

chemical products. The major drawback is that the large number of touch surfaces requires considerable 
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financial resources to ensure proper surface sterilization. In this regard, the self-sterilizing behaviour of 

antimicrobial materials makes them an appealing alternative to tackle this issue. Among these materials, 

copper is the most frequently used due to its efficiency in “contact killing” and therefore it has been used 

for multiple applications in the healthcare [6]. The mechanisms behind the antimicrobial activity of copper 

are not completely understood yet but it is commonly accepted that the release of ions from the surface 

plays an important role in this effect.  

Most of the studies carried out over the years have focused on using copper and copper alloys in the 

crystalline state. The major drawbacks for using these materials are their relatively low hardness and low 

wear resistance. These properties can be increased when copper and copper alloys are in an amorphous 

(i.e., metallic glasses) or amorphous/crystalline state (i.e., metallic glass composites) [6]. This can be 

accomplished by increasing the glass forming ability (GFA) through alloying copper with other elements. 

However, addition of such elements may result in losing part of the antimicrobial ability when these 

elements are non-antimicrobial.  

Metallic glasses exhibit higher yield strength and lower Young´s modulus than their crystalline 

counterparts resulting in higher wear resistance [7]. This has triggered a growing interest in designing 

novel copper-based metallic glasses [8] as touch surfaces. Despite the interest in the topic, the number of 

studies dealing with the antimicrobial behaviour of bulk metallic glasses (BMGs) is still very small. For 

example, Huang et al. [9] studied the antimicrobial effect against the Gram positive bacterium S. aureus of 

Cu-containing Zr-based BMGs. The authors concluded that the number of colony forming units (CFU) on 

Zr-based BMGs after 4 h of moist contact was about one order of magnitude lower than on Ti-6Al-4V 

alloy. From the point of view of the tribological behaviour of metallic glasses, there are numerous studies 

about the interaction of a cylindrical sample and a surface (pin-on disc) or the interaction between a 

diamond tip and the surface (scratch test) when the material is either in bulk shape or as thin film [7, 8, 10-

13]. However, studies dealing with the ability to tune the wear resistance of metallic glasses by controlling 

the formation of intermetallic phases are scarce.  

The aim of this study is to control the addition of Cu to metallic glass alloys corresponding to the Cu-Zr-Al 

system to promote the formation of Cu-rich intermetallic phases in order to optimize the mechanical and 

antimicrobial performance. These Cu-rich alloys are derived from a similar composition, Cu50Zr43Al7 (at. 

%), with high GFA and strength [14]. The mechanical properties have been studied using nanoindentation 

and scratch studies. The antimicrobial studies have been performed using Gram-positive and Gram-

negative bacteria since both types of bacteria can be found on touch surfaces and they exhibit different 

sensitivity against Cu ions [15]. Although some authors have previously studied the antimicrobial 

behaviour of Cu-containing metallic glasses [9, 16] the possibility of tuning the antimicrobial performance 

by controlling the formation of crystalline phase has been mostly overlooked.  

 

2. Experimental 

Alloy ingots with nominal composition Cu50+x(Zr44Al6)50-x with x=(0, 3 and 6) were prepared from elements 

with purity higher than 99.9 at. %. The master alloys were re-melted three times in a Zr-gettered high 



 

 

purity argon atmosphere to attain good chemical homogeneity. Rod samples of 2 mm in diameter were 

obtained from the master alloy by copper mould casting in an inert gas atmosphere. The structure of the 

as-cast and thermally-treated samples was studied by X-ray diffraction (XRD), using a Bruker D8 

diffractometer with monochromated Cu Kα_radiation (2θ range 20°-90°, step size = 0.03°). The 

microstructure was investigated with a scanning electron microscope (SEM) (Mira FEM-SEM Tescan) 

equipped with energy-dispersive X-ray (EDX) analysis. To evaluate the mechanical properties, cylindrical 

specimens with 2:1 aspect ratio were tested at room temperature under compression at a strain rate of 

2×10−4 s−1 in a universal Servosis machine. Nanoindentation experiments were performed at room 

temperature at approximately half the radius distance from the centre in a UMIS equipment from Fischer-

Cripps Laboratories, in the load control mode and using a Berkovich-type diamond tip. Prior to the 

nanoindentation and scratch test the surfaces were mirror-like polished. The maximum load applied was 

300 mN, high enough to make the indent deforming volume large enough to sample all the existing 

phases. A Teer Coating Limited scratch tester model ST220 was used for the scratch tests of the mirror-

like polished samples. The tests were performed at a load of 30 N at a stage speed of 10 mm/min. The 

scratched surfaces (profile and roughness) were analysed using an Alicona profilometer and the profiles 

were obtained averaging 5 measurements. Contact angle measurements were carried out using the 

sessile drop technique, with a Krüss drop size DSA30 analyser and depositing 1 µl of deinoized water at a 

rate of 30 µ/min. 

For initial antimicrobial tests, E. coli strain K12 (Gram-negative) and Bacillus subtilis strain 168 (Gram-

positive) were incubated (30ºC), with shaking (200 rpm), in 25 ml of Mueller-Hinton Broth (MHB) for 16 

hours. Cultures were diluted in MHB to an optical density (OD600) of 0.01. The diluted cultures were 

incubated at 37ºC until and they reached an OD600 of ∼ 0.3. A quantity equal to 1 µl of the respective 

cultures was pipetted off directly onto the ground (4000 grit) surfaces of the specimen and control (copper 

and plastic) samples. Inoculated samples were placed inside a petri dish containing moist tissue, sealed 

and statically incubated for 4 hours at 37ºC, after which they were diluted in 99 µl of MHB. Samples were 

serially diluted, plated onto MH agar and resulting colonies were counted after 16 hours of incubation at 

37ºC. All tests were done in triplicate and mean counts reported. Time-kill experiments were done as 

above, but a lower initial inoculum density was used (ca. 1 x 106 cells/ml) and cell counts were taken 

every hour 60 mins. 

 

3. Results and discussion 

3.1. Microstructure 

Fig. 1 shows the XRD scans of 2 mm diameter rods of Cu50+x(Zr44Al6)50-x (x=0, x=3 and x=6). For the 

Cu50Zr44Al6 alloy high intensity peaks associated to orthorhombic Cu10Zr7 (a = 0.9347 nm, b = 0.9347 nm, 

c = 1.2675 nm), orthorhombic Cu8Zr3 (a = 0.78686 nm, b = 0.81467 nm, c = 0.9977 nm), B19’ CuZr 

martensite and also probably austenite B2 CuZr are detected and superimposed on a broad halo 

suggesting that along with the crystalline phases an amorphous phase is present. For the Cu53Zr41.4Al5.6 

alloy, the intensity of the broad halo decreases while the intensity of the XRD peaks, especially those 



 

 

detected at around 40°, increase. A larger number of peaks associated to Cu10Zr7 and Cu8Zr3 are also 

observed. Finally, for the alloy with highest content Cu content (i.e., Cu56Zr38.7Al5.3), the broad halo is 

practically undetectable and the peaks corresponding to Cu10Zr7 and Cu8Zr3 further increase in intensity, 

especially the one at about 41.5º. The peaks also tend to get narrower, suggesting growth of the crystallite 

size and additional peaks corresponding to CuZr phases, both austenite B2 and martensite B19´, are 

detected. These results show that, in general, the number and intensity of the XRD peaks tend to increase 

and the intensity of the broad halo to decrease with increasing Cu content thus suggesting a decrease in 

the glass forming ability (GFA). The detection of these phases is consistent with previous works on other 

ZrCu-based BMG composites [17-19]. The formation of the stable intermetallic phases Cu10Zr7 [20], 

Cu8Zr3 and CuZr could be due to strong interaction of Cu and Zr atoms since the enthalpy of mixing 

(∆H
mix

) of Zr-Cu pair is -23 kJ/mol, stronger than the Cu-Al pair (∆H
mix 

=-1 kJ/mol) [21].  

To better understand the differences between the three alloy compositions, the microstructures were also 

investigated by scanning electron microscopy. Fig. 2 shows the backscattered SEM images from the cross 

section of the 2 mm diameter rods of the three compositions, acquired at half the radius distance from the 

centre. For the Cu50Zr44Al6 alloy (Fig. 2a), crystalline phases of different sizes are observed, from 

equiaxed nuclei of less than 1 µm to dendrites whose arms expand up to 5 µm. The brightness of the 

equiaxed particles and that of the dendrites is very similar and therefore could be attributed to the same 

crystalline phase at diffferent stages of growth. This phase is slightly darker than the matrix. A small area 

of higher brightness surrounding some of the dendrites are also observed and would be attributed to 

another crystalline phase and therefore two intermetallic phases of different composition seem to coexist 

together, in agreement with the XRD results. According to XRD, in principle, up to four intermetallics may 

be present in the Cu50Zr44Al6 alloy, but matching these results with those from electron microscopy 

suggests that the two peaks at about 40 and to 43º would be attributed to Cu10Zr7, the peak at about 66º 

to martensite CuZr and the peak close to 37º to both phases (Cu10Zr7 and CuZr). The matching has been 

done taking into consideration the differences in atomic weight of the elements (Cu: 63.546, Zr:91.224 and 

Al:26.9815) [22] where a brighter backscattered image indicates a higher concentration of high atomic 

weight elements. The order from brightest to darkest is thus: Zr1/Cu1 (Cu1Zr1)>Zr7/Cu10 (Cu10Zr7)>Zr3/Cu8 

(Cu8Zr3). 

Bearing in mind the atomic weight of the constituent elements these round-shaped particles and the 

dendrites would correspond to Cu10Zr7 while the small brightest phase surrounding some dendrites to 

CuZr. For the alloy Cu53Zr41.4Al5.6 (Fig. 2b) the microstructure changes dramatically since most of the 

crystalline phases consist of large and well-developed dendrites with arms of up to 10 µm length. 

However, small round crystalline phases of about 1µm homogeneously dispersed in the matrix and also 

located around the dendrites are also present. This round phase is of similar brightness to that previously 

associated to Cu10Zr7 (Fig. 2a) and therefore should correspond to the same intermetallic phase. The 

dendrites correspond to the darkest phase and therefore should be associated to the phase with highest 

Cu content and would correspond to Cu8Zr3. Not only the size of the dendrites have grown upon Cu 

addition, due to the decrease of the GFA, but also the surrounding clear phase associated to CuZr has 



 

 

grown, suggesting that it has heterogeneously grown from the surface of the dendrites. Similar 

phenomena can be observed during the crystallization process in different alloy compositions where one 

crystalline phase grows from the previously formed phase [23].The alloy with highest content copper, 

Cu56Zr38.7Al5.3 (Fig. 2c) exhibits, at the half radius distance from the centre, a very similar microstructure to 

that of the alloy with 53 at. % Cu but the dendrites are more evolved. This confirms the decrease of the 

GFA with increasing Cu content. For this composition, and contrary to the alloys with 50 and 53 at. % Cu, 

no featurless matrix is observed and therefore it appears to be fully crystalline. The same three distinctive 

phases of different brightness are observed in this sample as well: dark dendrites (Cu8Zr3), a gray round 

phase (Cu10Zr7) and a matrix of lighter brightness (CuZr). These results are similar to those obtained by 

Yokoyama et al. [24] for alloys corresponding to the ZrCuAl system. 

 

3.2. Mechanical behaviour 

The mechanical behaviour of the alloys with 50, 53 and 56 at. % Cu were initially evaluated from 

compression tests. All the compositions were found to be brittle (i.e., the samples fractured in the elastic 

region) and therefore probably failed before the yield stress was reached (data not shown). Multiple step 

drops were detected in the elastic region upon loading, indicating the presence of internal flaws, probably 

porosity. This suggests that uniaxial compression is not a good technique to measure certain mechanical 

properties of these materials and therefore a more local technique where small sample volumes are 

involved in the deformation, was required. Nanoindentation is an excellent technique in such 

circumstances [25]. Furthermore, the wear resistance was assessed using scratch testing to compare the 

performance of the different alloys. 

 

3.2.1. Nanoindentation tests 

The mechanical behaviour of the three different investigated compositions was characterized by 

nanoindentation with a maximum load of 300 mN, large enough to sample all the crystalline phases and 

get average values of the different mechanical properties. Fig. 3 shows representative load-displacement 

(P-h) curves obtained at half the radius of the disk´s cross-section. The maximum displacement hmax 

decreases with increasing the Cu content from hmax=1.485 µm for Cu50Zr44Al6 to 1.372 µm for 

Cu56Zr38.7Al5.3. This can be ascribed to the increasing volume fraction of brittle and mechanically hard 

intermetallic phases. Remarkably, clear pop-in events are observed for the samples containing an 

amorphous fraction (i.e., 50 at.% and 53 at.% Cu) (see inset), which are indicative of shear band activity 

governing the deformation behaviour of these materials [26, 27]. 

Table 1 lists the values of the parameters H, Er, H/Er, H
3/Er

2 and hmax for the studied alloys. The hardness 

increases from 8.46 GPa for Cu50Zr44Al6 to 10.15 GPa for Cu56Zr38.7Al5.3 alloy while for the intermediate 

composition (i.e., Cu53Zr41.4Al5.6) the hardness is 9.37 GPa, closer to Cu56Zr38.7Al5.3 than to Cu50Zr44Al6. 

These results are consistent with the XRD scans (Fig. 1) since the degree of crystallinity for Cu56Zr38.7Al5.3 

and Cu53Zr41.4Al5.6 alloys is closer to each other than from Cu50Zr44Al6 alloy. The hardness is larger than 

those reported for Zr-based metallic glasses [28, 29] and ZrCu-based metallic glasses [30]. The increase 



 

 

of hardness H with the Cu content is presumably associated to the brittle and hard Cu10Zr7, Cu8Zr3 

intermetallic phases in Cu50Zr44Al6 since for Cu50Zr50 the hardness at 300 mN (using the same 

experimental setup) was reported to be of only about 6 GPa [31]. 

The values of maximum displacement also agree with the hardness trend since an increase in hardness 

involves a lower ability to plastic deformation. Another important listed parameter is the contact modulus 

Er, which gives information about the stiffness of the contact between the sample and the indenter tip. The 

values increase from 108 to 123 GPa as the content of Cu increases from 50 to 56 at. %. For the 

intermediate composition, the value of Er (i.e., 121 GPa) is closer to that of Cu56Zr38.7Al5.3 than to 

Cu50Zr44Al6, which agrees with the relatively large fraction of crystalline phases in both samples. 

Nonetheless, this behaviour could also be attributed, at least in part, to differences in the composition 

since the Young´s modulus of Cu (i.e, ECu =130 GPa), is higher than that of Zr and Al (EZr=68 GPa, EAl=70 

GPa) [32]. The value of Er for Cu50Zr44Al6 is not far from 112.5 GPa, previously reported for an alloy with 

similar composition [30]. These materials could also potentially exhibit good tribological performance, 

given their high H values and the bright appearance obtained after polishing their surfaces. In order to 

estimate the wear resistance, the values of H/Er [33] and H3/E2 [34] were assessed since these 

parameters have been reported to be more representative of the wear resistance than the hardness itself. 

The parameter H/Er
2 indicates the resistance to plastic deformation [35] and its dependence with the Cu 

content correlates well with that of the displacement values hmax from nanoindentation tests.  The values of 

both H/Er
2 and H3/Er

2 increase with increasing the Cu content. H/Er
2 increases from 0.078 to 0.082, for 

Cu50Zr44Al6 and Cu56Zr38.7Al5.3 alloys, respectively, while H3/Er
2 increases from 0.052 to 0.069. These 

results suggest that the wear resistance of Cu50+x(Zr44Al6)50-x alloys should be maximum for the most 

crystalline composition, i.e., Cu56Zr38.7Al5.3. Hence, this behaviour can be associated with the nature and 

volume fraction of the crystalline phases in each composition.  For further assessment of the wear 

resistance, scratch tests were also performed. 

 

3.2.2. Scratch tests 

In order to assess the wear behaviour of the different compositions scratch tests were performed at 

approximately half the radius distance from the centre. It is important to take into consideration that in 

scratch tests the deformation is more complex than in indentation since the material is not only subjected 

to a compressive load normal to the surface but simultaneously a shear load is acting parallel to the 

scratch direction. Differences in wear behaviour among the three compositions were analysed from the 

morphology of the scratches and the cross section profile as shown in Fig. 4. For each composition the 

pile-up size, groove depth at the centre and the maximum depth, the average (Ra) and total roughness 

(Rz) are indicated in the figure. Fig. 4a shows that the scratch for Cu50Zr44Al6 alloy contains multiple lateral 

cracks in the pile-up separated at a distance of about 25 to 50 µm from each other. The cracks are 

relatively short (up to about 50 µm) and do not seem to propagate beyond the pile-up width. For the 

Cu53Zr41.4Al5.6 alloy (Fig. 4b) the density of cracks growing from the scratch is much smaller and the 

distance from each other is larger. In addition, they are not confined to the pile-up but propagate larger 



 

 

distances, up to 150 µm. The largest cracks are detected for the composition Cu56Zr38.7Al5.3 alloy since 

they extend well beyond 200 µm and the crack density is also larger than for Cu53Zr41.4Al5.6 alloy. Finally, 

for the composition Cu56Zr38.7Al5.3 (Fig. 4c) the cracks are not only longer (they extend well beyond 200 

µm) but their density is also higher (distance from each other from about 50 to 100 µm). Moreover, the 

cracks also propagate towards the inner part of the track as shown in the detail (red square). This feature 

is similar to the brittle tensile cracking observed by Bull [36] and therefore the results suggest that the 

composition Cu56Zr38.7Al5.3 is very brittle. From crack analysis it can be clearly observed that the samples 

embrittle as the Cu content increases. 

For each composition, along with the microscopy images, the 2D cross sectional profiles are shown (left 

panels). The horizontal red line corresponds to the substrate level and it is used as reference to measure 

the pile-up height (maximum) and groove depth, i.e., the depth of the track at the centre and maximum 

depth of the track. All these values have been obtained from 5 different measurements at about half the 

radius distance from the centre. For the Cu50Zr44Al6 alloy the height of the pile-up is 4.13±1.98 µm while 

the depth of the groove at the centre and at the maximum depth are 14.08±1.20 and 22.20±3.95, 

respectively. However, as the alloy becomes richer in Cu (Cu53Zr41.4Al5.6 composition in Fig. 4b), the height 

of the pile-up gets smaller and the groove depth at the centre and at the maximum depth increase slightly. 

The maximum height of the pile-up is only about 2.65±1.71 µm while the depth at the centre and 

maximum depth reach 20.10±7.1 µm and 31.1±7.08 µm, respectively.  

For the alloy with the highest content, Cu56Zr38.7Al5.3 (Fig. 4c), the height of the pile-up decreases slightly to 

2.10±0.84 µm while the groove depth at the centre (20.00±2.02 µm) and maximum deepth (31.42±5.56 

µm) are very similar to those observed in Cu53Zr41.4Al5.6 alloy. Differences can be also analyzed in terms of 

scratch groove volume to pile-up volume for the three compositions. The values are 5-6 for Cu50Zr44Al6, 

15-16 for Cu53Zr41.4Al5.6 and 40-41 for Cu56Zr38.7Al5.3. These results are consistent with the trend from XRD 

scans (Fig. 1) and SEM results (Fig. 3), since a small copper increase from 50 to 53 at. % changes the 

microsctructure dramatically while from 53 to 56 at. % Cu microstructural diffences relatively small. 

However, the pile-up height and groove depth difference for the alloys with highest content of copper are 

negligible since they are within the error tolerance. The roughness of the groove surface at the track is 

significant and differences for the three compositions have been analyzed. Fig. 4b and 4c show that the 

profile is more abrupt than in Fig.4a due to the local presence of narrow deep pits and suggests that alloys 

containing 53 and 56 at. %  Cu  are more prone to adhesive wear upon dry sliding. The last two 

compositions not only exhibit higher maximum depth than that of Cu50Zr44Al6 alloy but also, the difference 

of distance between the maximum depth and the depth at the centre is ∼11 µm versus ∼8 µm for 

Cu50Zr44Al6, suggesting that the groove is steeper due to the abrasion generated when the intermetallic  

particles are dragged. In any case, the profiles for the different compositions show common features, i.e., 

the groove depth at the centre of the track is generally smaller than at both sides probably because the 

brittle intermetallic particles (abrasive debris) pulled out by the tip tend to slide to both sides of the tip upon 

scratching and they are afterwards dragged along the track. 



 

 

To better assess differences of wear mechanism among the three compositions, the morphological 

features from the track surface have been analyzed in detail (see magnified SEM images of Fig. 5). For 

each composition representative 2D cross sectional profiles obtained along the track centreline for a 

distance of 100 µm are also shown, but SEM images where taken from a smaller and representative 

distance. The alloy containing 50 at. % Cu (Fig. 5a) exhibits a relatively smooth smeared groove surface 

without signs of abrasion and  consisting of a wavy profile (see inset) with roughness features ranging 

from a maximum of hight of 2 µm to a minimum depth of -1 µm. These features suggest ductile plowing 

and plasticity [37]. As the composition gets richer in Cu, the groove surface tends to turn rougher. For the 

composition Cu53Zr41.4Al5.6 (Figs 5b) clear signs of significant detachment outlined by a sharp contour 

(chipping) (see small arrows) is observed, suggesting that adhesive transfer to the diamond tip has taken 

place. Small pits of about 1 µm size are also detected (wider arrow) which could be associated to the 

pulling out of the intermetallic particles due to adhesion of these particles to the diamond tip upon 

scratching. These results suggest that the particle-matrix interface is relatively weak. While the dendritic 

particles exhibit a rough enough contour to remain mechanically attached to the matrix, those particles 

that exhibit rather rounded shapes can slide and be pulled out more easily.  

The cross sectional profile (inset of Figs 5b) exhibits a more rough pattern with grooves that tend to be 

deeper than for Cu50Zr44Al6 alloy (for the representative profile of Fig. 5b the groove can be as deep as 3 

µm). The large area of transferred particles are smeered across the surface as they are dragged forward 

by the scratch diamond leading to some surface roughnening and adhesive wear. The smaler intermetallic 

particles are harder and generate abrasive damage as they slide across the surface. 

For Cu56Zr38.7Al5.3 alloy (Figs 5c) signs of detachment (small arrow) and pits (large arrow) are also 

detected observed but the volume fraction of pits is larger and the surface is more grooved than for the 

Cu53Zr41.4Al5.6 alloy, which is consistent with the presence of a larger volume fraction of brittle crystalline 

phases. Additionally, microcracks are oberved across the track. There is also evidence for smearing of 

material along the sample surface in the track. These features suggest that the material has been 

subjected to adhesive wear, although abrasive wear also takes place as deduced from the grooved 

surface similarly to that observed in Zr-based BMGs [38]. 

The roughness of the profile becomes even more prominent with maximum groove depth up to about 7 

µm (see inset). Comparing the amplitude and spacing of the serrations one can observe that they tend to 

increase with increasing copper content. 

It is interesting to observe that the depth of the grooves shown in Fig. 4 is larger for the alloys which are 

more brittle (highest Cu content). A priori, one might expect that the wear resistance should be higher in 

the mechanically harder alloys (i.e., Cu-rich), where the track depth should thus be smaller. This is 

opposite to our observations.This inconsistency with the hardness results (Table 1) can be attributed to 

the differences in the stress conditions of the material upon indentation and scratching (compression and 

shear forces). Namelly, scratching is more sensitive to the properties of the matrix and the amount (and 

size) of precipitates, since a softer matrix would easily allow easier dragging of the precipitate particles. 

For Cu56Zr38.7Al5.3 the size of the crystalline particles (dendrites and rounded particles) is larger, they are 



 

 

very abundant and detach more easily from the matrix than for the alloys depleted in Cu and the 

precipitate particles tend to dettach more easily in this case, causing larger grooves.  

 

 

3.3 Wettability and Antimicrobial tests 

To assess the potential interest of these alloys for antimicrobial applications not only antimicrobial tests 

were performed but also the wettability was studied since this provides useful information about the ability 

for bacterial adhesion on surfaces [39]. The wettability can be analysed by measuring the contact angle of 

sessile droplets. Fig. 6 shows the average water contact angle on the three alloys: 101.8° for Cu50Zr44Al6, 

(Fig. 6 a), 99.8° for Cu53Zr41.4Al5.6, (Fig. 6 b) and 90.2° for Cu56Zr38.7Al5.3 (Fig. 6 c). The angle 101.8° is not 

far from 106.6° detected in a fully amorphous Cu48Zr42Ti4Al6 at. % metallic glass thin film [40]. The 

decrease of the contact angle suggests that the material becomes more hydrophilic with increasing Cu 

content and therefore this should favour the adhesion of bacteria on the surface. This large effect is 

probably mostly associated with a change in the crystallinity rather than compositional change since 

similar differences in contact angle are reported when comparing Zr-based and Cu-based metallic glasses 

[40], i.e., alloys with very different compositions. However, the differences in Cu-content for the Cu-Zr-Al 

alloys studied here is of only 6 at. %. 

The antimicrobial behaviour of the alloys was assessed from reduction in bacterial cells over the time for 

different initial bacterial densities. When 2.4 x 108 bacterial cells were applied to the surface of the 

samples, there was no reduction observed with sample Cu50Zr44Al6 when compared to the control 

samples. After 4 hours of contact with the Cu53Zr41.4Al5.6 sample, E. coli and B. subtilis numbers were 

reduced by ca. 50% and 70% respectively. The Cu56Zr38.7Al5.3 sample reduced cell numbers by ≥ 90% for 

both species (results not shown). For initial inoculum density of ca. 1x106 cells/ml, the time-kill curves 

were obtained for Cu53Zr41.4Al5.6 and Cu56Zr38.7Al5.3 samples up to 250 min (Fig. 7). Both alloys displayed a 

> 3-log10 reduction in colony-forming units (cfu)/ml which is consistent with a bactericidal mode of action 

and with studies investigating bacterial surface contact with copper containing materials [41, 42]. In this 

study, E. coli was less resistant to contact killing than B. subtilis. This observation agrees with mode-of-

action studies for copper-mediated killing of E. coli and B. subtilis, as B. subtilis produces endospores that 

are resistant to copper alloy surface killing [43]. The antimicrobial mode of action of copper is described as 

being reliant on three key properties: 1) copper oxidizes in air of moderate humidity, 2) the copper oxides 

formed are soluble in the aqueous phase, and 3) the copper ions are toxic to bacteria resulting in damage 

of intracellular components [44]. The antimicrobial properties of the samples investigated in this study are 

explained by their differing microstructures: the samples become more crystalline as the copper content 

increases, which should favour the release of Cu+ and Cu++ cations through easier diffusion paths in 

crystalline than in amorphous structures. Furthermore, as the copper content increases, the samples 

become less hydrophobic and therefore the bacteria-surface contact area increases resulting in an 

improved rate of killing (Fig. 7).  The findings in this study suggest that increasing the antimicrobial 

properties of copper metallic glass composites can be achieved by manipulating the microstructure of the 



 

 

alloy through composition control. Among the three compositions studied, maximum antimicrobial 

behaviour and wear resistance is attained by the Cu56Zr38.7Al5.3 composition and therefore it could be 

potentially interesting for the healthcare sector for which optimum performance is desired. 

 

4. Conclusions 

In this study, the antimicrobial activity and tribological behaviour of Cu-based BMG composites were 

investigated. The presence of an increasing content of hard intermetallic phases in the Cu53Zr41.4Al5.6 and 

Cu56Zr38.7Al5.3 alloys results in an increasing embrittlement of the Cu50Zr44Al6 alloy. This is suggested by 

the cracks, lower pile-up, prone adhesion wear in dry sliding and higher scratch groove volume to pile-up 

volume revealed in the scratch test. The wear resistance also increases with increasing Cu content as 

indirectly assessed from H/Er and H3/Er
2 parameters. The results from the sessile drop technique show 

lower contact angle values with increasing Cu content, which favours adhesion of bacteria to the 

substrate. The Cu56Zr38.7Al5.3 alloy shows improved increase in contact killing for B. Subtilis and E. Coli 

during the first hour of interaction, which can be useful to prevent bacteria spreading on touch surfaces. 
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Figures captions 

 

Fig. 1. XRD scans for samples (a) Cu50Zr44Al6  (b) Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys. 

 

Fig. 2. Backscattered SEM images taken from the middle radius for a) Cu50Zr44Al6  (b) Cu53Zr41.4Al5.6 and (c) 
Cu56Zr38.7Al5.3 alloys. 
 
Fig. 3. Load-displacement (P-h) nanoindentation curves for a) Cu50Zr44Al6 (b) Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 

alloys. 

 

Table 1. Summary of the mechanical properties of the Cu50Zr44Al6. Cu53Zr41.4Al5.6 and Cu56Zr38.7Al5.3 alloys after 

nanoindentation using a maximum load of 300 mN. The values of hardness (H), reduced Young´s modulus (Er), H/Er 

, H3/Er
2 ratios and maximum indentation depth (hmax) are given in the table. 

 

Fig. 4. Images showing the scratches at the middle radius of the samples a) Cu50Zr44Al6 (b) Cu53Zr41.4Al5.6 and (c) 

Cu56Zr38.7Al5.3 alloys along with their corresponding 2D cross sectional profiles and numerical values. 

 

Fig. 5. Images showing the central area of the scratches at the middle radius of the samples a) Cu50Zr44Al6 (b) 

Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys along with their corresponding 2D cross sectional profiles and numerical 

values. 

 

Fig. 6. Average water contact angle on Cu-Zr-Al alloys (a, b and c).  

 



 

 

Fig. 7. Time-kill curve of E. coli K12 and B. subtilis 168 exposed to Cu-Zr-Al alloys for up to 250 min.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD scans for samples (a) Cu50Zr44Al 6  (b) Cu53Zr41.4Al 5.6 and (c) Cu56Zr38.7Al 5.3 alloys. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of the mechanical properties of the Cu50Zr44Al 6. Cu53Zr41.4Al 5.6 and Cu56Zr38.7Al 5.3 alloys after 

nanoindentation using a maximum load of 300 mN. The values of hardness (H), reduced Young´s modulus (Er), H/Er 

, H3/Er
2 ratios and maximum indentation depth (hmax) are given in the table. 

 

 

 

 

 

 

 

 

Property Cu50Zr44Al 6 Cu53Zr41.4Al 5.6 Cu56Zr38.7Al 5.3 
H(GPa) 8.46±0.45 9.37±0.28 10.15±1.87 
Er (GPa) 107.96±3.57 121.19±1.87 123.36±6.89 

H/Er 0.078±0.007 0.077±0.003 0.082±0.020 
H3/Er

2 (GPa) 0.052±0.006 0.056±0.007 0.069±0.046 
hmax (µm) 1.485±0.035 1.403±0.017 1.372±0.081 

Fig. 2. Backscattered SEM images taken from the middle radius for a) 
Cu50Zr44Al 6  (b) Cu53Zr41.4Al 5.6 and (c) Cu56Zr38.7Al 5.3 alloys. 

Fig. 3. Load-displacement (P-h) nanoindentation curves for a) Cu50Zr44Al 6 (b) Cu53Zr41.4Al 5.6 and 

(c) Cu56Zr38.7Al 5.3 alloys. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Images showing the scratches at the middle radius of the samples a) Cu50Zr44Al6 (b) Cu53Zr41.4Al5.6 and (c) 

Cu56Zr38.7Al5.3 alloys along with their corresponding 2D cross sectional profiles and numerical values. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Images showing the central area of the scratches at the middle radius of the samples a) Cu50Zr44Al 6 (b) 

Cu53Zr41.4Al 5.6 and (c) Cu56Zr38.7Al 5.3 alloys along with their corresponding 2D cross sectional profiles and numerical 

values. 



 

 

Fig. 6. Average water contact angle on Cu-Zr-Al alloys (a, b and c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Time-kill curve of E. coli K12 and B. subtilis 168 exposed to Cu-Zr-Al alloys for up to 250 min.  

 

  


