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Abstract 33 

We quantified springtime ecosystem-scale monoterpene fluxes from two similar Aleppo pine 34 

(Pinus halepensis Mill.) forests, located in Israel, that differed in the amount of received 35 

precipitation: Yatir in the arid south and Birya in the northern part of Israel (291 and 755 mm 36 

annual average rainfall, respectively). In addition to the lower water availability, during our 37 

measurement campaign the Yatir site suffered from a heat wave with temperatures up to 35 ºC, 38 

which made the campaign-average net CO2 assimilation to occur in the morning (1 µmol m-2 s-1), 39 

with the rest of the daytime hours mainly dominated by net release of CO2. The milder 40 

conditions at Birya favored a higher net CO2 assimilation during all daytime hours (with average 41 

peaks higher than 10 µmol m-2 s-1). Despite these large differences in ambient conditions and 42 

CO2 net assimilation, daytime monoterpene emission capacities at both sites were comparable. 43 

While observed monoterpene fluxes were lower at Yatir than at Birya (hourly averages up to 0.4 44 

and 1 mg m-2 h-1, respectively), the standardized hourly fluxes, after accounting for the 45 

differences in light, temperature and stand density between both sites, were comparable (0-1.3 46 

mg m-2 h-1). The approach typically used by biogenic emission models overestimated 47 

monoterpene fluxes at Yatir when temperatures rose during the heat wave. This result, together 48 

with complementary leaf-level measurements showing that summertime monoterpene fluxes 49 

almost completely ceased at Yatir while being enhanced at Birya, highlight the interaction of 50 

water scarcity and high temperatures that drive monoterpene emissions from vegetation in such 51 

extreme climate zones and the need to further improve model performance. 52 

 53 

  54 
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1. Introduction 55 

Plants exchange hundreds of different volatile organic compounds (VOCs) with the atmosphere 56 

(Kesselmeier and Staudt, 1999; Park et al., 2013; Seco et al., 2007). On a global scale the 57 

emission flux of biogenic VOCs (BVOCs) is estimated to be an order of magnitude greater than 58 

that from anthropic sources (Guenther et al., 1995). BVOCs can substantially influence the 59 

composition and chemistry of the atmosphere, especially when interacting with anthropogenic 60 

pollutants (Atkinson, 2000; Chameides et al., 1988; Deventer et al., 2015; Kim et al., 2016; Liu 61 

et al., 2016; Seco et al., 2011b; Trainer et al., 1987; Tunved et al., 2006). Due to their 62 

atmospheric influence, BVOC fluxes are increasingly considered a necessary component of earth 63 

system models, and the response of modeled emissions to global change phenomena has been 64 

identified as a key uncertainty in these models (e.g., Müller et al., 2008; Unger et al., 2013; 65 

Sindelarova et al., 2014). There is particular need for a better mechanistic understanding due to 66 

the increasing impact of drought (Dai, 2012) and other global-change-related stresses on BVOC 67 

emissions (Seco et al., 2015). 68 

In addition, BVOCs have important biological and ecological roles such as acting as 69 

communication signals in plant–plant, plant–animal and multitrophic relationships (Baldwin et 70 

al., 2006; Filella et al., 2013; Kessler and Baldwin, 2001; Peñuelas et al., 2005a; Pichersky and 71 

Gershenzon, 2002; Seco et al., 2011a), or protecting vegetation from abiotic stresses (Peñuelas et 72 

al., 2005b; Singsaas and Sharkey, 1998; Velikova et al., 2005). Among abiotic stresses, drought 73 

and high temperatures often concur and subject plants to a slowdown of their metabolism (Hsiao, 74 

1973), a reorganization of their energy resources (Dobrota, 2006), and eventually to increased 75 

mortality through the interaction of several mechanisms (e.g. sap cavitation, carbon starvation, 76 

biotic agents; Gaylord et al., 2015). Plants have developed mechanisms to survive under hydric 77 
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stress by resisting, tolerating, or preventing it (Niinemets, 2010a). One of these mechanisms is 78 

the emission of BVOCs, particularly isoprenoids, that could provide the plant with relief against 79 

the damaging effect of drought and high temperatures (Loreto et al., 1998; Peñuelas and Llusia, 80 

2003, 2002) and could eventually allow ecosystem stress to be quantified through BVOC flux 81 

monitoring (Kravitz et al., 2016). The responses of BVOC emissions to drought are nevertheless 82 

complex and depend, among other factors, on plant and BVOC species, ontogeny and previous 83 

acclimation, duration and strength of drought conditions, as well as the interaction with other 84 

biotic and abiotic stressors (Geron et al., 2016; Niinemets et al., 2010; Niinemets, 2010b). 85 

Given the uncertainty in our knowledge of the response of BVOC emissions to drought, our 86 

objective in this study was to compare the exchange of BVOCs between two similar 87 

Mediterranean forests growing under different water availabilities. Israel presents a strong 88 

gradient in water availability, ranging from semi-arid conditions in the south to 89 

Mediterranean/sub-humid in the north. The aridity index (ratio of precipitation to potential 90 

evapotranspiration) in Israel lies between 0.05 in the south to above 0.65 in the north (Kafle and 91 

Bruins, 2009). The Aleppo pine (Pinus halepensis Mill.) is a widespread species with a large 92 

distribution around the Mediterranean basin (Critchfield and Little, 1966) and an estimated total 93 

forest cover of approximately 3.5 million ha (Fady et al., 2003). P. halepensis is known for being 94 

a fast grower, pioneer, and drought tolerant species with a shallow root system (Oppenheimer, 95 

1967). These characteristics made it a favorable tree for plantations in the Mediterranean region, 96 

particularly in Israel. Its ability to withstand drought is enabled mainly by reducing growth rate 97 

and water loss. Water loss is minimized thanks to morphophysiological modifications of the 98 

leaves that are sclerotic and needle-shaped to minimize the leaf area and thus limit excessive 99 

transpiration, as well as by shifting photosynthetic activity to early morning and late afternoon 100 
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(Maseyk et al., 2008). The BVOC emissions of P. halepensis are dominated by monoterpenes (a 101 

family of isoprenoid hydrocarbons with a carbon skeleton of 10 atoms) and it has been reported 102 

that drought affects monoterpene (Llusià and Peñuelas, 2000, 1998) and other BVOC (Filella et 103 

al., 2009; Seco et al., 2008) emission rates of this particular tree species, as well as of other pine 104 

species (e.g. Trowbridge et al., 2014; Eller et al., 2016). 105 

We quantified the ecosystem-level fluxes of monoterpenes from two similar 50-year-old Aleppo 106 

pine plantations in Israel that differ by nearly 500 mm in the amount of annual precipitation. 107 

Measurements at the ecosystem scale afford an integrated view of the forest monoterpene fluxes, 108 

reducing the influence of plant-to-plant variability, and also limit the impact of possible damage-109 

induced emissions due to leaf manipulation during leaf-level sampling with enclosures, which 110 

has been the common measurement technique in past P. halepensis studies. In addition, our 111 

choice of pine plantations provided an opportunity to study the emission of BVOCs on mature 112 

trees under naturally occurring stresses, as opposed to performing laboratory experiments on 113 

young potted plants. Measurements of monoterpenes took place between 22 April and 13 May 114 

2013 and were part of the BRITE (Biogeochemical Research along an Israeli TransEct) 115 

campaign, which aimed to investigate CO2, H2O, energy, VOC, and aerosol fluxes from pine 116 

forests along a precipitation gradient in this semi-arid region using a newly designed mobile flux 117 

measurement laboratory (see Asaf et al., 2013). 118 

  119 
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2. Materials and methods 120 

2.1. Description of the forest sites 121 

The BRITE campaign focused on two mature plantations dominated by P. halepensis and located 122 

in Israel (Fig. 1). The drier forest, Yatir, is a ca. 50-year-old Aleppo pine afforestation site 123 

located at the northern edge of the Negev desert (31°20'N, 35°03'E) at an elevation of 650 m asl. 124 

The forest covers an area of about 2,800 ha and grows on a predominantly light brown Rendzina 125 

soil (79 ± 45.7 cm deep), overlying a chalk and limestone bedrock (http://www.kkl-jnf.org). The 126 

climate is hot (40-year mean annual temperature is 18.2°C) and dry (40-yr average mean annual 127 

precipitation is 291 mm). During the year of this study (October 2012-September 2013) the total 128 

precipitation was 247 mm. The precipitation and temperature data was derived from the Israeli 129 

Meteorological Service (IMS, https://ims.data.gov.il) permanent stations and values used are the 130 

average of the three closest stations to the measurement site. The Yatir forest is characterized by 131 

a low stand density of ca. 300 trees ha–1 (http://www.kkl-jnf.org), with a mean tree height of 10.2 132 

m, a mean diameter at breast height (DBH) of 19.8 cm, and an average leaf area index (LAI) of 133 

1.50 (Sprintsin et al., 2011). It has been a continuously operated Fluxnet site since 2000 134 

(Rotenberg and Yakir, 2011; Tatarinov et al., 2016). 135 

The second site, Birya, is a ca. 50-year-old planted forest covering approximately 2,000 ha in the 136 

northern Galilee region (33°00'N, 35°30'E, about 200 km north of Yatir) at an elevation of 755 m 137 

asl and is characterized by Rendzina and Terra rossa soil (http://www.kkl-jnf.org). Its climate is 138 

Mediterranean sub-humid with an average temperature and annual precipitation of 16°C and 755 139 

mm, respectively (data derived from IMS stations as explained for Yatir). Between October 2012 140 

and September 2013 the measured precipitation was 885 mm. Its average stand density is 375 141 

trees ha-1 (http://www.kkl-jnf.org), the mean tree height is 11 m and its mean DBH is 20.3 cm. 142 
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Given that plantation age, mean tree height, and mean diameter at breast height are very similar 143 

between both forests, we estimated the LAI for the Birya site as the average LAI value of Yatir 144 

multiplied by the ratio of stand density between the two sites (375/300 = 1.25), i.e. a LAI value 145 

of 1.875. 146 

 147 

2.2. Environmental and ecophysiological parameters 148 

Measurements of the BRITE campaign at both sites primarily relied on the deployment of a 149 

newly designed mobile laboratory of the Weizmann Institute of Science, housed on a 12-ton 150 

four-wheel drive pneumatic air suspension truck frame. The mobile platform hosted a 28 m 151 

telescopic mast with a core (CO2, H2O, sensible and latent heat fluxes) eddy covariance (EC) 152 

system, and provided an air-conditioned enclosed facility for the operation of additional 153 

scientific instrumentation (e.g. Asaf et al., 2013). The EC system centered on a 3D sonic 154 

anemometer (R3-100; Gill Instruments, UK) and an enclosed-path infrared gas analyzer (IRGA, 155 

LI-7200, LI-COR Inc, Lincoln, NE, USA). The core EC fluxes were averaged over 30 min time 156 

intervals with EddyPro v5.1 software (LI-COR Inc). Sensors for other environmental parameters, 157 

such as air pressure, temperature and relative humidity (HMP45C probes, Campbell Scientific 158 

Inc., UT, USA), and solar radiation (Kipp & Zonen, Delft, Netherlands) were also installed as 159 

part of the mobile EC system. 160 

Some periods in the evening were excluded from data collected at Yatir (including monoterpene 161 

data), due to influence of a campfire (e.g. 22, 23, 25 April) that the site guards built. 162 

Additionally, at the Yatir site the permanent EC tower located in close proximity of the mobile 163 

platform during the BRITE campaign was used to assess and cross-calibrate the mobile EC 164 

system during April 2013. 165 
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 166 

2.3. VOC measurements 167 

VOC measurements were performed with the same instrument setup installed in the mobile 168 

laboratory, at both the Yatir forest (22 to 29 April 2013) and at the Birya forest (2 to 13 May 169 

2013). Air from the top of the mobile tower (20 m agl), next to the sonic anemometer, was drawn 170 

by means of a pump through a 3/8 inch OD (1/4 inch ID) PFA Teflon tube to the mobile lab 171 

located at the base of the tower. VOC quantification was performed inside the mobile lab with a 172 

high sensitivity Proton Transfer Reaction –Quadrupole– Mass Spectrometer (PTR-Quad-MS, 173 

Ionicon, Austria) that has been described elsewhere (Karl et al., 2001). In short, the instrument 174 

generates hydronium ions that transfer a proton to select VOC molecules in a drift tube under a 175 

constant electric field (Lindinger et al., 1998). These charged VOC molecules are then detected 176 

by the combined effect of a quadrupole mass spectrometer and an ion detector. The drift tube of 177 

the instrument used in this study was operated at a pressure of 2.3 mbar, a temperature of 60 ºC 178 

and a voltage of 540 V, corresponding to an E/N ratio of approximately 117 Td (E being the 179 

electric field strength and N the gas number density; 1 Td = 10−17 V cm2). 180 

Instrument background was measured for 5 min every 6 h by diverting the inlet air through a 181 

platinum catalytic converter heated to 380 ºC. Calibration of the PTR-MS was performed by 182 

dilution of a house-made VOC gas standard into zero air generated by a second heated catalyst 183 

(415 ºC). Two mass flow controllers (MKS Instruments, Andover MA, USA) were used for the 184 

dilution. The gas standard contained approximately 5 ppmv of camphene. The calibration factors 185 

measured for camphene were used to calculate the total monoterpene mixing ratios in ambient 186 

air. The uncertainty of the monoterpene measurements was estimated to be 15%. The m/z (mass 187 

to charge ratios) of interest for this study were m/z 21 (H3O+ isotope, 0.5 s dwell time), and m/z 188 
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81 and m/z 137 (monoterpene fragment and parent ions, respectively, 0.1 s dwell time each). The 189 

cycle scanning through all the measured m/z ratios had a duration of approximately 1.1 s (i.e., 190 

each m/z was measured once every 1.1 s), and measurements for EC were recorded for 25 min of 191 

each half hour. The monoterpene mixing ratio detection limit was <0.02 ppbv for each 25-min 192 

averaging period. 193 

VOC fluxes were calculated with the virtual disjunct eddy covariance technique (vDEC; Karl et 194 

al., 2002). The disjunct time series that was generated for each m/z every half hour was time-195 

aligned with the vertical wind data from the sonic anemometer by shifting one time series 196 

relative to the other until the absolute maximum covariance between the two time series was 197 

determined. Using this procedure the time lag between the two measurements was found to be 198 

approximately 3 s. Previously, the wind data had been rotated according to the planar fit method 199 

(Wilczak et al., 2001). Computed monoterpene fluxes were excluded from further analysis if any 200 

of the following conditions occurred: (1) turbulence was low (u*<0.15); (2) vertical wind 201 

rotation exceeded 5º; (3) results of the stationarity test (Foken et al., 2004) were higher than 202 

30%, and (4) flux values were less than twice the flux detection limit. The flux detection limit 203 

was calculated according to the approaches of Spirig et al. (2005) and Billesbach (2011), and 204 

ranged between 0.02 and 0.2 mg m-2 h-1 at different times of the day. These conditions excluded 205 

56% and 61% of the total half-hour EC fluxes calculated for monoterpenes at Yatir and Birya, 206 

respectively. Excluding small fluxes and periods of low turbulence and large wind rotations may 207 

bias our averaged diel flux profiles (Figs. 4b and 5b), particularly at night when turbulence is 208 

often below the threshold. In this regard, nighttime fluxes presented in this study should be 209 

viewed as upper limits and we will mainly focus our discussion on daytime results. High 210 

frequency losses due to the instrument gas exchange time in the drift tube were not corrected for 211 
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because comparison to temperature co-spectra showed that the contribution of high frequencies 212 

to fluxes was typically under 10%. vDEC calculations were performed with MATLAB software 213 

(Mathworks, Natick MA, USA). Hereinafter, we will refer to our measurement-based vDEC flux 214 

estimates as “measured” fluxes when comparing to the “standardized” and “modeled” fluxes (see 215 

section 2.4). 216 

Since most monoterpenes are reactive with ozone, and ozone was not scrubbed from the inlet 217 

line, we estimated the impact of reactions with ozone on the calculated monoterpene fluxes. The 218 

delay-time from the inlet to the detector was on the order of only 2 s, so we estimated that at 219 

ambient ozone levels of 60 ppbv this would equate to a flux loss of less than 0.5% for γ-220 

terpinene, one of the most reactive monoterpenes. Solid absorbent cartridge ambient air sampling 221 

at the Yatir field site indicated that the monoterpenes were dominated by α-pinene which 222 

suggests that the canopy loss rate, according to modeling results of Stroud et al. (2005), is about 223 

10% assuming ozone concentrations of 60 ppbv. 224 

 225 

2.4. VOC flux modeling 226 

To allow a better comparison of monoterpene emission capacity between the two sites, the 227 

measured canopy-scale monoterpene fluxes were standardized with regards to both i) light and 228 

temperature and ii) stand density. First, the light and temperature standardization was performed 229 

with a big-leaf model approach (e.g. Geron et al., 1997), which considers the canopy as a single 230 

multispecies layer of foliage. Thus, above-canopy photosynthetic active radiation (PAR) instead 231 

of leaf-level PAR, and above-canopy air temperature instead of leaf temperature were used in the 232 

leaf-level algorithms developed by Guenther and colleagues (1999, 1993, 1991) to model the 233 

light- and temperature-dependent emission of monoterpenes. The light- and temperature-234 
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standardized emission of monoterpenes (𝜀𝜀𝑀𝑀𝑀𝑀; mg m-2 h-1) was calculated from the measured 235 

monoterpene emission flux (FMT ; mg m-2 h-1): 236 

𝐹𝐹𝑀𝑀𝑀𝑀 = 𝜀𝜀𝑀𝑀𝑀𝑀 × 𝛾𝛾𝑃𝑃 ×  𝛾𝛾𝑇𝑇   (1) 237 

where 𝛾𝛾𝑃𝑃 and  𝛾𝛾𝑇𝑇 are light and temperature activity factors, respectively, defined as 238 

 𝛾𝛾𝑃𝑃  = (1 − 𝐿𝐿𝐿𝐿𝐿𝐿)  +  𝐿𝐿𝐿𝐿𝐿𝐿 × 𝛾𝛾𝑃𝑃_𝐿𝐿𝐿𝐿𝐿𝐿   (2) 239 

𝛾𝛾𝑇𝑇 = (1 − 𝐿𝐿𝐿𝐿𝐿𝐿) × 𝛾𝛾𝑇𝑇_𝐿𝐿𝐿𝐿𝐿𝐿  +  𝐿𝐿𝐿𝐿𝐿𝐿 × 𝛾𝛾𝑇𝑇_𝐿𝐿𝐿𝐿𝐿𝐿   (3) 240 

Monoterpene emissions include a light-dependent fraction (LDF) with the remaining light 241 

independent fraction (LIF=1-LDF) that is not influenced by light. Since leaf-level measurements 242 

at Yatir showed that approximately half of the monoterpene emissions were triggered by light 243 

(Llusia et al., 2016), we used an LDF of 0.5. The light and temperature algorithms are defined as 244 

𝛾𝛾𝑃𝑃_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛼𝛼×𝐶𝐶𝐿𝐿1×𝐿𝐿
√1 + 𝛼𝛼2×𝐿𝐿2

      (4) 245 

where 𝛾𝛾𝑃𝑃_𝐿𝐿𝐿𝐿𝐿𝐿 is a scalar representing electron transport rates to simulate the response (non-246 

dimensional) of isoprene emission to light (Guenther et al., 1991), α (=0.0027) and CL1 (=1.066) 247 

are empirical parameters, and L is PAR (µmol m-2 s-1), 248 

𝛾𝛾𝑇𝑇_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜×𝐶𝐶𝑇𝑇2 × 𝑒𝑒𝐶𝐶𝑇𝑇1×𝑥𝑥

𝐶𝐶𝑇𝑇2−𝐶𝐶𝑇𝑇1×(1−𝑒𝑒𝐶𝐶𝑇𝑇2×𝑥𝑥)
 , 𝑥𝑥 =

1
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

−1𝑇𝑇
𝑅𝑅

  (5) 249 

where 𝛾𝛾𝑇𝑇_𝐿𝐿𝐿𝐿𝐿𝐿 is a scalar representing an enzyme activation to simulate the response (non-250 

dimensional) of isoprene emission to temperature (Guenther et al., 1991), Eopt (=1.9 nmol m-2 s-1) 251 

is the maximum standardized emission capacity at temperature Topt (=312.5 K), CT1 (=80 kJ mol-252 

1) and CT2 (=230 kJ mol-1) are empirical parameters, T is the air temperature (K) and R is the 253 

ideal gas constant (=0.008314 kJ K-1 mol-1), and 254 
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𝛾𝛾𝑇𝑇_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒𝛽𝛽×�𝑇𝑇−𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�   (6) 255 

where Tref equals 303.15 K and β (=0.1 K-1) is an empirically determined coefficient with the 256 

value recommended for monoterpenes by Guenther et al. (2012). Secondly, the stand density 257 

standardization consisted of dividing the light- and temperature-standardized fluxes of the Birya 258 

site by 1.25, viz. the ratio of stand density between the two sites, the same approach used to 259 

estimate the LAI of Birya. 260 

As an additional modeling experiment, monoterpene fluxes at both sites were estimated with a 261 

single location version of the widely-used MEGAN version 2.1 model (Guenther et al., 2012) 262 

that includes an explicit canopy environment model with a canopy radiation transfer and energy 263 

balance scheme to calculate direct and diffuse light and leaf temperature of sun and shade leaves 264 

at each of five layers. The model calculates fluxes as the product of a fixed canopy emission 265 

factor and non-dimensional emission activity factors. For this study, we used the model’s global 266 

default canopy emission factor assigned to pine forests for monoterpenes, with a value of 2.25 267 

mg m-2 h-1 based on whole canopy fluxes measured above pine forests (Holzinger et al., 2006; 268 

Kaser et al., 2013; Räisänen et al., 2009). The environmental conditions measured at the tower 269 

(air temperature, solar radiation, wind speed, etc) and the LAI of each site (i.e. 1.5 and 1.875 for 270 

Yatir and Birya, respectively) were used to constrain the driving variables of the model’s 271 

emission activity factors. The temperature and light emission activity factors also included the 272 

influence of the past 24 h of temperature and light conditions. Unlike Yatir, that had the fixed 273 

tower data available, the influence of the past 240 h could not be computed for Birya due to 274 

insufficient data since the mobile laboratory was deployed only several hours before the PTR-275 

MS measurements were started at that site. Using the past 240 h algorithm with Yatir’s fixed 276 

tower data showed maximum modeled hourly monoterpene emission flux increases of 15-25%. 277 
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For the sake of comparability between sites, the influence of the past 240 h was not included in 278 

the modeling results of either site. 279 

  280 
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3. Results 281 

3.1. Environmental conditions 282 

During the weeks preceding our measurements at Yatir, maximum daily temperatures reached up 283 

to 20 ºC (data not shown). Starting around 23 April, a heat wave (see Tatarinov et al., 2016) 284 

affected the area and maximum daily temperatures at Yatir raised up to 35 ºC (Fig. 2). As a 285 

consequence, vapor pressure deficit (VPD) also gradually increased from below 1 kPa to above 4 286 

kPa (Fig. 2). At Birya, temperatures during our sampling period reached maxima around 30 ºC, 287 

then progressively declined as the heat wave ended, and VPD was in general lower than at Yatir, 288 

with occasional peaks around 3.7 kPa and declining with time to maxima of below 1 kPa (Fig. 289 

2). 290 

The comparison of hourly averages calculated for the entire campaign dataset shows that 291 

temperatures and VPD were higher (up to 4 ºC and 1.4 kPa more, respectively) at Yatir than at 292 

Birya (Fig. 3). Solar radiation was also higher on average (up to 200 W m-2 more, i.e. 293 

approximately 420 µmol m-2 s-1 more of PAR) during the middle of the day at Yatir (Fig. 3). 294 

This was in spite of the relatively close proximity (less than 200 km) and reflects the higher 295 

cloudiness in the northern site. 296 

 297 

3.2. Water and carbon dioxide fluxes 298 

Daytime canopy-level water flux measured at Yatir was lower than at Birya (Fig. 2). At both 299 

sites the highest water fluxes occurred in the morning between 8 and 13 h, with average values of 300 

1.5-1.9 and 4-5.5 mmol m-2 s-1 for Yatir and Birya, respectively (Fig. 3). During the afternoon, 301 

water fluxes declined gradually until sunset. 302 
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During daytime hours before the onset of the heat wave, net ecosystem exchange (NEE) of CO2 303 

mainly consisted of assimilation at Yatir. The half-hour CO2 assimilation peaks were as high as 304 

10 µmol m-2 s-1, similar to what is shown in Fig. 2 for 22 April. From April 23, daytime CO2 305 

NEE showed a tendency towards net emission (with occasional half-hour emission peaks of 6-8 306 

µmol m-2 s-1) with net CO2 assimilation being limited to the 6-9 h morning time frame and to 307 

magnitudes of up to 2 µmol m-2 s-1 (Fig. 2). At Birya, daytime carbon assimilation was the norm, 308 

with a general temporal trend of an increase from daytime half-hour net CO2 uptake maxima 309 

around 10 µmol m-2 s-1, at the beginning, to around 20 µmol m-2 s-1 at the end of the campaign 310 

(Fig. 2). 311 

Hourly averages of CO2 fluxes calculated for the entire campaign dataset show that CO2 NEE 312 

presented two daily assimilation peaks at both sites (Fig. 3). At Yatir, the morning peak of 313 

assimilation occurred between 6 and 9 h with magnitudes of approximately 1 µmol m-2 s-1, 314 

whereas the afternoon peak of approximately 0.5 µmol m-2 s-1 occurred between 16 and 17 h. 315 

Between these two peaks, a mid-day depression in NEE consisted of CO2 release to the 316 

atmosphere of up to 2.7 µmol m-2 s-1 (Fig. 3). At Birya, hourly average peaks of net assimilation 317 

of approximately 13 µmol m-2 s-1 occurred between 8 and 10 h and between 12 and 13 h, with a 318 

small decrease of approximately 2 µmol m-2 s-1 between both peaks (Fig. 3). Nighttime NEE at 319 

both forests was characterized by CO2 release (i.e. ecosystem respiration) of approximately 2-4 320 

µmol m-2 s-1 (Fig. 3). The aggregate of these CO2 NEE fluxes over 24 h yields a daily average 321 

carbon release of 2 g(C) m-2 and absorption of 3.8 g(C) m-2 at Yatir and Birya, respectively. 322 

 323 

 324 
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3.3. Measured VOC fluxes and mixing ratios 325 

Monoterpene mixing ratios were lower at Yatir than at Birya, with half-hour maxima of 0.2 and 326 

1.2 ppbv, respectively (Fig. 2). Hourly averages show a daily trend at Yatir with minimum 327 

values recorded around 3-5 h (approximately 0.09 ppbv) and maxima during the evening 328 

(approximately 0.16 ppbv), although mixing ratios between 5 and 23 h varied within a narrow 329 

range (0.12-.0.16 ppbv) (Fig. 4). Measurements at Birya revealed a clearer diurnal cycle, with 330 

higher values from 6 to 13 h (0.24-0.32 ppbv) and minima during nighttime (0.12-0.16 ppbv) 331 

(Fig. 4). 332 

Half-hour canopy-level fluxes of monoterpenes measured at Yatir were at or below 0.5 mg m-2 h-333 

1 during daytime, with occasional peaks of up to 0.6 mg m-2 h-1. At Birya canopy fluxes were 334 

generally higher, between 0.5 and 1 mg m-2 h-1, with some peaks reaching 1.9 mg m-2 h-1 (Fig. 2). 335 

Consequently, hourly averages at Yatir between 6 and 18 h ranged between 0.3 and 0.4 mg m-2 h-336 

1, while at Birya monoterpene average fluxes were similar to those of Yatir during early morning 337 

and afternoon but higher between 9 and 13 h, with values of up to 1 mg m-2 h-1 (Fig. 4). Birya’s 338 

net emission flux decreased after 16 h to the point that the average monoterpene net flux during 339 

several hours resulted in deposition (Fig. 4). 340 

The 24-h total carbon emitted in the form of monoterpenes was, on average, 4.7 and 6 mg(C) m-2 341 

at Yatir and Birya, respectively. Thus, since the daily average net carbon exchange had different 342 

sign between sites, the carbon emitted as monoterpenes equaled 0.24% of the net daily release of 343 

carbon as CO2 at Yatir, while at Birya it represented 0.16% of the net daily carbon assimilation. 344 

 345 

 346 
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3.4. Modeled VOC fluxes 347 

Adjusting for light intensity and temperature at Yatir, and for light and temperature and stand 348 

density at Birya, resulted in standardized (for a temperature of 30 ºC, PAR of 1000 µmol m-2 s-1, 349 

and stand density of 300 trees ha–1) fluxes that were generally higher than the measured fluxes 350 

(Fig. 4) primarily because temperatures were typically below 30 ºC at both sites (Figs. 2 and 3). 351 

Average standardized fluxes at Yatir were highest immediately after sunrise (1.3-2.1 mg m-2 h-1), 352 

although the highest value (found between 7 and 8 h) was based only on one data point from the 353 

morning of 23 April, when temperatures were not yet fully affected by the regional heat wave. 354 

For the remainder of the daylight hours, average standardized fluxes at Yatir were in the range 355 

0.5-1 mg m-2 h-1 (Fig. 4). Birya’s standardized fluxes also increased, compared to the observed 356 

values, in the early morning up to 1.1 mg m-2 h-1 but were still highest around 9 h with average 357 

values of up to 1.3 mg m-2 h-1. For most of the remainder of the daylight hours, average 358 

standardized fluxes at Birya were in the range of 0-1.3 mg m-2 h-1 (Fig. 4). Thus the average 359 

standardized monoterpene fluxes at both pine forests spanned a similar range (0-1.3 mg m-2 h-1). 360 

Results from the application of the MEGANv2.1 model, using a global default emission factor 361 

for pine trees, are compared to our measurements in Fig. 5. The model slightly underestimated 362 

monoterpene fluxes at Yatir during the first days of the campaign. During the heat wave, 363 

modeled fluxes overestimated the observed fluxes by as much as a factor of two on 28 April. As 364 

a result, the hourly averages calculated for the entire campaign dataset indicate that MEGAN, 365 

using default pine emission factors, predicted higher monoterpene emissions at Yatir from 8 to 366 

16 h, also doubling the measured fluxes from 12 to 14 h (Fig. 5). If the influence of the past 10 367 

days is included in the model calculations for Yatir (data not shown), monoterpene predicted 368 

emissions are increased by approximately 20%, which might partly reconcile the model results 369 
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and the observations during the first days, but exacerbates the overestimation of the MEGAN 370 

model during the hottest days of the heat wave. MEGAN’s predictions for Birya reflected the 371 

day-to-day variation of the magnitude of the emissions better than for Yatir (Fig. 5). However, 372 

Birya’s average observed fluxes gradually increased until they peaked between 10 and 11 h (1 373 

mg m-2 h-1) and gradually declined afterwards, while the model predicted emissions of 374 

monoterpenes continued to increase later in the day and showed a plateau from 10 to 13h (0.65-375 

0.71 mg m-2 h-1). As a result, modeled monoterpene fluxes were higher than measured until 376 

sunset at Birya (Fig. 5). 377 

  378 
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4. Discussion 379 

The Yatir semi-arid pine afforestation system experienced harsher conditions for plant growth 380 

than the similar pine forest in Birya, as expected. Furthermore, the typical seasonal heat wave 381 

(Tatarinov et al., 2016) that affected the region at the end of April 2013 exacerbated the 382 

environmental conditions, as exemplified by the high VPD, low water fluxes, and practically 383 

zero daytime NEE (Figs. 2 and 3). Limitation of water loss is an important adaptive strategy of 384 

plants in this region, with the observed reduction of NEE being consistent with reports of strong 385 

reductions in stomatal conductance, and hence photosynthesis, at VPD > 2 kPa in P. halepensis 386 

trees located at Yatir (Klein et al., 2011; Maseyk et al., 2008). Despite the harsh environmental 387 

conditions at the Yatir site, this forest has successfully adapted by shifting the growing season 388 

such that it can assimilate carbon in annual amounts comparable to other temperate forests found 389 

in more favorable environments (Grunzweig et al., 2003; Maseyk et al., 2008) and also shows a 390 

great resilience to seasonal heat waves (Tatarinov et al., 2016). 391 

Monoterpene emissions from different plant species occur at least through two distinct processes: 392 

in a light-independent manner from storage pools found in specialized tissues like resin ducts, 393 

and as a light-dependent release of freshly synthesized molecules. It has been traditionally 394 

thought that conifer trees emit monoterpenes mainly from storage pools even though there were 395 

reports of a strong light response of emissions of some monoterpenes from conifers including the 396 

Mediterranean stone pine, Pinus pinea (Staudt et al., 1997). Isotope labeling studies have 397 

recently been used to confirm that de novo light-dependent monoterpenes can comprise a 398 

significant fraction of emissions from European conifers in laboratory studies (Ghirardo et al., 399 

2010) and under field conditions for the North American species Pinus ponderosa (Harley et al., 400 

2014). The existence in P. halepensis of this dual path of monoterpene emissions was 401 
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corroborated during our field campaign with leaf-level measurements at Yatir, showing that 402 

about half of the emitted monoterpenes were driven by the incident PAR intensity (Llusia et al., 403 

2016). Furthermore, our ecosystem-level data supports the prevalent role of light-dependent 404 

emissions since daytime monoterpene mixing ratios were higher than at nighttime at both sites 405 

(Fig. 4). In ecosystems where monoterpene emissions mainly follow a temperature controlled 406 

release from storage pools, the nighttime mixing ratios are higher due to decreased vertical 407 

mixing and oxidation rates even though emissions are also lower (e.g., Seco et al., 2013; Davison 408 

et al., 2009). 409 

During the heat wave, monoterpene net emission fluxes at Yatir persisted during daytime even 410 

though the net CO2 flux showed very small assimilation or mainly consisted of CO2 efflux (Figs. 411 

2-4). Apparently, part of this monoterpene emission consisted of light-independent releases from 412 

storage pools. But contribution from de novo light-dependent emissions, as has been shown from 413 

plant species that do not store monoterpenes, cannot be ruled out despite the intensely reduced 414 

net CO2 assimilation. Isoprenoid emission concurrent with reduced photosynthesis has been 415 

described in previous studies and our dataset could be yet another example of the uncoupling 416 

between photosynthesis and isoprenoid emissions that occurs under stressful environmental 417 

conditions (e.g. Seco et al., 2015; Wu et al., 2015). Continued monoterpene emissions from 418 

leaves with limited stomatal conductance may happen through the cuticle but are also possible 419 

via the stomata due to their high gas to water partitioning coefficient that makes most biogenic 420 

isoprenoid emissions practically insensitive to stomatal closure (Harley, 2013; Niinemets and 421 

Reichstein, 2003). In addition, these isoprenoids emitted under stress, if freshly synthesized, can 422 

obtain their carbon supply from metabolic sources other than the recent photosynthate pool 423 

(Affek and Yakir, 2003; Brilli et al., 2007; Funk et al., 2004). The fact that monoterpenes are 424 
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emitted, sometimes even in increased amounts, during drought situations have been postulated to 425 

be a response of the plants to cope with high temperatures that usually accompany drought 426 

episodes (Loreto et al., 1998). In contrast, the pine trees at Birya showed no signs of strong water 427 

stress during our campaign, although water and CO2 fluxes showed a midday depression that can 428 

be indicative of some level of mild water or VPD stress (Haldimann et al., 2008; Pathre et al., 429 

1998). Likewise, the emission of monoterpenes was equivalent to only a small fraction of the 430 

assimilated carbon (up to 0.2% of NEE) at Birya, which is a relatively low amount compared to 431 

the percentage of carbon emitted as BVOC reported elsewhere for severely drought-stressed 432 

forests (e.g. up to 5-10% of NEE emitted as isoprene by high-emitting, non-storing temperate 433 

oak forests; Seco et al., 2015). 434 

The MEGANv2.1 model, when using a global average pine emission factor and partitioning of 435 

stored (light independent) and de novo (light dependent) emissions, did not accurately reproduce 436 

the monoterpene fluxes at Yatir (Fig. 5). During the first days of the campaign, the midday 437 

model results were similar to measurements but the diel pattern was not reproduced. After the 438 

onset of the heat wave the model clearly overestimated the emissions, mainly due to the higher 439 

temperatures driving the model’s temperature response algorithms. At Birya, modeled emission 440 

magnitudes were in general closer to measurements (Fig. 5). However, the measured diel cycle 441 

showed a decline of monoterpene net emission fluxes earlier in the day compared to the model 442 

(Fig. 5), with observed monoterpene fluxes mirroring the diel water fluxes rather than the daily 443 

temperature trend (Figs. 3 and 4). This suggests a more prevalent role of de novo light-driven 444 

monoterpene synthesis and emission than assumed by MEGAN, and consequently a smaller role 445 

of the temperature-driven emissions of stored monoterpenes. As earlier stated, the fact that 446 

monoterpene mixing ratios were higher during daytime at both sites (Fig. 4) agrees with this 447 
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interpretation. In addition, the leaf-level measurements at Yatir also indicated that the 448 

monoterpene emissions from these Aleppo pines were partly driven by the incident PAR 449 

intensity (Llusia et al., 2016), and thus it is likely that the trees at Birya responded in a similar 450 

way. We did not have soil water content data for our campaign, even though this type of 451 

information is critical to help us understand BVOC emissions in the context of drought stress. 452 

Soil water content data can improve MEGAN’s modeling results by the use of its simple drought 453 

algorithm, although recent results show that even when soil moisture data is available there is 454 

still room for model improvement (Seco et al., 2015) and that atmospheric demand for water can 455 

make VPD more limiting for ecosystem functioning than soil moisture supply (Novick et al., 456 

2016). Furthermore, novel findings suggest that emissions of monoterpenes from pine oleoresin 457 

storage pools may also be regulated by the xylem water potential and not only by the ambient 458 

temperature and light conditions (Rissanen et al., 2016). These facts highlight the need for 459 

comprehensive availability of environmental and physiological information in order to gain 460 

insight into our physiological understanding and improve our BVOC emission modeling 461 

capability. It is especially relevant in the case of drought because limited water availability, 462 

particularly in areas like the Mediterranean, usually occurs during the summer when 463 

temperatures are also high. As a consequence, current air quality models could overestimate the 464 

BVOC emissions used as inputs for their predictions, leading to inaccurate results. 465 

Our study shows that, despite the differences in environmental aridity between sites, both P. 466 

halepensis populations showed comparable monoterpene emission capacities during the spring 467 

season, as indicated by our standardized ecosystem-level eddy covariance results (Fig. 4c) and 468 

also by the leaf-level enclosure measurements reported by Llusia et al (2016). Leaf-level data 469 

available for the summer season, however, shows that monoterpene emissions at Yatir almost 470 
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ceased while at Birya, with more favorable conditions in terms of aridity, they increased 5-fold 471 

(Llusia et al., 2016). This site contrast emphasizes the role of water availability in regulating 472 

monoterpene emissions and its interactions with temperature. With sufficient water supply 473 

monoterpene emissions increase with temperature, while under severe drought stress the 474 

emissions are severely reduced. 475 

 476 
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Figure legends 764 

Fig. 1. Map showing the location of our two pine forest sites: Yatir in the south, Birya in the 765 

north of Israel. The base map image is from Google Earth (image and data copyright: Google, 766 

US Dept of State Geographer, Landsat, SIO, NOAA, US Navy, NGA, GEBCO). 767 

Fig. 2. Half-hour data of environmental and physiological parameters (solar radiation and 768 

temperature, top panel; water flux and vapor pressure deficit, second panel; net CO2 ecosystem 769 

exchange, third panel), and monoterpene (MT) mixing ratios and canopy-level fluxes (bottom 770 

panel) measured at the two sites: Yatir (left) and Birya (right). Date labels indicate 00:00 h Israel 771 

Standard Time (UTC +2 h). 772 

Fig. 3. Hourly averaged diel cycles of the environmental and physiological parameters measured 773 

at the two pine forests: temperature (a), solar radiation (b), net water flux (c), vapor pressure 774 

deficit (d), and net CO2 ecosystem exchange (e). Error bars indicate plus or minus one standard 775 

deviation for each hourly average. 776 

Fig. 4. Hourly averaged diel cycles of the monoterpene (MT) mixing ratios (a, top panel), 777 

measured MT fluxes (b, middle panel), and standardized MT fluxes (c, bottom panel). Nighttime 778 

measured fluxes should be viewed as upper limits and are colored lighter in panel b. 779 

Standardized fluxes were computed to account for light, temperature, and tree density differences 780 

between sites (see section 2.4 for details) and only when PAR > 150 µmol m-2 s-1. Error bars 781 

indicate plus or minus one standard deviation for each hourly average. 782 

Fig. 5. Comparison of half-hour data (a) and hourly averaged diel cycles (b) of canopy-level 783 

monoterpene (MT) fluxes between the measurements and the MEGAN model results for each 784 
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site. Nighttime measured fluxes should be viewed as upper limits and are colored lighter in panel 785 

b. Error bars in panel b indicate plus or minus one standard deviation for each hourly average. 786 
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Figures 788 
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