

1

Ethnobotany, phylogeny, and “omics” for health and food

This is the author's version of a work that was accepted for publication in Trends in plant science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was subsequently submitted for publication. A definitive version was published in Trends and Plant Science (Ed. Elsevier), vol. 22 (March 2017), p. 187-194. DOI 10.1016/J.TPLANTS.2017.01.001

3 Teresa Garnatje¹, Josep Peñuelas^{2,3}, Joan Vallès^{4,*}

4

5 ¹Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s.n., Parc de
6 Montjuïc, 08038 Barcelona, Catalonia, Spain

7 ²CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain.

8 ³CREAF, Cerdanyola del Vallès, 08193 Catalonia, Spain.

9 ⁴Laboratori de Botànica (UB), Unitat associada al CSIC, Facultat de Farmàcia i Ciències
10 de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII s.n., 08028 Barcelona,
11 Catalonia, Spain

12 *Corresponding author: joanvalles@ub.edu

13 Keywords: drug development, ethnobotanical convergence, ethnobotany, food security,
14 genomics, metabolomics, molecular phylogeny

15

16

17 **Abstract**

18 Here, we propose a new term, ‘ethnobotanical convergence’, to refer to the similar uses
19 for plants included in the same node of a phylogeny. This phylogenetic approach, together
20 with the ‘omics[20TD\$DIF]’ revolution, shows how combining modern technologies
21 with traditional ethnobotanical knowledge could be used to identify potential new
22 applications of plants.

23 **Ethnobotany and the search for new drugs and foods: the classical approach**

24 Plants have always been a crucial resource for humans. Ethnobotany is the discipline,
25 located in the interface of natural and social sciences, addressing the relationships
26 between human groups and plants. Amongst all plant applications, those related to human
27 health and wellness are the most diversified and extended. Bioprospecting for new drugs
28 of plant origin and for new food crops has classically been based on ethnobotanical
29 information. Ethnobotanically-directed bioprospecting has importantly become more
30 powerful than random assays for finding and identifying bioactive compounds from
31 plants. Aspirin (from *Filipendula ulmaria* (L.) Maxim.), codeine and papaverine (from
32 *Papaver somniferum* L.), colchicine (from *Colchicum autumnale* L.), digoxin and
33 digitoxin (from *Digitalis purpurea* L.), tetrahydrocannabinol and cannabidiol (from
34 *Cannabis sativa* L.), and vinblastine and vincristine (from *Catharanthus roseus* (L.)
35 G.Don) are amongst the most famous classical drugs developed from ethnobotanical leads
36 [1]. The first evidence of the anticancer properties of paclitaxel, from *Taxus* L. species,
37 was its toxic effect on murine leukaemia cells, in agreement with the popular knowledge
38 of the general toxicity of these plants. The success of this anticancer product provides an
39 indication of the promising role of plant products in drug development. Oseltamivir was
40 more recently developed (from *Illicium verum* Hook.f.) during the epidemic of avian flu
41 based on ethnobotanical data from Chinese traditional medicine. Ethnobotanical records
42 also led to the isolation and development of artemisinin (from *Artemisia annua* L.) as a
43 powerful antimalarial drug [2], whose relevance was recognised with the 2015 Nobel
44 Prize in Physiology or Medicine.

45

46 **The new approach: linking ethnobotanical convergence, phytochemistry, and**
47 **molecular phylogeny to predict plant uses**

48 New perspectives have opened with the emergence of new molecular tools, especially for
49 DNA sequencing, allowing phylogenetic reconstruction with hot nodes clustering
50 potentially useful plants, including species traditionally used for medicinal purposes (Fig.
51 1). Promising predictions of medicinal plant uses have been developed based on the
52 conjunction of ethnobotanical, phytochemical, and molecular phylogenetic data [3].

53 The use of the same (or closely related) species in the same ways in different
54 cultures indicates that different and often non-interacting human groups have
55 independently acquired this knowledge, because some plants have similar morphological
56 characteristics from a shared phylogeny, a phenomenon termed evolutionary
57 convergence. In this case, we propose to speak of plant-use convergence or
58 ethnobotanical convergence for the similar uses for plants included in one node of a
59 phylogeny.

60 Determining the phylogenetic relationships amongst plant species could be an
61 appropriate tool for discovering new drugs based on recorded plant medicinal uses and
62 analysing ethnobotanical data. Plants evolving in the same lineage have more medicinal
63 uses than evolutionarily isolated species, and the diversity of medicinal uses is correlated
64 with the evolutionary history of the species. Species-rich clades are more likely than
65 species-poor clades to contain taxa with more uses, and ancient taxa are less abundant in
66 the flora, so less used in traditional medicine [4].

67 For instance, *Pterocarpus* Jacq. species used to treat certain illnesses were
68 significantly clustered in the phylogenies, since related plants had the same medicinal
69 uses in parallel in very distant areas: the Neotropics, tropical Africa, and Indomalaya [5].
70 This excellent example of ethnobotanical convergence illustrates the ability of different
71 cultures to discover related plants to treat similar disorders.

72 Another clear example of ethnobotanical convergence is provided by the spices
73 used as condiments for two products in different geographical and cultural areas. Pizza in
74 Western cultures is seasoned with *Origanum vulgare* L., and Near Eastern similar food
75 (*manousheh*, in plural *manaqish*) uses another species of the same genus as condiment,
76 *O. syriacum* L. Both taxa are phylogenetically very close, implying a similar chemical
77 composition and so a similar use.

78 Chemical properties are evolutionarily conserved [3], so bioscreening could be
79 targeted to the lineages identified as hot nodes for medicinal properties. As a result of
80 evolution, widely distributed species could synthesise metabolites to adapt to their
81 ecological amplitude more than species of restricted distribution and with a local
82 evolutionary history, perhaps explaining why only 62 of the 457 families of angiosperms
83 and gymnosperms are used as sources for medicinal drugs [6]. Nevertheless, the
84 relationship between one specific active principle and a medicinal activity is not always
85 clear, complicating the phylogenetic prediction of plant uses.

86

87 **Combining omic techniques with ethnobotanical approaches**

88 In addition to the phylogenetic approach, the large data sets obtained using omic
89 techniques (e.g. genomics, transcriptomics, proteomics, and metabolomics) and their
90 analyses with bioinformatic tools are becoming very useful to identify the best plant taxa
91 (or genes within these taxa) for medicinal and alimentary uses amongst plants with
92 popular ethnobotanical uses. DNA barcoding should be used for species identification in
93 conjunction with chemical analyses to detect and quantify the required chemical
94 compounds. These methods and the resulting data sets also provide a better understanding
95 of the evolutionary history of medicinal and alimentary plants. An exhaustive review of
96 the evolution of chloroplast, mitochondrial, and nuclear genomes in several medicinal,
97 edible and ornamental plants is provided in [7].

98 The rapid development of the main techniques used in the analyses of metabolites, e.g.
99 gas chromatography, high-performance liquid chromatography, and nuclear magnetic
100 resonance, is also rapidly increasing the application of metabolomics in many aspects of
101 natural-drug (and food) discoveries (Fig. 2). Metabolomics, the technology designed to
102 provide general qualitative and quantitative profiles of metabolites in organisms exposed
103 to different conditions, allows monitoring the spatial and temporal distribution of target
104 phytochemicals influenced by plant developmental and environmental cues [8].
105 Metabolomics also identifies compounds related to a target phytochemical, which may
106 be considered as either intermediates of biosynthesis or useful alternative products of
107 promiscuous enzymes that support the biosynthesis of the target phytochemical.
108 Metabolomics also promises a better understanding of the effects of complex mixtures,

109 such as those used in traditional Chinese medicine. In fact, assigning bioactive
110 compounds from complex mixtures is a central challenge of natural-product research. The
111 combination of bioassay-guided fractionation with untargeted metabolite profiling
112 improves the identification of active components [9]. Metabolomics is also enabling a
113 better understanding of medicinal plants and the identification of important metabolic
114 quantitative trait loci for enhanced breeding. This metabolomic approach may have the
115 potential to greatly advance natural-product research and development of scientifically
116 based herbal medicine, changing the paradigm in medicinal bioprospecting [10], thus
117 becoming an excellent complement for the development of new wellness products from
118 popular ethnobotanical uses, for both medicine and food.

119 The integration of this metabolomic approach with genome-based functional
120 characterisations of gene products from ethnobotanically important plants is providing an
121 accelerated path to discovering novel biosynthetic pathways of specialised bioactive
122 metabolites. This integration has thus strongly enhanced the potential discovery and
123 production of pharmaceutical and alimentary products. For example, the production of
124 the famous anti-malarial drug artemisinin is being enhanced via traditional breeding, with
125 new high-yielding hybrids to convert *Artemisia annua* into a robust cropping system, and
126 by the reconstitution of the artemisinin biosynthetic pathway in a re-engineered microbial
127 host [11]. Another example of a successful integration of omic techniques with
128 ethnobotanical approaches is the discovery of a series of FAD2 phytochemicals in a non-
129 plant bioengineered host system after comparison of the transcriptomes and metabolomes
130 of developing seeds that accumulate unusual fatty acids [12].

131 Genomics, proteomics, and metabolomics are high-throughput technologies that
132 may economize the determination of the mode of action of phytomedicines and allow the
133 investigation of herbal extracts without prominent active principles. The application of
134 the omic technologies may thus lead to a change of paradigm towards the utilization of
135 complex mixtures in medicine and nutrition. Metabolomics and other omic techniques
136 have generally thus proven very valuable, but they still face substantial challenges,
137 including large-scale metabolite identification. The further development of the field of
138 metabolomics in particular and omics in general, however, will continue to provide better
139 tools for the discovery of the next generation of natural products inspired by popular
140 knowledge gathered in ethnobotanical studies and enhanced by recent phylogenetic
141 approaches.

142

143 **Acknowledgements**

144 We thank Á. Fernández-Llamazares, S. García, A. Gras, N. Gras, M. Parada and V.
145 Reyes-García for their help in figures elaboration. TG and JV were supported by the
146 Catalan Government project 2014SGR514 and the Spanish Government projects
147 CSO2014-59704-P and CGL2013-49097-C2-2-P. JP was supported by the European
148 Research Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish
149 Government project CGL2013-48074-P, and the Catalan Government project
150 2014SGR274.

151

152 **References**

153

154 1 Prance, G.T., Chadwick, D.J., Marsh, J. (1994) *Ethnobotany and the search for*
155 *new drugs*, Chichester, John Wiley & Sons.

156 2 Tu, Y. (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese
157 medicine. *Nat. Med.* 17, 1217–1220

158 3 Ronsted, N. *et al.* (2012) Can phylogeny predict chemical diversity and potential
159 medicinal activity of plants? A case study of amaryllidaceae. *BMC Evol. Biol.* 12,
160 182

161 4 Yessoufou, K. *et al.* (2015) Phylogenetic exploration of commonly used
162 medicinal plants in South Africa. *Mol. Ecol. Resour.* 15, 405–413

163 5 Saslis-Lagoudakis C.H. *et al.* (2011) The use of phylogeny to interpret cross-
164 cultural patterns in plant use and guide medicinal plant discovery: an example
165 from *Pterocarpus* (Leguminosae). *PLoS One* 6, e22275

166 6 Zhu, F. *et al.* (2011) Clustered patterns of species origins of nature-derived drugs
167 and clues for future bioprospecting. *Proc. Natl. Acad. Sci. U. S. A.* 108, 12943–
168 12948

169 7 Hao, D.C. and Xiao, P.G. (2015) Genomics and evolution in traditional medicinal

170 plants: Road to a healthier life. *Evol. Bioinforma.* 11, 197–212

171 8 Peñuelas, J. and Sardans, J. (2009) Ecological metabolomics. *Chem. Ecol.* 25,
172 305–309

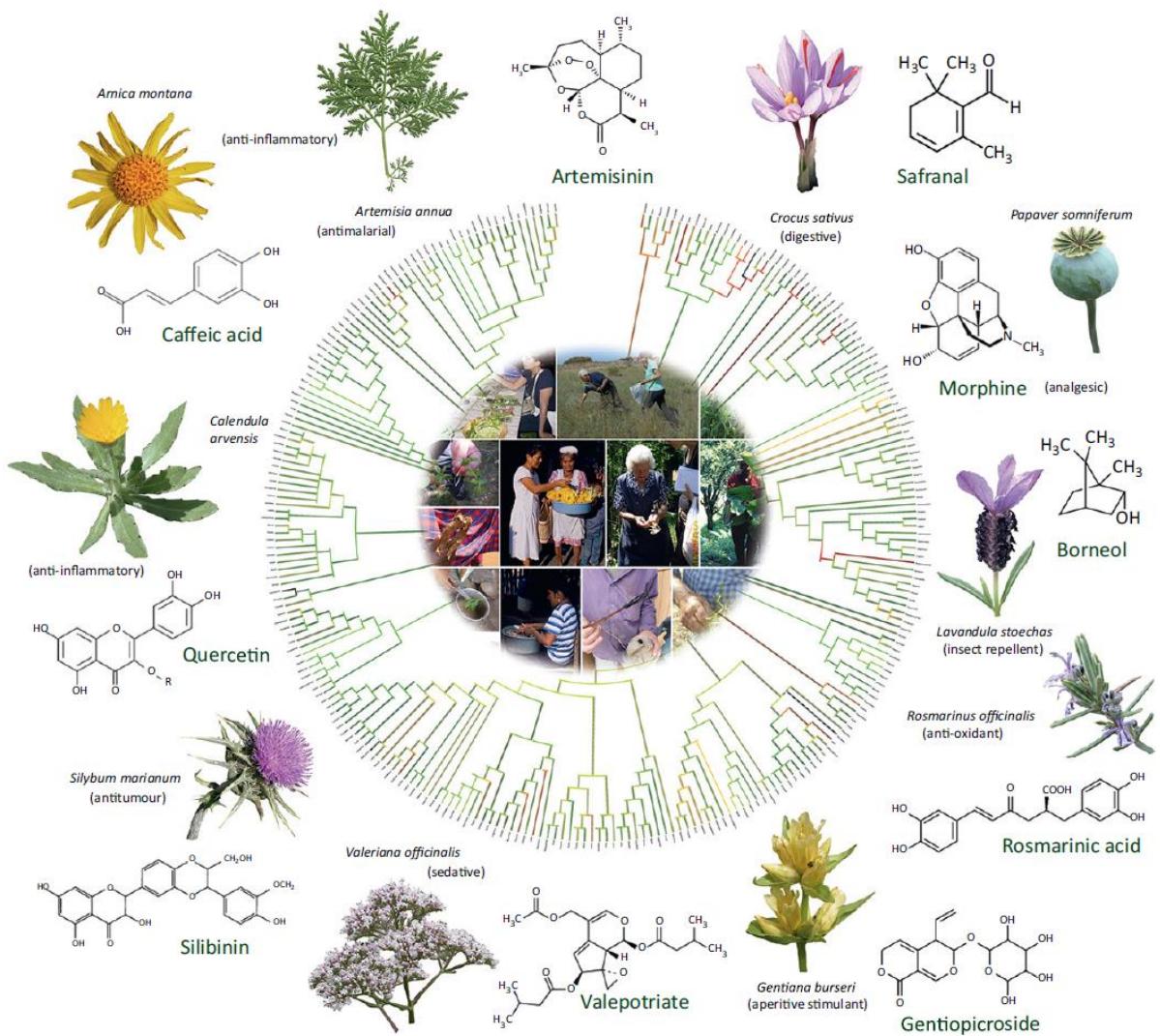
173 9 Kellogg, J.J. *et al.* (2016) Biochemometrics for Natural Products Research:
174 Comparison of Data Analysis Approaches and Application to Identification of
175 Bioactive Compounds. *J. Nat. Prod.* 79, 376–386

176 10 Skirycz, A. *et al.* (2016) Medicinal Bioprospecting of the Amazon Rainforest: A
177 Modern Eldorado? *Trends Biotechnol.* 34, 781–790

178 11 Hale, V. *et al.* (2007) Microbially derived artemisinin: A biotechnology solution
179 to the global problem of access to affordable antimalarial drugs. *Am. J. Trop.
180 Med. Hyg.* 77, 198–202

181 12 Sumner, L.W. *et al.* (2015) Modern plant metabolomics: advanced natural
182 product gene discoveries, improved technologies, and future prospects. *Nat.
183 Prod. Rep.* 32, 212–229

184


185 Figure captions

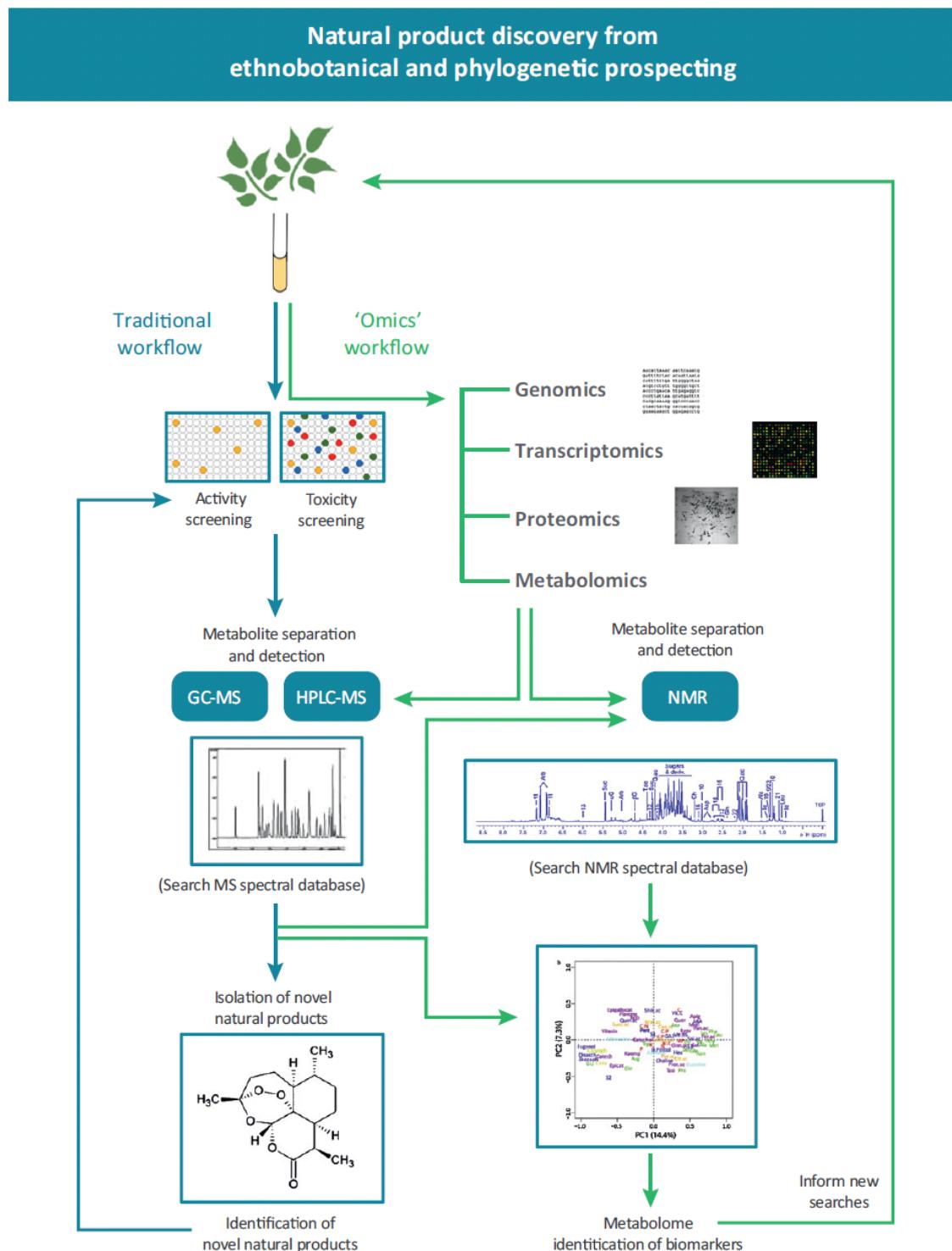
186

187 Figure 1. Examples of Medicinal or Food Plants Used in Various Locations around the
188 World. Chemical products (medicinal use given in brackets) and DNA sequence-based
189 phylogenies involved in the molecular phylogenetic prediction of plant activities are
190 shown.

191 Figure 2. Natural Product Discovery. Merging ‘omic’ techniques with a traditional
192 workflow for the discovery of natural products in plants based on ethnobotanical and
193 phylogenetic prospecting.

194

195


Trends in Plant Science

196 Figure 1

197

198

199

