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Abstract

The rapidly growing human population in sub-Sahak&ita generates increasing demand for agricultiarzd
and forest products which presumably leads to defation. Conversely, a greening of African drykmds
been reported, but this has been difficult to asseavith changes in woody vegetation. There is i incom-
plete understanding of how woody vegetation respdndsocio-economic and environmental change. Were
used a passive microwave Earth Observation data sketcument two different trends in woody coverdarea
for 1992-2011: an 36% increase (6,870,000 km2pelgrin drylands, and an 11% decrease (2,150,009, km
mostly in humid zones. Increases in woody coverewagsociated with low population growth and dribgn
increases in COin the humid zones and by increases in precipitaith drylands, whereas decreases in woody
cover were associated with high population growthe spatially distinct pattern of these opposirends re-
flects (1) the natural response of vegetation &xipitation and atmospheric G@nd (2) deforestation in humid
areas, minor in size but important for ecosysteniices, such as biodiversity and carbon stockss Timanced
picture of changes in woody cover challenges widelld views of a general and ongoing reductionhef t

woody vegetation in Africa.
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Introduction

Africa’s human population has increased from al#8@ million in 1950 to over 1000 million in 2010chis
expected to grow to as high as 5700 million byehd of the 2% century. This growth has led to the expansion
of agricultural land and the reduction of naturakkts and other woody vegetafidf) affecting biodiversity and
carbon storage Severe droughts in recent decades have alsorhadwaerse impact on humid and sub-humid
forested aredsIn contrast, studies of drylands have shown are@se in vegetation productivity over the last
30 year$”® also highlighting the importance of drylands épobal carbon variability and as land €€ink.
Whether this increase in vegetation productivitglisven by the growth of woody vegetation and/ordnyin-
crease in productivity of herbaceous vegetationaiscleaf’®. This is because the scattered nature of woody
plants in drylands is very different from forestghaclosed canopies and challenging to detect wjittical satel-

lite imagery at regional to continental sc&lés Previous studies have used vegetation indicesceges for net
primary productivity, but these indices measure ghetosynthetically active part of the vegetation anost
studies do not distinguish between woody and hexa vegetatid™® Furthermore, studies of deforestation
in humid areas traditionally report the presencetmence of forestand do not assess gradual changes in forest
biomass within existing forests (e.g., forest ddgtan). They are also based on temporal snapsiictellite
imagery at a higher spatial resolution and onlytwagpforests based on given definitions, e.g. height and
canopy cover percentatfé which substantially underestimate shrubs andeseat trees in drylanifs Conse-
quently, little quantitative information is availababout the state, rate, and drivers of changhencover of
woody vegetation at the scale of the African caiin This information is crucial for ensuring thiaé¢ design of
natural resource management in relation to defatiestand desertification is based on observatiatiser than

those based on narratives.

Results

Africa's changing woody cover

We used a new passive microwave Earth ObservaiO) (lata set (Vegetation Optical Depth, VOD) thegh-c
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tures continuous changes in the coverage of camagiall woody phanerophytes, regardless of sizéhath
drylands and humid are€ds’. We applied VOD as a proxy for annual woody coamed documented changes in
Africa's woody vegetation between 1992 and 2011h wispecial focus on the changes in drylands anaich
areas (defined byhe ratio between annual precipitation and potentiapatranspiration, Supplementary Fig.
la). Woody vegetation changed significantly (linesgressionp<0.05, n=20) during 1992-2011 in approxi-
mately half of sub-Saharan Africa (47% of land ajeA majority (77%) of the significant trends weresitive,
covering 36% of sub-Saharan Africa and represemimgverall increase of 2.1 woody cover (%) (Fa). Most
(70%) of the significant positive changes were iglahds covering approximately 4 900 000 km? (olfera
change +2.9 woody cover (%)), mainly in the Samal southern Africd?° (Fig. 2a). Positive trends are also
observed in the humid zones to a much smaller £xgeh00 000 km?2), with an overall change of +0.8oady
cover (%). Negative changes affected 11% of sula@ahAfrica, of which 75% were in humid areas (agpr
mately 1 600 000 km2 in humid zones and 530 000ikndkylands). The decline in woody cover primaialfy
fected areas that are also characterized by hidgiooastocks (Supplementary Figs 2a, 2b), suggeshiigareas
with the largest carbon sinks have been disturbbeteafastest rate. The classification of woodyezoshange
into bioclimate zoné&$ confirms the overall tendency with larger increasedrier zones (except extremely hot

xeric) and lower increases and decreases in maisters (Fig. 2d).

Drivers of woody cover changes

The positive changes in woody cover in Africa'slaings are significantly related to precipitationg(FlLa). In
contrast to herbaceous vegetation, woody plantdeaefit from a higher variability and intensity mfecipita-
tion”?, as in southern Africa and the Sahel (Supplemgriay. 1c). The dependence on precipitation was co
roborated with simulations of the vegetation ugimg dynamic vegetation model LPJ-GUES®hich simulat-
ed an increase in woody biomass for 1992-2011,istems with the satellite estimates of woody coffég. 3).
The relative increase of both woody cover and besnaas largest in drylands, and factorial simutegtiof the
individual driving variables indicated that pre¢gtion accounted for most of the simulated incraasgoody

biomass in drylands such as the Sahel and souffigoa (Fig. 3, Supplementary Fig. 3). Increasimmcentra-
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tions of atmospheric CQOvas a minor contributor to these dryland trendswges the main variable driving the
growth of woody vegetation in humid areas, enhappinmary productioff (Fig. 3, Supplementary Figs. 2, 3).
The absolute increase in woody biomass was langdstmid areas (mean increase of 0.04 kg €ythnear the
equator, Supplementary Fig. 2), coinciding withralldarge stocks of woody biomass. Solar radiagtitrogen

deposition and temperature had minor impacts oghhages in woody biomass (Supplementary Fig. 2).

This overall increase in woody vegetation drivenchiynate and Cg however, was offset by anthropogenic
impacts, especially in humid areas. The increaseoiody cover in the VOD analysis was thus most pumeced
in areas of low human population density and chdRge 4). Areas and countries with a higher popoitaden-
sity and growth (Fig. 1b, Supplementary Fig. 1d)l dacreases in VOD-based woody cover (Figs. 18ug;
plementary Fig. 4), offsetting the climate-drivercrieases in other parts of the humid zones (Figs3R This
separation in areas of high and low human pressppéed to both drylands and humid tropics. Theraye
trend, however, remained positive in drylands, aweareas with strong population growth, but wagative in
humid areas with strong population growth, regaslief the trends in precipitation and O®ig. 2b, c). Popu-
lations increased by an average of 40 personsduar 20 years in areas where woody cover dealeag®os-
edly due to agricultural expansion, logging, anttkotuses of woody products. In contrast, populationreased
by an average of only 6 personskin areas where woody cover increased. Human ptipalincrease was
highest in moist and mesic bioclimate zones anddy@wver changes were accordingly negative or \okgre-
as population growth was lower in xeric areas anddy cover increases were higher (Fig. 2d). Atdbmtinen-
tal scale, a simultaneous autoregressive model J®XxBRlained nearly half of the spatial pattern lb&mges in
woody cover in terms of changes in population aretipitation (2=0.46), with population being more im-

portant than precipitation (standardized slope® &7 and 0.08, respectively) (Supplementary Tahle

Discussion

The opposing trends in dry and humid zones havéidatns for our understanding of environmentamge in

sub-Saharan Africa. While areas of high populatioowth, mostly in humid zones, on average expeeemc
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decrease in woody vegetation, areas with low paojomiagrowth on average experience an increase iodwo
vegetation, mainly driven by changes in precipitatand CQ concentrations. This latter increase is not cagtur
in official forest statistics, since much of it éakplace outside of humid forests.

This implies that the ‘problem’ of woody cover losand thus carbon stocks decreases - in the hforegdt
zones is at least partly balanced by an increadeylands. ‘Bush encroachment’ in savannas of soatAfrica,
however, has traditionally been considered an uretkeffect*® Since the VOD data used to estimate woody
cover does not allow a direct estimation of carbtmtks, the exact balance between gains and lossesbon
cannot be directly assessed in this study. Fustloek combining field measurements, ecosystem miodetind
new satellite-based passive microwave sensorgjisresl to further understand these linkages. Initiuareas,
woody biomass may actually increase without anyigban woody cover.

The close relationship between population growtth decreased woody cover suggests that agricukpdn-
sion, urbanization and wood fuel harvest were taimauses of the decrease in woody cover, ad@lsal in
studies of tropical deforestatidfi. The reduction in woody cover tends to primaritfeet areas with high car-
bon stocks and other studies suggest that thesglsarareas characterized by the highest biologieatsity’.
There is, however, no simple relation between wssel gains in woody cover and biodiversity. Whileersity
and productivity of natural vegetation are gengrpbsitively correlated, this does not exclude the possibility
that great losses may be experienced in areadarfedétion, while only smaller gains are seenritashds with
increasing woody cover.

Due to the impact on land surface albedo, woodgrcotianges in dryland areas may trigger climate-beeks.
Since the hypothesized existence of a ‘biogeophy$éed-back®, many studies have attempted to model such
effects®*., with some research claiming that man-made aftaties efforts would give rise to increased precipi
tatior’?. The extent of the observed increase in woody rcovéfrican drylands may impact climate if the in-
crease continues in the coming decades, and thigdlfeed-back should preferably be implementedgional
climate or Earth system models, with the obsermedeiase in woody vegetation providing a test cas¢hiese

models.
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Methods

VOD data and calibration to woody cover.We define woody cover as the percentage of a givea covered
by woody vegetation, including both leaf and woadynponents of woody plant canopies. The unit isdyoo
cover (%). The VOD data was retrieved from satelliassive microwave observations quantified ashtwéss
temperature based on the NASA-VU Land ParameterieRat Model (LPRMY®. Three passive microwave
sensors, i.e. the Special Sensor Microwave ImagerAdvanced Microwave Scanning Radiometer — Eatih
serving System, and the radiometer of WindSat aesl uo form the long-term data set by applyingeadr
preserving cumulative distribution function matahinithout changing the inter-annual variations kowj-term
trends of the original retrievdfs™ The merged long-term VOD data set was gridded®®5° spatial resolution
and monthly interval from 1992 to 2011 and is cstesit between different sensird/OD is sensitive to the
total aboveground water content in both the phattietic (foliar) and non-photosynthetic (woody) qmnents
of the vegetation stratunit’. Soil moisture conditions are retrieved simultarghp with the VOD information in
LPRM and large variations in soil moisture canuefice the accuracy of VOD, especially for densefoesst
regions®. Thus VOD values exceeding 1.2 are suggested éxtladed in vegetation studi&sThe VOD signal
has been separated from soil moisture and is usedpeoxy for vegetation biomass glob#llyThe VOD sea-
sonal variation is a combined effect of the seadsdyaamics of both herbaceous (including crops) aoddy
vegetatior. We used the annual minimum VOD values as a pfoxyoody vegetation cover to minimize the
influence of annual herbaceous vegetdfiemd avoided values exceeding 1.2 (Supplementayy i Areas
with perennial herbaceous vegetation may lead wvan-estimation of woody cover; however, the woodyer

in % is usually higher in these areas concealiegrifuence from the herbaceous plant understolso,A7OD
data have been used to estimate forest changeuitih @anerica by limiting the range of VOD valuesQ®-
1.2'°. We did not restrict the VOD range to also inclydeng trees and shrubs, which form an importarttqgfa
the community of woody vegetation. Minimum VOD aggewell with a field data based map of woody cover
for Sahel £2=0.80)° (Supplementary Fig. 5). A global map calibratethwaiptical high spatial resolution images
and also assessing smaller trees produced siresalts® and was thus used to transform the annual minimum

VOD to the unit woody cover (%) for further analgse?=0.85, slope=0.86) (Supplementary Fig. 5). A third
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degree polynomial regression was used for the foemation. Woody cover <10% was predicted with apce
nential regression to avoid underestimation of yewy values.The VOD is insensitive to the effects of atmos-

pheric and cloud contamination, ensuring reliabteevals in cloudy regions e.g. central Africa.

Correlation between the trends in woody cover andhlanges in human population and precipitation.Pre-
cipitation data were derived from the Climate RededJnit (CRU) (data set version 3.23), which islgllly
available for a 0.5° grid at monthly scale anddsdtl on the upscaling of data from rain gatig&€RU precipi-
tation data intrinsically includes some uncertairaty the number of stations used for each gridveeles con-
siderably between cells and years. Even thoughtitd most widely used precipitation data set madyic vege-
tation modelling’ and consistency with other data sets has beenréhaesults have to be considered with cau-
tion’. We have tested the blended GPCP data set, wisiignificant changes of the results, still it hase not-
ed that a linear trend analysis on annually sumdsd includes uncertainties and simplification. $éenmed
the monthly observations to obtain annual sums 16882 to 2011 and resampled the data to 0.25° @shbigu-
bic interpolation. Population data were acquirenrfrGridded Population of the World (GPW)*3which in-
cludes estimates for 1990, 1995, 2000, 2005, add®,2@ridded with an output resolution of 2.5 arcrutés,
resampled for this study to 0.25° (nearest neighli®PW population data were acquired from naticbatisti-
cal offices and gridded based on the proportiorethod, which allocates population counts to gridsdeased
on the proportion of each administrative areal thdt overlaps the cell. The gridded counts fostxy census
years are then projected to the set of output yeased on a simple model of population growth. ifoeleling
was thus not based on any additional layers of, datzh as land cover, avoiding potential problefmsnaloge-
neity between VOD and simulated population griddingar trend analysis was conducted for annualdyoo
cover and precipitation data, and the slope migdtbWith the number of years to retrieve the alisolinange
over time in the corresponding unit, facilitatirgetdirect comparison with the human population.data quan-
tified the relationships between the changes indyomver (estimated by VOD), population increas@\(3,
and precipitation (CRU) by applying a simultaneausoregressive model (SAR) (spatial error f§péo the
three gridded data sets. The SAR model accountspfatial autocorrelation and uses change in wooggrcas

response and log(change in population) and changeeicipitation as explanatory variables. The lithar of



194 the human population data was applied since tla¢ioal between woody cover changes and human papuiat
195 non-linear at pixel scale, i.e. if a high numbeipopulation is reached (mostly in cities), the wpodver stops
196 to decrease further. Standardized variables wezd tes enable model coefficients inter-comparisaan@ard-

197 ized variable = (variable - mean) / standard dewiét

198 Fires frequently occur in most African ecosystehiswever, at the spatial and temporal scale of oatysis,
199 we do not expect changes in fire regimes as a ntajose of changes in woody cover in itself buteatis a

200 consequence of human induced deforestation andusedhandé

201 Dynamic ecosystem modelThe dynamic ecosystem model LPJ-GUESSas applied to simulate changes in
202 woody-biomass carbon in natural vegetation for 12921. LPJ-GUESS simulates the distribution of plan
203 functional types, and each type is representedohy pools of biomass carbon: leaves, roots, sapwand
204 heartwood. The latter two were added to representimounts of stem (wood) carbon. This variablddsely
205 related to the woody cover estimated by VOD, byteeglly in tropical forests, differences are expdc as
206 VOD is not able to fully penetrate the tree crofinSimulations were run for 1992-2011, applying nhiynt
207 climate data (temperature, precipitation, sunskinetion) from meteorological stations, griddeddt6°x0.5°
208 resolution (CRU TS 3.21), monthly model-derived estimates for nitrogen at4ior®, and annual mean at-
209 mospheric C@concentratiorf$*®based on ice-core data and atmospheric obsersai®forcing. Land use and
210 land use change were not accounted for in the atibak, which were only applied to quantify the rofes in
211 natural vegetation. The simulations were preceded two-stage spinup: For the first stage, vegatagirowth
212 starts from bare-ground conditions, using climatta for 1901-1930, and G@vels were kept constant at the
213 concentration for 1901. For the second stage, septiang 1901-1991, the actual climate data, atmergplCQ

214  concentration and N deposition were used.

215 In addition to a full simulation with the forcing @lescribed above, five factorial simulations waggformed to
216 separate the impact of individual driving variablesly one of the four parameters (temperaturesipitation,
217 radiation, or CQ was applied using the transient data as descabesle, whereas the other three parameters
218 used a climatology for 1992-2011, applying montimgans over this 20-year period for the climatiapaaters

219 and an annual mean for GQn the fifth factorial simulation, similar to theansient CQ simulation above, the
9



220 changing CQ concentration was combined with a climatology Kbdeposition, to separate the impacts of at-
221 mospheric C@and N deposition on the GQ@ertilization. These simulations were applied &iedmine the im-

222 pact of the individual driving variables on the siated trend.

223 Data availability CRU precipitation data are available from the &nsity of East Anglia
224 (http://www.cru.uea.ac.uk/). The global tree covexp is available from the Geospatial Informatiorthbuity of
225 Japan, Chiba University (http://www.iscgm.org/gro/ptml#use). VOD raster data are developgdYi Liu,
226 University of New South Wales. Gridded population maps are provided by CIESIN
227  (http://sedac.ciesin.columbia.edu/). Humidity zones are available from http://www.grid.unep.ch/index.php.

228 DGVM results are available from the correspondiathar upon reasonable request.
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Figure legends:

Figure 1 | Changes in woody vegetation and human paolation over two decades. aSignificant trends of
woody cover (VOD) for 1992-2011, separated by thesgnce or absence of a significgmt@.05, n=12845)
correlation with cumulative 2-year precipitationritig this periodb, Changes in human populations for 1990-
2010. The maps ing] and p) share a clear pattern, especially areas withceedse in woody cover, and no
relation to precipitation coincide with a high pdgiion pressurec, SAR model of the changes between woody
cover, precipitation (both 1992-2011), and popofat{1990-2010). The units are expressed as changeei

corresponding unit over the period of analysis.

Figure 2 | Changes in woody cover (VOD) in differenhumidity zones. g Areas with changes in woody cov-
er (linear regression of change in woody coverlf®2-2011). Annual profiles of woody cover for ared sta-
tistically significant changes in woody coverbindrylands anda, the humid areas of sub-Saharan Africa (Sup-
plementary Fig. 1a). Black lines characterize a@fasigh human population increase (>30 persong)kamd
grey lines areas of low human population incread® (persons kif) for 1990 to 2010d, Woody cover and

human population changes are grouped accordinigpttirhatic zone$.

Figure 3 | Climatic drivers of changes in woody cax and biomass in sub-Saharan AfricaRelative trends
(% of mean yed) for 1992-2011 in woody cover (estimated with VO@)d woody biomass (simulated with
LPJ-GUESS) had similar patterns of change frommustsouth. The trends of woody biomass were mainly

driven by CQ (humid areas) and precipitation (drylands) (Sumgetary Figs. 2, 3).

Figure 4 | Links between changes in woody cover arfdiman population. Intervals of mean population den-
sity (1990-2010, Supplementary Fig. 1d) were usegtdup the changes in woody cover (VOD) associaitdu
population increases and the number of pixels sgwignificant woody cover change. A Chi-squared bee-
tween woody cover and population change indicabedstatistically significant dependency between tihe

variables.
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