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Abstract

It is well known that multi-point Seshadri constanter a small num-
ber t of points in theprojective plane aresubmaximal. It is predicted
by the Nagata conjecture thaheir values aranaximalfor t > 9 points.
Tacklingthe problemin the language ofaluationsone can make sense of
t points for any reat > 1. We showsomewhat surprisingly that Nagata-
type conjectureshould be valid fot = 8 + 1/36 points and weompute
explicitly all Seshadri constants (expres$ege as theasymptotic maxi-
mal vanishing elementipor t < 7+1/9. In the range #1/9 <t<8+1/36
we are able tacomputesome sporadic values.
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1 Introduction

The main purpose of this work is to formulate @alague of Nagata'sonjecture
which makes sense for real valuez 1 of the number of points blown upstead
of integral ones. Usinguasi-monomial valuatignsf the plane weonstruct a
M :[l,0) = R, suchthatif p(t) = tfor all integerst > 9 then
Nagata’'s conjecture is true. Moreover we shbwat |bbis a cgntinuous function
and we propose a conjectutbatasserts the equalitia(t) = tfort > 8+1/36
(Conjecture2.4Def.2.4). This fits well with the expedtebehavior oflinear
systems on blow-ups ofPas it would follow from a stronger openjecture
by G. M. Greuel, C. Lossen and E. Shustin. @& bther hand, théehavior
of the function p in the range # 1/9 < t < 8+ 1/36 is somewhatmysterious.

By continuity, it suffices to verify the conjecture aational square values
of t, which boils down to verifying nefness appropriatedivisor classeswith
selfintersection zero. Thus Nagata's conjectwseeduced to proving statemenh
of a kind which has shown to leactable,see [9], [3]. Theseselfintersection
zero classes live on blow-up configuratiotkat have not been known earli¢o
shed liglt on the original conjecture for ten or mapeints.

Going further down this road we discuss the valfifa ai meny nor-integra
cases and compute it in a wide range includitigt < 7 + 1/9. As a tooland
also as a result ahdependen interest,we describe the Mori cone of thelated
blown up surfaces whenever they are articanoncal.
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In our approach valuationare considered as generalizationof points, a
naturalstep taken in mangituationsever since Zariski’'s pioneering work. the
context of linear systems defined by multiple eba®ints on projectivevarieties,
positivity, and Seshadrconstantsit is a point of view which seems to hauseen
explored explicitly only recently. In [7] an§b], S. Boucksom, MDumnicki,
A. Kuronya, C. Maclean, and T. Szembemgtroducedthe constam ay,x of a
valuation (here denotedb ), analogous to tkénvariart introducedby L. Ein,
S. D. Cutkosky and RLazarsfel( in [10] for ideals (see also [24, 5.4]). Fer
valuationv centered at the origin of’A= SpecC[x, y], one has bydefinition

. max{v(f) |f eC[x,y].deqgf <d}
p(v) = lim
dooo d
All such invariants encode essentially the sanmeformation as the Seshadri
constam does in the case of points and, as is thee fas Seshadriconstars,
they turn outto be extremely hard toompute.

The last decade has also seen the blossoming edmagric study of spaces of
real valuations(see C. Favre—M. Jonsson [14]) or spaceseshinorms, usually
called Berkovich spaces [2], which essentiaigincide in dimensiontwo (see
M. Jonsson [21, stéion 6] for adescriptionin the plane case). Beingpmpact
and arcwise connected, the topology of suphces has verynteresting and
useful properties. The work of S. Boucksom, C. Favre and M. s3om [4],
[5] implicitly reveals connections between sudiuationspaces,positivity, and
birationalgeometry

In this péeper the invarient p is studied as a function on the spacef plane
valuationsof real rank 1. Thisinvariart turns out to be lower semiddnuous
and continuous along arcs Vh(Theorem2.21Def.2.21). There is no difficulty
extending the definition of p to other varieties; one obtainsfumction-inwariart
for line bundles whose geometric significance Modeserve further study. Mo-
tivatedby what is known in the case of points and by toejectures oNagata
and Segre—Harbourne—Gimigliano—Hirschowitajr focus will be onvaluations
along a very general half-line M.

()= p(v¢) with t € [1, 0), wherev, is a very generafjuasimonomial
valuationwith characteristiexponei t (see Sectior?Preliminariessection.2 for
precisedefinitions).

Our main results, Theorems 3.4Def.3.4 and Bei®.10, are the firssteps
toward the computatiol of pp. Divisorial valuationsare dense in each arc tife
valuationspace; our tools provide a good grip on swafuations,and wework
on the minimal propebirationalmodel Xy where the center of is adivisor.
When X, supportsan effectiveanticanonicalivisor, extensive knowledge a6
geometry is available, see [18], [19]. In secti®Anticanonicalsurfacessction.3
we determine the range bfor which X; is anticanonicaland study the Mori
cone ofXy in thatrange. The following theorem sums up the meaasults of
section 3Anticanonical surfacessection.3.

TheoremA. Let v¢ be a very generatjuasimonomialvaluation on P with
characteristicexponentt € Q, and letX; be the minimal model where; has
divisorial center. X supports an effectivanticanonicaldivisor if and only if
1<t< 7,t =7+ 1/n for somenaturalnumber n, ot =9.

If 1 < t< 7, then the Mori condNE(X;) is a polyhedral cone, spanned by
the classes of the exceptional componentsXof> P?, the class of aarticular



nodal cubic, and finitely many-1)-curves(whose number is explicitipounde,
see3.4Def.3.4).

If t =7+ 1/n for naturaln, then the only prime divisors C ¢ with
C? < -2 are exceptionacomponentsand NE(X;) is a polyhedral cone i&nd
only if n < 8.

If 1 <t< 3,t=3+1/n for naturaln, ort =5, then the monoid déffective
classes can be generated by the classeseotdmponents of thexeptional
divisor, aparticularconic, and thg—1)-curves.

¢
It is not hard to sematéa%gtﬁ t, and one should expect the equaltty

hold unless there is a good v reason, in the form of é\—l)—curveCt on
Xt with value higher than degC t.

V_
ConjectureB. For everyt =8+ 1/36, p(t) = t.

In section 4Avariationon Nagata'sconjecturesection.ve explore therela-
tions of conjecture BTIL.2 and existing conjges, showing irparticularthat
Nagata’'s conjecture is just a special case pjemture BTI.2. It is aninteger,
then it is the number of pointthat have been blown up teonstructXy, and
we look atfa(t) as a continuous functiothat interpolatesetween theinverses
of Seshadr constaits att very general points, whose values at non-giteg
also have geometric meaning. &ddition, it is not hard to showProposi-
tion 2.22Def.2.22thatfor integer values of thatare squaresp(t) = Tholds.
A further, strongerconjecture, motivatedy our main results is proposedat
the end of sectiobSupraminimakurvessection.5.

Knowing the cone of curves allows to compute jhjctv for smallt is done
in section5Supraminimal curvessection.5. Qgad-_1 =1, Fo=0 and F+1=
Fi +Fi_1 the Fibonacci numbers, argd= (1+ 5)/2 =lim Fj+1/F; the “golden
ratio”.

TheoremC. The value ofa(t) for t = [1,9%] is givenby

Ju'zifz i hFiz Fi+2l

po= ot TR R
Fiv2 ) Biio Ei2+2

JoR fte o . F

where i> 1 takes all odd values. Fdre [¢*, 7+ 1/9],

1+t jfte ¢4,7 ,
po= = e
3 if te[7,7+1/9].
. . . . v
In particularthere is a sequence wmdtional squarest < 8 with pu(t) = t,
with anaccumulatiorpoint at ¢*; we suspecthatat least someational squares
t > 9 can be dealt with by existingechniqueswhich by continuity of Y would

allow to compute%(t) for nonsquaret.

For anticanonicalX there exists a+ 1)-curveomputingu(t).This implies
thatp is piecewise linear nedr We describe gcountably infinite) family of
(-1)-curvesfrom which Theorem CTI.3 follows, and alstetermineplft) for
other small values df(see Figure 1lin red, the known behaviorpgt) for t < 9;
in yellow, the lower bound tfigure.1). We conjgcturethatthis list iscomplete.
If thatis indeed so, then iparticularo(t)= t for t > 8 + 1/36. Except for
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no

Figure \1: In red, the known behavior faft) for t =~ 9; in yellow, the lower
bound t.

9 cases, thg-1)-curvesof Section 5Supraminimakurvessection.5 are theame
unicuspidal curves which are known to give theymptoticallyextremal ratio
between degree anthultiplicity, as explained in Y. Orevkov's work [2@ee
also the overview15]).

In what follows we work over the field of complexumbers.

2 Preliminaries

We refer to the references O. Zariski-P. Samug| ¢hapterVIl. and Appendix
5.] and E. Casas—Alvero [&hapter8] for the general theory ofaluations and
complete ideals on surfaces. Let us now brieflgall the definitions andacts
needed for the definition df p and tltatemenbf the conjecture.

Let v be a rank 1aluatior (meaning thatthe value group is aordered
subgroup of R) on the field of functions F opeojective algebraic surfacSs.
For every effective divisor Dc S, denote v(D) the value of any equation of
D nU, where U is an affine chaiintersectingD.

Following [6], wedenote
Hkp(V)

Ho(v) = ma{v(D’)[D" € D]}, and pp(v) = lim =

For everynon-negativem € R, the idealsheaes
I, ={f €Os|v(f)>m}, and I;={f €Os|v(f)>m}

are calledvaluationideals. The closed subscheme definedyis anirreducide
denotes thevaluation

subvarietycalled center of thevaluation, center(v)If Ry

ring of v, the generipoint of the center is the image of the clogmint underthe



uniqgue map SpecR— S thatexists by the valuative criterion of properne$3f
course, all this continues to apply if wabstituteS by another projective rdel
S’ (i.e., a smooth projective surface with a fixedmorphism KS') = F).

If the center(v) is a curv€, then v is (up to &onstam c € R) the order of
vanishing alongC; thus, v(D)=c-ord: D =c-maxk|D - kC > 0}.

We are mostlyinterestedn valuationsof S = P? such thatthe center(v) is
a closed point. In this case the volume of v, efindd in [12], is

dime (Os/Im)

vol(v) = mlimo 2 /2

(note thatOs /I, is an artinian C-algebra supportedat the center of theal-
uation) and the volume of a divisor class D on a s@f& of dimension d is
defined (S, kD) as

ol(D) := limsup—=-—+=

vol(D) == limsup—, 77
Boucksom-HKironya-MacLean-Szelvergshowthatthe invariant fp can bebounded
in terms of values imrbitrarydimension; let us recall their result in the ca$e
surfaces:

Proposition2.1 ([6, Proposition 2.9]).Let D be a big divisor and v eeal
valuation centered at a pointepS. Then

Mp(V) = pvoI(D)/voI(v) .

When D is ample this isquivalert to the boug%fg(v) > D2/vol(v) . Val-

uations which satisfy the equality Froposition Proposition2.9]Def.2.1,
with D ¢ S =P? a line, will be calledminimal.

For the sake of simplicity we recall the noti@fi quasimonomial aluatiors
specializing to the case when=SP? and the center of v is the origin (0, ®)
A? = SpecC[x,y] ¢ P> = ProjC[X,Y,Z], with x = X/Z,y = Y/Z. In this
situation we write

Mg (V)
al

Definition 2.2. Given a serie§(x) € C[[x]] with £&(0) =0 and a reahumber
t>1,let

Ma(v) = max{v(f)|f € C[x,y],degf < d}, and h(v) = dllr?o

V(& 1 T) 1= ordy(f (x, §(x) +6xY)) ,

where the symbob is transcendentalver C.
Equivalently,expand f as alLaurert series

> . )

fx,y)= ax'(y-&x),
and put

V(E, t; T) == min{i + tj|a; =0} . (*)
Then f 7- V(& t; f) is a valuation which we denote ¥(t). Sud
valuationsare called monomial i = 0, and quasimonomialin general.
Slightly abusing languaget will be called thecharacteristicexponent of \{, t)
(even if it is an integer). For simplicity we alsvrite

HE D= Bb(VE 1) .



Remark 2.3. Thevaluationv(¢,t) depends only on thétc-th jet of &, so for
fixed t this series can be safely assumed to be a polafiorhowever, lateron
we'll let t vary for a fixedé&.

It is not difficult to see directly using=equation.2.1),and will be proved
using geometricconsiderationsn the next subsectiorthat vol(v(g, t)) = t~1.
The precisestatementf ConjectureBTI.2 is now:

Conjecture?2.4. For a sufficiently general choice ffand everyt > 8+ 1/36,
the valuation \{,t) is minimal.

Clusterof centersof a valuation

Next we introduce the geometrigtructures attachei valuationsv(g, t) which
allow us to studybig( t) and justify theconjecture.

Each waluatior with O-dimensional centenaturally determinea cluster of
centers, as follows. To begin with, let & center(v) in the projective surfac
Consider the blowup; : S, — S centered atipand let £ be thecorresponding
exceptional divisor. The center of v op ®ay be E or apoint p, € E; .

Iteratively blowing up the centersippp, ... of v either ends with a el
where the center of v is an exceptional divi&gy, in which case

v(f) = c-ordg, T

for someconstam ¢, and v is called a divisorialaluation,or this process goes
on indefinitely. For each center; pf v, general curveshrough p and smoth
at p have the same valug = v(E;).

Following [8,Chapterd], we call the sequence kK (p1, p2, - - . ), withweights
vi = V(E;j), a weighted cluster of points, which completelgterminew. Indeed,
for every effective divisor D c S,

X
v(D) = v -multy, B, @)

where 8) denotes propetransformat S;. The sum may be infinite, but for
valuationswith real rank 1, which are the ones we consillere, € can have
positive multiplicity at only a finite number of centers [8, 8.2].

Sometimes we shall sayhata divisor goeghroughan infinitely nearpoint
to meanthatits propertransformon the appropriatesurface goeshroughit.

Definition 2.5. With notationas above, given indices< i, the center pis
called proximate to;p(pi pj) if pi belongs to the propetransform of the
exceptional divisor ofjp Each pwith i > 0 is proximateto p;_; and to at
most one other centerj,g <i - 1; in this case p= [ nE;_1 and p is called
a satellite point. Apoint which is not asatellite point is calledfree

Remark 2.6. The irreducible components of ptioeal divisors can be com-
wted as propetransformsif the proximity relations arknown: E; = E; —
Pi  Pj Ei
Remark 2.7. For everyaluationv, and every center; guchthatv is not thedi-
visorial valuationassociated tojpequation(tClusterof centers of asaluationequation.2.2)



applied to D= E; gives rise to the so-called proximitgguality
x
Vi = Vi .
Pi  Pi

For effective divisors D on S, thiatersectionnumber ®©- [§ > 0 together
with remark 2.6Def.2.6 yield the proximitinequality

X
multy, (B5) > multy, (B;) .
Pi  Pj

Assume nowthatv = ordg_ is the divisorialvaluationwith cluster of ceters
K =(p1,...,R), while mg : Sx — S denotes the composition of the viblgps
of all points of K. Then, for every n+ O, the valuationideal sheafl,,, can be
describedas

Im = (mk)+(Osc (-MEg)) .

Remark 2.8. As soon ass1, the negativeintersectiommumber —-mEs-E5_; =

-m implies that all global sections 00s, (—mEs) vanish along€s_,;, and
therefore

Im = (mk).(Os (—MEs - Es_1)) = (nk)+(Osc (wEs-1 = (M - 1Ey)) .

This unloads a unit ahultiplicity from ps to ps—;. The finite process aub-
tractingall exceptional componeis thatare met negatively, (i.estartingfrom
a divisor ) = -m;E; - --- - mgEs and successively replacin®; by D; - £,
startingwith i = 0, wheneverD; - [§ < 0 for somej, until one obtains &;
suchthat O - § = 0 for all j) is classically called unloading the weightstbé
cluster. The final uniquelydeterminedsystem of weights msatisfies

X —_— . .
Dmn= - m; E; is nef relative tomk

(recall thata divisor is nef relative to a morphismh when it intersectsnomeg-
atively every curve mapping toint [24, 1.7.11])and

Im = (mk)+(Osc (Dm)) -

In this case, general sections Igf have multiplicity exactly m at p, and
no other singularity. More precisely, for any ample divisor class A 8, the
complete systenmkA + Dy,| for k 0 is base-point-frewere we denote A=
(nK)*iA)) and its general elements are smooth and maeh [§; transverselat
mj = o o Mi distinctpoints. Il\lgtethatrelative nefness dD, is equivalen
to the proximity inequalitym; > =~ o m;.

It follows using (tClusterof centers of azaluationequation.2.2) thahe val-
uation of an effective divisor D on S can bemputedas a localintersection
multiplicity

v(D) = 1p,(D, C)

where C is the image in S of a general eletm&#nkA + D).

The unloading procedurgust described also yields thillowing.



Lemma?2.9. Let v= ordg_ be the divisorial valuation whose cluster ceh-
teg>is K = (p1, ..., R) with weightsvi, and for every m> O denoteDny, =
- m;Ex3he unique nef divisor relative tox with I, = (7t ).(Os. (Dm)).
If m =k v2for some integer k, then im= kv; for all i.

Proof. It is clearthat - PrﬁiEi is nef relative tork because of theroximity
equalities from remark 2.7Def.2.7. Moreovercdugse every effective divisdd
satisfies the proximity inequalities, rifiult,, D < m; then mult,, D < m; for all
i, and by equation(fClusterof centers of a/aluationeqigtion.Z.Z)v(D) <m.
Arguing byinductionon s, one seethatI,, = (nk).(- mM;E). O

P
Remark 2.10. Write gnfor  vZ. Then, in the context of Zariski’'s theory of
factorizationsof complete ideals, lemma 2.9Def.2r@nslatesnto
Ikmo = I|l'(n0 )
and to the facthatI,,, is a simple complete ideal. For other valuesnobne
hasinstead
Ikmo+8 = I:%OI5 .

Non-divisorial valuationscan be consideredo be limits of divisorial valua-
tions and theirvaluationideals turn out to be complete as wekkterminedby
finitely many centers. The idedk, is then never a power d,, ratherthere
exists 3 > 0 suchthat

IK, ¢ Iy c IK

for all m and k. Such bounds actually holdgireater generality, namely for
Abhyankar valuation#n arbitrary dimension; see [12] by L. Ein, R.azarsfeld
and K. Smith

Lemma 2.11let v=ordg, be the divisorial valuation with cluster afrtters
K =(p1,...,m) and weights/j. Then

X -1
vol(v) = v2

P P
Proof. For m=k V2, dimc(Ox/Iy) = kvi(kv; +1)/2 by [8, 4.7]. O

Remark 2.12. It is proven by Cutkosky andnigas in [11, Corollary 1that
divisorial valuationson surfaces haveational volume under mildconditions.
On the other hand [22, Theorem 1.1] shdtvatthis is not the case ihigher
dimensions.

Consider the group of numerical equivalencass#s of R-divisors NSk ),
where Sk is the blowup at the cluster of centers of v. Oa#iscarational ray in
N1 (Sk) effective, if it isgeneratedy an effective class. The Mori coeE(Sc)
is the closure in N(Sk) of the setNE(S) of all effective rays, and it ithe
dual of the nef condNef(Sk) which is the closed cone described by all ragfs.

A (-1)-ray in N1 (Sk) is a ray generatedby a (-1)-curve,i.e., a smoth,
irreducible, rationalcurve C withC? = -1 (hence G« = -1, wherex denotes
the canonical class). Mori's Cone Theorem styat

NE() = NE(S)~ + Rn,



where NE(S«)< denotes the subset NE(S«) described by raygeneratedy
nonzero classesg suchthatn -« > 0 with « being the canonical clasand
x _
Rn = p € NE(SO)*.
pa(-1)-ray

Remark 2.13. In cases wWhéMiE(S¢) is a polyhedral coneProposition2.1[6,
Proposition2.9]Def.2. yjelds that b5 (v) is arationalnumber, and therefore v
can be minimal only it D2/ vol(v) isrational. In fact, all exampleié afivisorial
minimal valuationsincly ded here correspond tationalvalues of D2/ vol(v),
even fornonpolyhedral NE(3). For some examples of non-divisoriadinimal
valuationssee Remark 5.8Def.5,8; for these, vol(v) defingmadratic extension
of Q in which it is a square (i.e., vol(v) € Q(vol(v))).

Centersof a quasimonomial a&luation

Quasimonomial valuationgre exactly thevaluationswhose cluster oterters
consists of a few free points followed by satedljitewhich may be finite oinfinite

in number, but not infinitely manproximateto the same center. We willork
with very generalquasimonomial valuationsn P>. The genericitycondition
refers to the position of the free centers;witl be made precise belovafter
describing thecontinuity and semicontinuityproperties ofbu on the space of
guasimonomialaluations.

Remark 2.14. [8] The cluster K of centers of\tj can be easily describefilom
the continued fraction expansion
1
t=n +

N+ et

P
K consists of s= n; centers; it = n; then they all lie on the propdransform
of the germ

Fry=&x ,
otherwise the first n+1 lie onI" and the rest are satellitestartingfrom pn,+1
there are n+ 1 points proximateto py,,, the last of whichstartsa sequence
of i3 + 1 points proximateto p,,+n, and so on. If thecontinuedfraction is
finite, with r terms, then the lash, points (not n, + 1) are proximate to

Pn+--+n,—_;- The weights are; =1 for i =1,...,a, thenv; = t- n; for
i=m+1,...,8+n, and Vi =Vn+vnj_; — NjVny+ooany fOri=ng +---+
n+1,...,0+---+nji1.

If tis rational,there are only finitely many coefficientg,n.. n,, so K =
(P1, P2y - - -, R) is finite and thevaluationis divisorial. More precisely

V(E, t;T) = vg-orde_(T) .

The prime divisor componentf&; of E; on Sk can then be described as follows
(where §;, as in Remark 2.6Def.2.6, is the propgeansformin S of the blavup

of the point p;). Notethats=n; +...+n;; let 5 be the sum n+---+n;, so
s=s. The only i with(§)? = -1 isi=s, and in this casE; = Es. For eah
1<i<r-1,wehavel; =Eg -Eg+1- "~ Eg,,+1, SO(E5)2 = -2 - Nj+1;



fori=r-1wehavels, , =Es_,-Es ,+1-----Es, so(Bs,_,)2=-1-n;
and for every X j < s not in the sefsy,... s} we havel§ = Ej - Ej+1, SO
() =-2.

If tis irrational, then the sequence of centers is infinite &mel group of
values hagationalrank 2. There is no surfack, but denotingS; the blavup
of the firstj points of K, the abovelescriptionof the divisors; holdswheneer
it makes sense; for instanc&s, = Eg — Eg+1 - - = Eg,,+1 in every S with
j 2 s+ 1.

Corollary 2.15.Let v(,t) be aquasimonomialaluation as aboveThen

V_
vol(v(g, ) = t71, W&t =>d t,
and

t \/1
pE. v < 1.

so VE,t) is minimal wheneveh(E,t) = t.

Proof. The onlypoint that needs proving is the value of volyf)), which
follows from Lemma 2.11Def.2.11, taking intccour the valuesv; computed
above and usingnductionon the number of terms in theontinuedfraction of
t. D

The spacef valuations

Remark 2.16. In definition 2.2Def.2.2 one may wlimrmal serie€(x) = PJ-Zla,-xﬁj
whose exponent$; form an arbitraryincreasing sequence adtional numbers,
and one still obtainsvaluationsv(g,t) (no longerquasimonomial).lt is ewven
possible to allomt = oo, excet when ¢ is the (convergent)Puiseux series of
a branch of curve gointhroughthe center p In this way, all real valations
with center at p are obtained(up to a normalizingconstan factor, see [8, 8.2]
or [14,Chapter 4)).

The mostnaturaltopology in the sef of all real valuationswith center at p
is the coarsest sudinatfor all f e F, v7— v(f) is a continuous map — R.
It is called the weak topology. For a fixeéd the mapt 7— v(&, t) is then
continuous.There is inT a finer topology ofinterest: namely, the finest
topology suchthatt7— v(&,t) is continuous for alE. It is called thestrong
topology. With the strong topologyl is a profinite R-tree, rooted at the p
-adic valuation (see [14] for precise definitions and proofs).To avoid
confusion with branches of curve, we call atte branches i . Maximal
arcs are homeomorphicto the interval [1, o] (respectively [1, o)) and
parameterizedoy t 7— v(§, t) where £ is not (respectively,is) the Puiseux
series of a branch of curve at.p

The arcs oflf share the obvious segments given by cointidets, and
separateat rational values oft; these correspond to divisori@aluations (also
in this generalcase).

Proposition 2.17Fix a real numbert > 1 and anatural number d. Set
k = dte and denote by, c C[[X]] the space of (k 1)-jets of power series with
£(0) = 0, epdowed with the Zariski topology coming fraiime coefficientsmap
Je =2 A axi 7o (@, ..., —1).

a
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Then the functiont 7— pq(&, t) descends to an uppsemicontinuous function
Jk - hl,tiQ cR
which takes on only finitely manyalues.

It follows that for fixed t, p(&, t) takes its smallest value fdr with very
general jett,_, (i.e., in a coutable intersectionof Zariski-opensubsés of J, =
Ak—l)_

Proof. Because only the k free centers &, t) depend org (k = n; in the
continuedfraction expansion if is an integer and k n; + 1 otherwise), it is
clear thatthe valuationonly depends on the (k1)-th jet of, and theexistence
of the function

Jk - hl,tiQ cR

is clear. We will provethatit only takes on a finite nhumber of values ativht
for fixed m, the preimage d¢Mm, o) is Zariski-closed.

Given fixedt and d, there existsn g € hl, tig such that f € C[x,y],
v(E tf) > myg implies f € (x, y)®*?T independentlyon & (by unloading, or
using the definition(»equation.2.1)).Thus

Hd (€, 1) <megq

for all &.

Similarly, there existd;q suchthatno f € C[x,ylq has a propertransform
going throughany center pof v(&,t) with i > iy q. Therefore for everyf €
ClX, ylg , the wvalue W, t; f ) belongs to the (finite set

) 0
NA

O NVIj n [1lmt,d) y
i=1

and the W(,t) belong to thisset.

Now let V be the C-subspace 6f0, x, x!] consisting of polynomials Rvith
deg (P ) < d and deg(P ) < mq. The space/ is obviously finite-dimensional,
V = CN after taking the basis given gonomials.

Consider the composition of theubstitution map

Ji x Clx,yla = CI6llx, X' ,

given by €, ) 7— f(x, &(X) +0xY), with truncationC[0][[x, x!]] —» V, seenas
analgebraic morphism df-schemes
For each value m, the ‘incidenceubset

{(éyf) EJk X C[Xay]d|V(§yt.f) 2 m}

is by definition the preimage of the Zariski-addsset

{n eV | ordi(n(x)) = m}

hence Zariski-closed. It is also closed underlascanultiplication on the second
componentso it determines closed subsel, ¢ Jyx x P(C[X, Y]q)-

The locus inJy where 14(&,t) > m is the projection ofy, to Jy, therefore
it is Zariski-closed. O
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Proposition 2.18For every&(x), the functiont 7= p(E, t) (for t € [1, o))
is
Lipschitz continuous with Lipschitzonstant 1.
Proof. For everyf € C[x, y], the function t 7— v(§, t; f) is a tropical
polynomial function of degree at mostdeqf ). Therefore, the scaled
function ps : t 7- v(§,t; )/ dedf) is continuous concave and piecewise affine
linear with slopesn
{0,1/ dedf), 2/ dedf), . .. ,1} (compare with [5, Corollary C]). Iparticular,it
is Lipschitz continuous with Lipschitzonstarnt at most 1.

The functiont 7—-._lu(E, t) in the claim issup ¢, v {H¢}; therefore it is also

Lipschitz continuouswith  Lipschitzonstah at most 1 (and it is not harab
seethatit is actually equal tdl). O

Remark 2.19. We proved iRroposition2.17Def.2.17that for a fixed t, very
M(E, t) which we denotein(t).

By the countabilityof the rationalnumber field, it followshatvery general
seriesg(x) give the same (minimal) functiob §4¢) of t € Q. Continuity of the
functions ug, t) then implythatvery generalseries give the same functioaver
all of R, and also thdollowing:

Corollary 2.20.The functiont 7—.u(t) is Lipschitz continuous with
Lipschitzconstant 1.

It is immediate to extend the definition wfand u to the tree afl
valuationscentered at p . Theontinuity propertiesf the resulting function
g :T - R —which we shall not need— are summarized asvd

Theorem 2.21The functionbu T - R is lowsemicontinuoudor the weak
topology and continuous fahe stiong topology.

Proof. As in the proof of propositon 2.18Def.2.1& all f € C[x, y], let pug(v) =
v(f)/ degf). By definition of the weak topologyls is continuous for allf.
Then, (V) = SUR cqix,y1 {Hf (V)}, as the supremumof a family of cominuous
functions, is lower seimontinuous.

In order to provecontinuity for the strong topology, one needs to vgho
continuity along all arcs in the profinite trek. It is not hard to sethat (with
minor changes) the proof @iropositon2.18Def.2.18 works for serie§ with
rationalexponents as in Remark 2.16Def.2.16, showingdibsired cotinuity.

Alternatively, given a strongneighbourhoodJ of a givenvaluationvg, there
is a model of the plane in which everyeW is quasimonomial Then Proposition
2.18Def.2.18 showshat o is continuous irJ. O

The next claim will show the first analogy to Némja conjecture.

Proposition 2.22If t is the square of an integer, then a very gengualsi-
monomial valuation \, t) is minimal.

Proof. For integral values of the cluster of centers of§) consists ofthe
first t points infinitely near to the origin alongpet branch y= &(x), and for
each integer n=qt+r (with 0<r <t)

Im= (mk)«(Osc (-q(E1+ -+ E) - (E1+---+E))) .
12



\/,
For d> 0 and very generat, we wart t\o[provethat Mg(€,t) < d tor, in

other words,that for every integer m> d t,the valuationideal I, has no
sections of degred:

HO(Os. (AL - q(Es +++++ E)) = (Ex+ -+ E) =0,

where L denotes the pullback of a line 3. By semicontinuity (Proposi-
tion 2.17Def.2.17) it will be enough to gee thig &oparticularchoice ofg, e.g.,
an irreducible polynomial of degree=a t. But the propertransformon Sk
of the projectivizedcurve

D:YZz&1=273(X/2)

defined by¢ is then an irreducible curve sélf-intersectiorzero, therefore nef,
and

v_
D-(L-qE ++E) - (E1+---+E)) =d t-m<0. O

3 Anticanonical surfaces

This section contains a completiescriptionof the Mori cone ofS¢ for v =
v(§,t) with t < 7 (see Theorem 3.4Def.3.4 aRfoposition3.6Def.3.6), and
substantial informatiofor t =7 + n—i , b € N (seeProposition3.8Def.3.8and
Corollary 3.11Def.3.11). In these cases tlaional surface Sk obtainedby
blowing up the cluster of centers ofvaluationv on the plane isnti@anoni-
cal, meaning it has an effectiemticanonicaldivisor. Under thishypothesis,
adjunctionbecomes a very powerful tool to study the geometfysy .
We begin by justifyingthat & is anticanonicain thesecases.

Proposition3.1. Let v§,t) be a divisorial guasimonomialaluation (sot is
rational), and Sk the blowup of its cluster ofenters.let A = [1,7]u {7 +

Atnen U {9} C R.
1. If t € A, then Sk is antianonial.
2. If S is anticanonicaffor very generalé, thent € A.

Proof. The question is whether thaticanonicaklass-x = 3L - PEi on Sk
(where L denotes the pullback of a line) has eomzglobalsections.

Supposet is an integer. Then K consists tofree points; ift < 9, there is
a cubic goingthroughthem all, so-« is effective. On the other hand, fan
integer t > 9, there is no such plane cubic for general KusTll) and (2hold
when t is an integer.

Now supposd = n; + n—; is anonintegralrational. Then K = (py, . .. ,Pni+n »)
has n + 1 free centers and,n- 1> 0 satellites, all of thenproximateto pp,;
s0 B, = En, - En,+1 — -* = En,+n,- A simple unloadingcomputation (see
Remark 2.8Def.2.8 and 2.14Def.2.14) then>2htiwst

H°(Os. (—1)) H°Os (3L - Ei))
HO(Os. (3L - 2E; — (Ep+ -+ + En,))

IR
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(the divisorsﬁnl, Enl_l, N = intersectnegatively and have beaubtracted).
Consequently, 3 is anticanonicalkexactly when there exists a cubic singuér
p: and goingthroughthe free points p ...,pn,. (If N1 > 1 then both pand
ps; are free, so if the cubic is irreducible &mgularityis a node.) For n< 7,
there is always such a cubic, so (1) holds, wfalea general choice of the free
points we must have;n< 7, so (2)holds.

If the continuedfraction fort has more than 2 coefficients,m,, ... ,n., the
corresponding unloadingomputationconsists insubtractingfor i = r-1,r —
2, Sy 1, the diViSOf£n1+...+ni, En1+...+ni_1, .. .Enl+...+ni —1+1, and Ieadao

H%Os. (3L - 2E; - (Ex+ ---+ En,+1)), S0Sk is anticanonicakxactly when
and goingthroughthe free points p -

there exists a cubic singular af p

Pn,+1. Such a cubic always exists if & 6, so (1) holds, and for general

choice of the fregoints, we must have n+1 < 7, so (2)holds. O

The next lemma is needed for the proofPobposition 3.6Def.3.6.

Lemma3.2. Let v§,t) be a divisorialguasimonomiaklaluation (sot is ratio-
nal), andSx the blowup of its cluster afenters.Let B =[1, 3]u {3+ln}n a Y
{4,5} c R.

1. IfteB, then -« - L is effective onS«.
2. If -x - L is effective onSk for very generalé, thent € B.

Proof. The proof is similar to the one fBroposition3.1Def.3.1. Theinteger
cases are well known and easy to see.
Next sayt =n; + o is a nonintegral rational.Then ¢x - L) - &, < 0O,
1

so unloading (as in the proof Biroposition3.1Def.3.1) gives H(Os, (-x —
L)) 2 HPOs(-x - L - B,)) 2H%Os, (2L - 2E; - (Ex+---+ En,)) . The
class of the propetransformof the linethroughp; in the direction of pis
E=L-E -----E forsome 2< i < n +1. Thus (2L- 2E; - (Ex +
.-+ Ep,)) - B <0. Therefore, if p < 3, subtractinge and unloading wdave
H%Os. (2L - 2E; - (Ex+ -+ Ep)))) 2H%Os, (L - E; - E)) =0. Thus
(1) holds for sucht, while for a general choice of the free points mest have
< 3, so (2) holds for such.

Finally, if the continuedfraction fort has more than 2 coefficients, the cor-
responding unloadingomputatiorieads to H(Os, (-x - L)) =H%Os, (2L -
2E; - (Ex+---+En,;+1)) . Again® =L -E; ----- E forsome 2< i < n; +1,
sosubtractmi and unloadmg gives MOs, (2L - 2E; - (Ex+---+En,+1)))

H%Os (L - E; - - - En,+2-1)). The latteris clearly nonzero ifh; < 3, so
(1) holds, and for a general choice of the foeints, we must have;n< 2, 89
(2) holds.

Remark 3.3. Notdghatif t < 7, th K has at most 7 free centers, so thgre
always a divisorf in |3L - 2E; - Ei|. For generak, pi, p2, p3 are

i>1,p; free
not aligned and ..., do not belong to a conic, $can be assumed toe

the propertransformof an irreducible nodal cubic, andT'x = €+ [ on Sk

is a particular anticanonicalivisor which contains all exceptionalompgagts
(independenthyof t). For nongenerak, £ may be reducible, buFk = €+ £

still determinesan effectiveanticanonicalivisor which contains akxceptional
componets.
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Theorem3.4. Let v§,t) be a divisorial quasimonomialaluation witht < 7,
and S¢ the blowup of its cluster aofenters. Let s be the number oEders.
Then the number df1)-curvesother thanEs= E; is at most s, andNE(S«)

is a polyhedral cone, spanned by the classetheo, £ and the(-1)-curves,
whereT" is a nodal cubic asbove.

Proof. LetI'k be an effectiveanticanonicaldivisor I(_;pntaining all exeptional
components;; for general¢ we can writel'x = £ + &, wherel is anodal

cubic. Particularcases in which the cubic is reducible #&reated similarly
and we leave the details to the reader. Vd@mcthatevery irreducible curve
C c Sk which is not acomponen of I'k lies in NE(S¢<) . Indeed, C ighe
proper transformof a curve nk (C) c P?; if nx (C) does not gahrough the
origin pp of K, then Cintersectsf and so

C-x=-(C-(Tk)) =-(C-§) <O0.
Otherwise, Cintersectssomelg and so
C-x=-(C-(I'k) <-(C-B)<o0.

Thus by Mori’s cone theoremNE(S«) is generatedy the rays spanned lfpe
components ofx and the(-1)-curves,so it only remains to bound thaumber
of (—1)-cunes.

But a(-1)-curveC satisfies Gk = -1, so if it is not acompgonen of I'k,
it must intersectit in exactly onecori}ponent.Write C=dL- mE. IfC
meets _only, it must satisfym; = N Ir:n:’. (ie.,, C-§ =0) for all j =Kk,
me =, , Mitl(e, CE =1)and3d- m;=1(i.e, CI'kx =1). These
are s+ 1 linearly independert conditions which uniquelydeterminethe class of
C; so there is at most orfe 1)-curvemeeting E;. On the other hand, €annot
meet onlyf, because then & =g for allj, which impliesm; = C-E; =0 for
all j, and hence £EC-I'k =3d- m;=3d. Thus the number ¢%1)-cunes
not components dfk is at mosts. O

Remark 3.5. Along the way we provébatthere are finitely many curvesith
negative selfintersectign, when< 7. Indeed, if C is such a curve, and it is @ot
componehof 'k = B+ [ then C-x < 0, which implies 0> C?+C-x = 2g-2,
so C is arationalcurve and in fact §—1)-curve,of which there are at most

For t € B, one can be a bit more precise: not only i hegativecurves
generate the Mori cone over R, they generde monoid of effective classes
(over N).

Proposition3.6. Let v§,t) be a divisorial quasimonomialaluation witht
B, t > 1, and Sk the blowup of its cluster ofenters. Let s be the nundr

of centers. Then the monoid in P8 = ZsS*1 of the effective classes has
minimal (finite) set ofgeneratorsonsisting of the classes of ti®, the (-1)-
curves, and the components -of - L meeting —-x - L negatively.

Proof. Thanks to Lemma 3.2Def.3.2, we can apfly, Proposition ILii.1]. O
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Remark 3.7. A similar result holds for any diviial quasimonomial &luation

v(,t) whent = 4+ rﬁ , namely the effective monoid in P8x is generated

by §,i=1,...,s=n; +np, and the propetransform® of L - E; - E>
(and Q=2L-E; -----E if Eg=L - E; - E, i.e., if i does notbelong
to the linethroughp; in the direction of p). We sketch theargumet in case
By =L - E - E,. Take the basis ... ,Ds for the divisor class group of
Sk, satisfying D; - § = §;;, whered;; is Kronecker's delta, henc&; = 0
fori =jand 1ifi=j. (Thus D; is just the basis dual t&, specifically:
DO =L, Dl =L—E1, Dz =2L—E1—E2, D3 =2L—E1—E2—E3,
D4 =2L—E1—E2—E3—E4,D5 =Q=2L—E1—E2—E3—E4—E5,
D6 =4L - 2E1 —2E2 —2E3 —2E4 - E5 - EG, D7 =6L—3E]_ —3E2 —3E3 -
3E; —-Es—Eg-E7, Dg = 8L-4E,-4E,-4E3;-4E,-E5—E¢—-E;—Eg, and swon,
so for 4<i < s-4 we haveDj.4 = 2iL —iE; =i, —-iEz3—iE4—Es—. ..—Eji+4.)
Every prime divisor D not among th€ is (D - §)D;, hence it sufficeso
check the divisord;j. It is easy to write down the classBs explicitly and then
to checkthateachD; is a nonnegativentegral sum of classel§;, j > 0, when

i <5, and anonnegativeintegral sum of the classes Q af, j > 1, when

i > 5. (Essentiallythe sameargumem works whenE; =L - E; - --- - E for
| > 2, except the result that O is a nonnegativantegral sum of the classes
5.,j = 0, for all i. In this case we notthatQ-E; < 0 so Q is no longeprime,

and B, - E; having to benonnegativeforces I< 5.)

In fact, we can showhata similar result holds for = n; + n—t also forn =5
and 6, namelythatthere are only finitely many prime divisors ofgative self-
intersectionon S, and they generate the effective monoid. Pieof ismore
involved, however, since, forn=5, Dg = 2L - E; — --- — Eg need notbe
effective but it could be and if it is, it may tbunight not be a primedivisor.
Likewise, for n = 6, additionalcases arise: 3k 2E; - E; - --- - E7 and
5L - 2E; - --- - 2Es - E7 - Eg are effective but may amight not beprime,
and 2L- E; - ---- Eg and 2L- E; - --- - Ez may ormight not be effective.
Nonetheless, the proof follows similar lines @ach of the several cases, find
an explicit finite set of generators for the effee monoid, and then shoeadh
generatoris a sum of negative curves). Because checkivgg various cases is
somewhat lengthy, we do not include the prbefe.

For 7< t <8, it is not clear which values bfQive polyhedral Mori conedyut
C. Galindo and FMonserrat[16] give some positive results in theontext. In
particular,their Corollary 5, (1) showthatfort = 7+1/n, with n, =1, 2...,8,
NE(S¢) is polyhedral. We show this result is shamp,the sensdéhat NE(%)
is not polyhedral for n > 8, provided that& is very general (se€orollary
3.11Def.3.11). On the other hand, parts 48§ (3) of [16, Corollary 5are
sharpenedby Theorem 3.4Def.3.4bove.

In preparationfor proving Corollary 3.11Def.3.11, we first gve aresult
concerning prime divisors C witlt? < —1.

Proposition3.8. Let v, t) be a very general divisorial quasimonomial valu-
ation witht =7+ 1/n, for n, > 1, and letS¢ be the blowup of its cluster of
centers.The only prime divisors C irBx with C2 < -2 are components ohe
exceptional divisorsg;.

Proof. As before, lel" be a nodal cubic curve which has its node at dhgin
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and Fgoesthrough six additional free centers, #...,p € K. ThenI'x =
£+ _; E on S is the umque effectlvanucanonlcal divisor.

By adjunctionwe haveC? +«s, -C =2g- 2, soC? < -2 impliesT'x -C < 0,
hence C is @omponeh of I'k . Computingthe self-intersectiorof each ofthem
showsthatthe only possibility is C= B = E; - Eg — --- — Es where agains
is the total number of blowups ar@f = -1 - n,.

By adjunctionagain, ifC? = -2, then C igationaland ks, -C =0, i.e.,it

2)-curve. Thus the question is wh@at2)-curves can occur 08x. The
exceptional component&; for i = 7,s are(-2)-curves. Now assumethat C
is not one of them. Thefrx -C =0 implies C-&§ =0fori=0,...,7,and
C-BE=x>0fori>7.

Write C=dL - mE; - --- - mgEs. The constrain C-E;, =0 gives m =
mg + ---+ Mms. The constraintsC - §, =0 fori=1,...,6 give m=---=my.
Taking m=my, C-€ =0 gives 3d=7m+mg +--- + ms= 8m, so d=8m/3.
Note thatd is aninteger.

Consider the casthatn, = 1. Then-2 = C? = (8m/3Y - 8m? = —8m?2/9.
This has no integer solutions, so noefists.

Next consider the cagdatn, = 2, so s= 9. The possible solutions ©
C2=-2, C-xs. =0 with C-L > 0 are known (see the second half of fireof

EJ)_ i,ng,iZj,

9, i,j, k distinct, r = 0;

(2L - Ei, - --- - E) - rkg with 1< ij < 9, ij distinctfor 1< j < 6, r 2 0;
and BL- 2E, - Ej, - --- - Ej) - rxg,, 1<ij < 9,i; distinctfor 1< j < 8

r > 0. An exhaustivecheck showghat each of these divisorgtersects some
exceptional componeh or I' negatively, and thus is either itseltamponen of
an exceptional curve, or is not reducediroeducible.

Now consider the casthatn, > 3, so s> 10, and we can write G=
dL—m(E1+- . -+E7)—m8Eg —-—mgEs = (8m/3)L m(E1+ +E7) mgEg —
--—mgEs. Let m=3b, so C= 8bL 3b(E1+- - -+E7)—mgEg —-- - —mgEs. Then
Ik -C =0 gives3b-mg - ---—mg= 0 andC? = -2 gives B - m2 cee— M=
—-2. Numerical considerationso longer suffice; there are many solutiotts
3b-mg-----mg=0and B-mg—---- - m23= -2. For example, whave
C =8L - 3(E1+ cee E7) - Eg - E9 - Ejo (i.e., s=10,np =3, b=1, and
mg = Mg = myp = 1). The following lemma however showlsat such Ccan
not be the class of a prime divisor, and finishwes groof. O

Lemma3.9. LetSk be as inProposition3.8Def.3.8. Then there is mrime
divisor C onSk with C - ks, =0 other thanE; for i =7.

Proof. By the end of the proof &froposition3.8Def.3.8, if such a C existg
must be C=dL - m(E1+ ---+ E7) - mgEg - --- - mgEs, where d= 8m/3,
m=3b=mg +---+ mgfor some b, and gpn> --- > mg> 0. The divisor class
8L - 3(E1+ --- +E7) is effective and baspoint free, and has irreduciblglobal
sections; in fact it is the class of a homadbidhet, sedProposition 5.4Def.5.4
below. Inparticularit is nef. Pick an irreducible B |8L - 3(E1+ --- + E7)|.
Since B-8 =B -I§ =0 for i <7, we seeB|r, is a divisor which vanishesn
each componen §, i < 7 of 'k, and consists of a divisdB’ of degree 3on
the interior ofcomponen ;. SinceE;|r, = Es|r, for i > 8 and E; is disjoint
from 5 for i > 8 andj <7, we se—mgEg - - - - - msEs)|r, is a divisor whi
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is trivial on eachcomponeh of I'x except E;, and onE; it gives the divisor
(mg +---+mg)pg = mpg = 3bpg. Thus Or, (C) isthesame ar,. (bB’ - 3bps).
Consider therestrictionexact sequence

0—- Og(C-Tk) = Og (C)- Or(C)— 0.

Then, since C is bgssumptiora prime divisor, we have®iSk, Os, (C -Tk)) <
h° (Os« (C)), which by taking cohomology of the sharxact sequence implies
h°(Or (bB’ - 3bpg)) > 0. But dedbB’ - 3bpg) = 0 so R(Or_ (bB’- 3bpg)) >0
implies bB - 3bps ~ 0 (where ~ denotes linear equivalenc&. Since the cB&s
is fixed of positive degree butgfis very general, this would implthat3b(p- q)
for every pair of interior points p,q E;, contradictingthe factthatthe idertity
componen of Pic(T'k) is isomorphic to thenultiplicative group C of theground
field (and so not every elemers a torsion element). Thus there is no spdme
divisor C. O

Remark 3.10. When 8 s < 15, it is enough for pto be a generalrather than
very general,point of B in order to concludeghat & has no(-2)-curvesother
than those arising as components of the eixo®dt loci of the points bilen
up. To see this, consider a prime divisorcCS¢ suchthat Kg, - C = 0 and

C-L>0. Write C~ dL-m;E; —---—mgEs. Then, as above, € dL-m(E;+
c+-+E7) - mgEg - -++ - MsEg = b(8L - 3(Ex+ -+ +E7)) - mgEg — - - MsEs
and m=mg + ---+ Mg, SO
2
— 2 2 2 2 2 m _,25=16
-2=C“=b°"-mg-----mg< b - (5_7)2(5—7)—b o7

hence for 8 s < 15 wehave

2 _ 23_14
o =8’ <8 .
Thus for 8< s < 15 we have #i< 128, so d< 11.

l.e., for 8< s < 15 we seghatd is bounded (i.e., €L < 11) and hence
thatthere are only finitely many possible2)-classesC. Since it is only for
these classethatwe must avoidC|_k, = 0 in order for C not to beffective,
it is enough for pto be general, in order to knothatevery 2)-class isa
componen of the exceptional locus of a blowp.

Corollary 3.11.Let v(,t) be a very general divisoriafjluasimonomial valua-
tion witht =7 +1/n, for n, > 1, and letSk be the blowup of its cluster of
centers. Then NE(S¢) is a cone with at most countably many exaéemays,
spanned by the classes of ti&, £ and the(-1)-curves,whereT is a nodal
cubic as above. Moreover, whep » 8, there are infinitely many—1)-curves.

Proof. Because of Mori's theorellg, and becaasery divisor C inNE(S«)=
either is acomponenhofI'k = € + i7:1 [E or satisfies CT'k = 0, it isenough
by Proposition3.8Def.3.8 to showthatthe only prime divisors with CT'x =0
are the(-2)-curvesof the form[E;. But this follows from Lemma 3.9Def.3.9.

There will indeed be infinitely many extremal sawhen a > 9, becausdn
this situationthere are infinitely many-1)-curves C Briefly, we reduce tdhe
casethat & is the blow up of a cluster of 9 infinitely neaoipts comingfrom
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blowing up 9 times at a very genenabint of a nodal cubic. In thisituation,
the only restrictionsfor a divisor C withC? = C -k = -1 to be a(-1)-cune
follow from the proximity inequalities,which imposerestrictionsonly to the
monotonicity of the multiplicities of C at the centers of the bVaps.

In more detail, apply the degree 8 Cremona mbgpiven by|8L — 3(E; +
---+E7)| (seeProposition5.4Def.5.4), which map$Sg to P2, mapping E to a
nodal cubicI and representing 3 as a blowup of P of two clusters ofoints.
One is a cluster of 7 points},p. ., on I'" infinitely near the node, anthe
other is a cluster of,npoints ;5 .oy Br+n, On IV infinitely near @, which isa
very generalpoint of I'. If n, > 9, the blowup of § ..., B gives asurface
S with infinitely many (-1)-curves. Blowing up the remaining point$ goes
not affect this, since none of the remaining pidtcan be on any of thé- 1)-
curves on S. (This is because the generality(&§t) causes every—1)-cure
on S exceptEls to meet the propetransformf at points not infinitelynear
to either ﬂ)and ;%; For the factthatS has infinitely many(-1)-curves, using
the notationof Remark 3.12Def.3.12, notdhatthere are infinitely many classes
C =dL'-mgE}----—mygE}s with C? = Cxs = -1 suchthatmg > --- > myg,
where ks is the canonical class of S. In fact it is notchdo sedahatall C with
C? = Cks = -1 are precisely the classes=€E}g + N +N—22K3 where N isan
arbitrary class satisfying Nxs =0 and N-E}s = 0, hence N is anynteger
linear combinationof L’ - E} - E'y- E' |, = E' 4 E)}, ... B}, = E'),~ El..
Clearly there are not only infinitely many su€hbut also infinitely many also
satisfying ng > --- > myg. Any divisor D on S with Dkxs = 0 is by linear
algebra an integer linearombinationof L' - E} - Elg- E! 1B ,5..B)s. If D
is in addition a prime divisor but not one o&tE) nor —«s, then D is inthe
kernel of the functorialhomomorphisnm : Pic(S) — Pic(®), but theexpression
of D as a linearcombinationof L’ - E} - E'g— E' ;o€ ,5. . s must involve
L'~ EL - E%- EJo, which impliesthatthe image of.'- E}- E's- EYc underz has
finite order, contradictingthe cluster %) . gmz being very general. Thuthe
only prime divisors satisfying Bxs =0 are}, .. .IE)s and —«ks. It now follows
by [23, Proposition3.3] thatevery class G= dL' - mgEg - --- — mygElg with
C2 =Cxs = -1 suchthatmg > --- > my; is the class of §—1)-curwe.) ]

Remark 3.12. Here we explain the action®gf used in the proof aCorollary
3.11Def.3.11, in terms of the components of BVith s = 7+n,, the componets
areBy =E -E, B =E -E3,Bs=E3 -E, B4=E; - Es, B =E5 - Es,
Bs=Es-E;, By =E;-Eg—---Es,Bs=Eg-Ey,... Bs.1 = Es.1—Esand
E; = Es. Applying ®g is equivalert to blowing down the(—-1)-curve3L - 2E; —
E> - --- - E7, followed by E;, &, E;3, B, Es5, and [E;. Under this blowdown,
B, maps to a nodal cubi€’ whose node is the image of tli@ntractedcurves,
while Es, Bs_1,--- , Bg contracto a smoothpoint on this cubic. Reversinthis
blow down gives a blow up of?Pat two clusters of points, the firstp .., 8,
and the secondp..., where §,ps € P2 and all of the points are frdsut
lie on the propertransformof C'. In terms of the exceptional divisoE] of
the centers pwe have®] = E",- Eb = Es - E7, B}, = E!,- E} = Es - Eg,
§=_E3°0— E£0=_E4 - Es, E;i:OlE{’— B =B - B, Bl=E)-E =E, - Es,
G_EG_E7 =E - B, E7 = 7—3L—2E1—E2—"‘—E7, and also
B =Ey -EJ =Eg - Ey,...B , =E., ,- El= Es_1 - Es and E! = Ex.
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We also havel! = 8L - 3E; - ----3E,, and B, = E; - Eg - --- - Eg =
3L0 - 2E] - E%y- --- - EL

4 A variationon Nagata’s conjecture

In this section we elaborate on the close analwgi Nagata'sconjecture.
Let K be a finite union of finite weighted cless on P, and assumehat
the proximity inequalities >
mp > myq
qap
are satisfied, with the sum taken over all poigts K proximateto p.
Then 0 O 00

X
Hkm=m 10, "= mpE, L
peK

is an ideal sheaf on2For which
d+ 1)d+2) X m, (m+
R (Hi ) = (FEE2L 7 e (e
' 2 1)
peK 2

ford 0, and its general member defines a degree d awitve multiplicity m,
at each peK.

It is expeded that, if K is suitably general, then the dimensiaourt is
correct as soon as it givesnannegative value:

Conjecture4.l (Greuel-Lossen-Shustifl3, Conjecture 6.3]).Let K be a fi-
nite union of weighted clusters on the plane, Batig the proximity inequalities,
and Hg m the correspondingdeal sheaf. Assume that K is general amaiig
clusters with the same proximities, and let daheinteger which is largethan

the sum of the three biggest multiplicities of m. Then
0 o
(d+1d+2) X
W (Hie m(@) =max o, @+ 1d+2)_~~mp M+ 1
' 0 2 bek 2 0

Proposition4.2. If the Greuel-Lossen-Shustin conjecturelds, thenvVt > 9 a
very generalquasimonomialaluation v§,t) is minimal.

Proof. By continuity of f(t), it is enough to considerationalt > 9. Let
K = (p1,...,R) be thesequenc of centers, with weights (v ,...sVv )For
each integer k= 0, set m F kt/vs. We shall provethatthere is a sequence
of integers g with my >d¢ tand limi—.. m¢/dx = tsuchthatif & is very
general, then the&aluationidea) Im, has no sections of degree d. It will follow
thatp(, t) < limg_. m¢/d < tand v, t) is minimal.

By Lemma 2.9Def.2.9, the idedl,, = (@mk).(Os.(- miE)) is sim-
ple and the three largeshultiplicities are m = m, = m3 = k/vs. Hence
m; +my + mg = 3k/vs < tk/vs. Without loss of generality we magps-
sume thatk is large enoughthatthere exist integersyd< my/ t which also
satisfy ¢ > my; +m, +ms. In this case the hypothesis in conjectérd Greuel-
Lossen-Shustin[13, Conjecture6.3]Def.4.1 is satisfied and®Hk m(dk)) =
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P_ _
max {0, (dx +1)(dk +2)/2- m;(m; +1)/2}. By way ofc?__n,tradiction, as-
sumeln, has sections of degtee.diggen (d +1)(dc +2)/2 > pmi(m; +1)/2,

which together with d<my/ t= rT1i2 implies 3¢ +2> m; = 10m; >
kt/vs = m k a coftradiction. L

With this in mind, we propose th®llowing:

Conjecture4.3 (Nagata’sConjecturefor quasimonomial valuations)-or all
t =9, we havep(t)= t.

Propositiord.4. Conjecturet.3Nagata’'sConjecturefor quasimonomialvaluationsDef.4.3
implies Nagata’'s anjecture.

Proof. Lett > 9 be a nonsquare integer. By a “collision denft [20] and
semicontinuity,Nagata’s conjecture fadr points would follow by showinghat,
for a very generak(x) € C[[x]], and for every couple of integers d,with
0 <d< m t,the ideal(xt,y - £(xX))™ n C[x,y] has ng nonzero elemem
degree d. But this is an immediate consequengb(bf= t. O

In view of the computationsn next section, we expethatin fact therange
of t for which fa(t) = tis larger, se€onjecture 5.11Def.5.11.

5 Supraminimal cures

If some valuationv is not minimal, this is due to the existenof a curveC
(which may be taken irreducible and reduced)hwirger valuationthan what
one would expect from the degree. These cumwiisbe called supraminimal
and are the subject of this section. For simiglicive fix p = (0, 0) € A2 c P?
as before.

Lemmab5.1. If there is an irreducible polynomitle C[x,y] with

) 1
v(E, t;f) > pmdegﬁ) ,
then v§, t; f) = u(, t) deqf).

Moreover, ifpE,t) > \/m then there is such an irreducible polyno-

mial f.
In the case above we salpatf computesp(g, t).

Proof. By continuity of P, t) as a function of, it is enough to considethe
caset € Q. Let v=yv(§,1).

Let f be as in the claim, and d degf. It will be enough to provehat, for
every polynomial g with degree e and vigw > *v-v‘;ﬁ), f divides g.Choose

an integer k suclthatkw € N is an integer multiple df and consider thédeal
I = {h € C[x,y]|v(h) > kw}.

A general he I, has kv/t Puiseux series roots, each of them of them
E(x) +axt+. .. ; therefore the locahtersection multiplicityof h = 0 with f =0
is

kw wd _kwd
Io(h,f)va(f)>W _A‘Lf Q)
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Since obviously § € I, the intersection multiplicityl o(g*, ) is boundedbelow
by (¥Supraminimal curvesequation.5.and therefore

lo(g,f) > #it = dwpvol(v) > de,

sof is acomponant of g.
Now assumep(v) > V-2 —. So there is a polynomial g Cix,y] of degree

vol(v)

e with v(g)> *TceTV) Sincev(f, fy) = v(f1) + v(fy,), it follows thatat least
one irreducible componenh f of g, satisfiesv(f) >v—%4f ]

vol(v)

Propositiorn5.2. Assume that & N, m;/nq, ..., m¢/N, € Q, with gcdm;, nj} =
1 are such that, for a very genetdk), there exists an irreduciblé € C[x, Y]
with degf) = d which decomposes i€[[x,y]] as a product of irreducible se-
ries f = f1...f, with ord, fi(x, §£(x)) = m;, ord fi(X, y) = n;. Consider the
tropical polynomial

X
He(D = min(nit, m;).
i=1

v_
Then u(t) > pe (t)/d, with equality at all values df such thatpe(t) >d t.

Proof. It is immediatethatv(E,t; f),= u¢(t), so theinequalitylu(t) = p(t)/d
is clear. Now assumthatps(t) > d t. This impliesthatv(g, t) isnot minimal,

H(VE, D) = in(t). u

Example 5.3. The easiest examples of #$iiteiation described inProposgtion
5.2Def.5.2 are given bysmooth)curves of degree 1 and 2.

Namely, for d=1, my/ny; = 2, it is trivial thatfor general§(x), there exists
a degree 1 polynomiaf with ordy f (X, £&(x)) = 2, ordfi(x, y) = 1; onesimply
has to take the equation of thangentline to y- &(x) =0, orf =y - &1(X)
(where &; denotes thel-jet).

In the same vein, for & 2, my /Ny =5, it is easy to showhatfor general
E(x), there exists a degree 2 polynomfalith ordy f (X, £(x)) =5, ordfi(x, y) =
1, which for generak is irreducible; one simply has to take the eiumatofthe
conicthroughthe first five points infinitely near to (0, 0) dhe curve y&(x) =0
(more fancily, the curvilinear ideal ¢y &(x)) + (X, y)° c C[x,y] has maximal
Hilbert function and colength 5, and therefaeunique elemat in degree Aip
to aconstam factor).

Proposition5.2Def.5.2 then givethat

gt if 1 <t< 2, computedby aline,
n() = 2 if 2< t < 4, computedby aline,
t/2 if4<t< 5, computedby a coni¢
5/2 if 5s t = 25/4, computedby a conic

In order toconstructhe supraminimaturves in general positionomputing
the functior p for small values of, we need certain Cremona mapsesumably
well known, which have been used by Orevkov in] [@6show sharpness bis
bound on the degree of cuspidationalcurwes.
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Proposition5.4. Let K= (p1,...,p) be a general cluster with.a infinitely
near to pfori =1,...,6. There exists a degree 8 pl@memonamap ®g whose
cluster offundamentabpoints is K, with all points weighted with muglicity 3,
and satifying the followingproperties:

1. The characteristianatrix of ®g is

L1
|
w
|
[y
|
N
|
[EEN
|
[y
|
[y
|
[EEN
|
[EEN
I A

2. The inverseCremonamap is of the same type, i.e., it has the sahar-
acteristicmatrix and itsfundamentapoints are a sequence, edafinitely
near to the precedingne.

3. The only curvecontractedby ®g is the nodal cubic which is singulaat
p. and goes through 4p...,p). The only expansivdundamentalpoint
is p;, whose relative principal curve is the nodabicugoing throughthe
fundamentaboints of the inverse map, and singular at firet of them.

Recall thatthe characteristianatrix of a plane Cremona map is theatrix
of base change in the Picard group of the blowtupS — P? thatresolvesthe
map, from thenaturalbase formed by the class of a line and éxeeptional
divisors, to thenaturalbase in the imag@zl?formed by the class of a lintkere
(the homaloidal net in the originaPPand the divisorscontractedby the map
(which are the exceptional divisors ©f: S — |32), see [1]. We use it lateon
to compute images of curves undég.

Proof. This proof is taken from [26, ©67]; the only modification lies irthe
remark that K can be taken general. Indeed, for K gahethere existsa
unique irreducible nodal cubiE with multiplicity 2 at p and goingthrough
P2, ...,[. ®gis then defined as follows: letx : Sk — P? be the blowup of
all points on K. The (proper) exceptional isirs E;, . .. ,EBs are (—2)-cunes,
E; is a (1) curve. The propetransformf c Sg is another (—1)-curvethat
meets the (proper) exceptional divisd®s and E. Blow down€®, E;,...Es to
obtain another mapm’ : Sk - P2. Then takedg = nl » ngl. All the stated

properties are easy thed. -

DenotgF_1=1, iy =0 and F+, = K+ F_1the Fibonacci numbersand
¢ =1+ 5)/2=IlimF+1/F the “goldenratio”.

Proposition5.5. For each oddx 1, there existrational curvesC; of degree
F; with a single cuspidal singularity characteristiexponentF;..>/F;_> whose
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six singular free points are in general fosi These curves beconfe 1)-
curves in their embeddegsolution,and aresupraminimalfor t in the interval
2 F25
Fiz_Fz ’ _Fi22
Note that for i = 1 the line is actually not singular (tHeharacteristic
exponent”is 2, an integer) but thetatemenin thatcase meanghatthe line
goesthroughthe first two of six infinitely near points in general pdait, i.e.,
the exponet is interpretedas m;/n; = 2 in Proposition 5.2Def.5.2.

Proof. The existence of such curvesithout the generality statementjs [26,
Theorem C, (a) and (b)]. Since tl®nstructiongoes by recursivelyapplying
the rationalmap ®g, and the free singular points ©f are exactly the sew
fundamentalpoints ofdg, it follows from 5.4Def.5.4thatthese can behosen
to be general. They are-1)-curvesafter resolution because trstarting mint
of the constructionare the two lines tangentto the two branches of thenodal
cubic T (which becomes an exceptional divisor afteg) i.e., (—1)-curves (each
is a linethrougha point and an infinitely neaipoint).

Now, with notationas inProposition 5.2Def.5.2,

Fi— H Fi+
ot oifts 22

Hr () = FEi+ ; E::Z ,
F if t> F:j'
supraminimalityin the claimed interval follows. O

Corollary 5.6. For every odd, )
0 1
O B2t jfte F%  Fisz

_ Fi hFZz2’ Fi—zj’
(t) = Fisz Firz Ei»
D .
Fi if te Fi—2' F2

Remark 5.7. We provethat supraminimalalues oflu are computed by a single
irreducible curve. Irtontrastwe seehatthe minimal values at = F2 ,/F? are

computedboth by C; and Cij+2. In fact, thetwo divisors Fj..2C; and FiCji»
generate a pencil whose general members @sapute h(t); they areagain
unicuspidal rationalcurves classified in [15, Theorem 1(t)].

Remark 5.8. In addition to the precedirgmily of curves, nineadditional
(= 1)-curves computda(t) for some range df (see Table 5.1Sporadisupramin-
imal curves. Here (d/j) denotes the degree amdultiplicities sequence with
*k meaning k-tuplerepetition,and m;/n; follows the notationof Proposition
5.2Def.5.2, with>*? again meaningrepetitiontable.5.1).The existence ahese
curves is proved as follows.;Dand B, are well known. The rest ambtainedby
applying the Cremona magpg to already constructecturves (the nameshosen
indicate thatcurve X* is built from curve X). Recalthat,becayse théntervals
where a degree d curve C computes W are thoseewhét) > d t (Proposition

H) the endpoints correspond to values where b
is minimal. Notethatall such endpoints given in Table 5.1Sporadigpramin-
imal curves. Here (d;) denotesthe degree andmultiplicities sequencewith
*K meaning k-tuplerepetition,and m;/n; follows the notationof Proposition
5.2Def.5.2, with*? again meaningepetitiontable.5.Jare squares in Q or ithe
quadraticfield to which they belong. This is due to tfect thatthey satisfy
pe(t) = d t,and pg(t) is a piecewise affine linear function bfwith rational
coefficierts.
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Name (dsi) mi/n; t

D, (3;2,1%9) 1,7 0% 8
1 x2 v 2 \/ 2
D (48;187,3,27) 7,7+5 .8 2ar 457 24— 755
vV 2 v
CI* (64; 24><7 '37 ,>12 ) x-?, 7+ - 1 , 7_|_ % 32—7177 , TGT?&
V2 v 5
1 (24;9 ,2,1 ) 7,%,,8 . , 12— 87
D* x7 %6 1 6+ 22
v 2 __ .,
s (40;15 ,2 ,1 ) 7, 7+ 55172 13 4
C* x7 x6 x2 x2 1 20+ 218 107
.2 .,
3 (16;6 ,1) 7, * ¢ 5 ' 16
C* x7 x5 1 8+ 29 43
v 2
. x7 x3 1 35 2
Ds (35;13%7, 4,3%3) w18 B e s
13 B 2
v 2 _ .,
83 ,1) 7, F, >
C* x7 x2 1 4+ 2 22
v_ 2
D, (6; 3,2%7) 1,8 I

Table 5.1: Sporadisupraminimalcurves. Here (dyj) denotes the degresnd
multiplicities sequence, with*X meaning k-tuplerepetition,and m;/n; follows
the notationof Proposition5.2Def.5.2, with*? again meaningrepetition.

Example 5.9. As an example, let us show txistence of P. Let K =

(p1, ..., R) be a general cluster with eaplint infinitely near to thepreceding
one; wewart to showthatthere is an irreducible curve of degree 24 wtithee
branches, two smooth, one of which godbrough(p:,...,g) and theother
throughall of K, and one singular, witlcharacteristicexponet 50/7. Because
K is general, there exist a cubic curve With multiplicities [2, 16, 0] on K and
another cubid” throughK thathas a node at some othpoint ;. Choose one
of the branches df and letqy, ..., g be the points infinitely near to,@n that
branch. Apply the Cremona mapg based on(qy, ... ,07);: then Dy = ®g(Dy).

All these computationgogether showthatindeed, (~ 1)-curves compuf
in the anticanonicarange:

Theorem 5.10For t < A, [a(t) is computed by ¢ 1)-curves; more precisdhye
(infinitely many) curves €an«7 of the curves in table 5.1Sporadsupramin-
imal curves. Here (dj) denotes the degree and multiplicities seogerwith
<k meaning k-tuplerepetition, and m;/n; follows the notation of Proposition
5.2Def.5.2, with*? again meaningrepetitiontable.5.1.

Figuyre 1In red, the known behavior [ft) for t = 9; in yellow, the lower
bound  tfiguge.1 showsh(t) in the rangeswhereit is known, together wittthe
lower bound t.

1 5 u in ranges of which do notintersect
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The two curvesC** and C* compute b
the anticanonicalocus A. We expecthatthere are no more curves witud
behavior, and so propose the followistyengtheningf conjecture 4.3Nagata’s
Conjecture for guasimonomial valuationsDef.4.3:
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a v
Conjecture 5.11let t € R be such tha&({)si t. Then () > tfor

a curve C which is either on the list of table oradic supraminimal curves.
Here (dy;) denotes the degree and multiplicities sega, with *X meaning
k-tuple repetition, and m;/n; follows the notation of Proposition 5.2Def.5.2,
with *2 again meaningrepetitiontable.5.1or one of theC;. Equivalently, if
t > 7+ 1/9 is not contained in any one of the integsvalf table 5.1Spradic
supraminimakurves. Here (dy;) denotes the degree and multiplicities seqaenc
with *K meaning k-tuplerepetition,and m;/n; follows the notationof Proposi-
tion 5.2Def.5.2, with*? again meaningrepetitiontable.5.1then a verygeneral
valuation v§,t) is minimal.

Obviously, Conjecture5.11Def.5.11 implieConjecture 2.4Def.2.4.

Remark 5.12. Fot > (17/6)?, it is possible to show (using Cremomaaps)
thatno (—1)-curveis ever supraminimal. Thus conjecture 5.11Def.5.19plits
naturally into two conjectures: first,that all supraminimalcurves are(-1)-
curves, and secondhat the only supraminimal €1)-curvesin the intenal
[7,8] are the ones above. Our evidence for lditer statemens experimemal,
obtainedby a computer sarch.
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