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Abstract 
 

It is well known  that multi-point Seshadri constants for a small num- 
ber  t of points  in  the  projective plane  are  submaximal.  It  is predicted 
by the  Nagata conjecture that their  values  are  maximal for t ≥ 9 points. 
Tackling the  problem in the  language  of valuations one can make sense of 
t points  for any real t ≥ 1. We show somewhat surprisingly that a Nagata- 
type conjecture should  be valid  for t ≥ 8 + 1/36  points  and  we compute 
explicitly all Seshadri constants (expressed here  as the  asymptotic maxi- 
mal vanishing element) for t ≤ 7 + 1/9.  In the range 7 + 1/9 ≤ t ≤ 8 + 1/36 
we are able to compute some sporadic values. 

 

Keywords Nagata Conjecture, SHGH  Conjecture, Seshadri constants, 
monomial  valuations, anticanonical divisor 

 

Mathematics Sub ject Classification (2000) MSC 14C20, 13A18 
 
 

1    Introduction 
 

The main purpose of this work is to formulate  an analogue of Nagata’s conjecture 
which makes sense for real values t ≥ 1 of the number  of points blown up instead 
of integral  ones.  Using quasi-monomial valuations of the  plane  we construct a 

µ : [1, ∞)  →  R,  such  that if µ(t) = 
√

t for all integers  t ≥  9 then 
Nagata’s  conjecture  is true.  Moreover we show that b 
and we propose a conjecture  that asserts the equality  b 
(Conjecture 2.4Def.2.4).    This  fits  well with  the  expected  behavior  of linear 
systems  on blow-ups of P2 , as it would follow from a stronger  open conjecture 
by G. M. Greuel,  C. Lossen and  E. Shustin.   On the  other  hand,  the  behavior 

µ in the range 7 + 1/9 ≤ t ≤ 8 + 1/36 is somewhat  mysterious. 
By continuity, it  suffices to  verify the  conjecture  at  rational square  values 

of t, which boils down to  verifying  nefness of appropriate divisor  classes with 
selfintersection  zero. Thus Nagata’s conjecture  is reduced to proving a statement 
of a kind  which has  shown  to  be tractable, see [9], [3].  These  selfintersection 
zero classes live on blow-up configurations  that have not been known earlier to 
shed light on the original conjecture  for ten or more points. 

Going further  down this road we discuss the value of b 
cases and  compute  it in a wide range  including  all t ≤ 7 + 1/9.  As a tool and 
also as a result of independent interest, we describe the Mori cone of the related 
blown up surfaces whenever  they  are anticanonical.

Post-print of: Dumnicki, Marcin et al. “Very general monomial 
valuations of P2  and a Nagata type conjecture” in Communications 
in Analysis and Geometry, Vol 25 núm 1 (2017) , p. 125-161. The 
final version is available at: DOI 10.4310/CAG.2017.v25.n1.a4 
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In our  approach valuations are  considered  as a generalization of points,  a 
natural step taken in many situations ever since Zariski’s pioneering work. In the 
context  of linear systems defined by multiple  base points on projective  varieties, 
positivity, and Seshadri constants, it is a point of view which seems to have been 
explored  explicitly  only  recently.   In  [7] and  [6], S. Boucksom,  M. Dumnicki, 
A. Küronya, C. Maclean,  and  T.  Szemberg  introduced the  constant amax  of a 
valuation (here denoted  µ), analogous  to the  s-invariant introduced by L. Ein, 
S. D. Cutkosky  and  R.  

b                
in [10] for ideals (see also [24, 5.4]).  For  a 

valuation v centered  at the origin of A2  = Spec C[x, y], one has by definition 

max{v(f ) | f ∈ C[x, y], deg f ≤ d} 
µ(v) = lim                                                             . b          

d→∞                                  d 
All  such  invariants encode  essentially  the  same  information  as  the  Seshadri 
constant  does in the  case of points  and,  as is the  case for Seshadri  constants, 
they  turn  out to be extremely  hard  to compute. 

The last decade has also seen the blossoming of a geometric study of spaces of 
real  valuations (see C. Favre–M.  Jonsson  [14]) or spaces of seminorms, usually 
called  Berkovich  spaces  [2], which  essentially  coincide  in  dimension  two  (see 
M. Jonsson  [21, section 6] for a description in the  plane  case).  Being compact 
and  arcwise  connected,  the  topology  of such  spaces  has  very  interesting and 
useful  properties.   The  work  of S. Boucksom,  C.  Favre  and  M.  Jonsson  [4], 
[5] implicitly  reveals connections  between  such valuation spaces, positivity, and 
birational geometry. 

 
µ is studied  as a function  on the space V of plane 

valuations of real rank  1.  This  invariant turns  out  to be lower semicontinuous 
and continuous  along arcs in V (Theorem 2.21Def.2.21).  There is no difficulty in 

µ to other  varieties;  one obtains  a function-invariant b 
for line bundles  whose geometric  significance would deserve further  study.  Mo- 
tivated by what  is known in the case of points and by the conjectures  of Nagata 
and  Segre–Harbourne–Gimigliano–Hirschowitz, our focus will be on valuations 
along a very general  half-line in V . 

µ(vt ) with t ∈ [1, ∞), where vt  is a very general quasimonomial 
valuation with characteristic exponent t (see Section 2Preliminariessection.2 for 
precise definitions). 

Our  main  results,  Theorems  3.4Def.3.4 and  5.10Def.5.10, are the  first steps 
µ. Divisorial valuations are dense in each arc of the b 

valuation space; our tools provide  a good grip on such valuations, and we work 
on the  minimal  proper  birational model Xt  where the  center  of vt  is a divisor. 
When Xt  supports an effective anticanonical divisor, extensive  knowledge of its 
geometry  is available,  see [18], [19]. In section 3Anticanonical surfacessection.3 
we determine  the  range  of t for which Xt  is anticanonical, and  study  the  Mori 
cone of Xt  in that range.   The  following theorem  sums up the  main  results  of 
section 3Anticanonical surfacessection.3. 

Theorem A.   Let  vt   be a  very  general  quasimonomial valuation  on  P2   with 
characteristic exponent  t ∈ Q,  and  let Xt  be the minimal  model where vt  has 
divisorial  center.   Xt   supports  an  effective anticanonical divisor  if and  only if 
1 ≤ t ≤ 7, t = 7 + 1/n for some natural number  n,  or t = 9. 

If 1 ≤ t ≤ 7, then  the Mori  cone NE(Xt ) is a polyhedral  cone,  spanned  by 
the classes of the exceptional  components  of Xt  → P2 , the class of a particular
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nodal cubic, and finitely many (−1)-curves (whose number is explicitly bounded, 
see 3.4Def.3.4). 

If t = 7 + 1/n  for  natural n,  then  the  only prime  divisors  C  in  Xt   with 
C 2  ≤ −2 are  exceptional  components, and  NE(Xt ) is a polyhedral  cone if and 
only if n ≤ 8. 

If 1 ≤ t ≤ 3, t = 3 + 1/n for natural n, or t = 5, then the monoid of effective 
classes  can  be generated   by the  classes  of the  components   of the  exceptional 
divisor,  a particular conic,  and the (−1)-curves. 

 

It is not  hard  to see that µ(t) ≥ 
√

t, and  one should expect  the  equality  to 

hold unless there  is a good     
b            

reason, in the form of a (−1)-curve C  on 
with value higher than  deg C  · 

√
t . 

Conjecture B.  For  every t    8 + 1/36, µ(t) = 
√

t. b 
 

In section 4A variation on Nagata’s  conjecturesection.4 we explore the rela- 
tions  of conjecture  BTI.2  and  existing  conjectures,  showing in particular that 
Nagata’s  conjecture  is just  a special case of conjecture  BTI.2.  If t is an integer, 
then  it is the  number  of points  that have been blown up to construct Xt , and 
we look at µ(t) as a continuous  function  that interpolates between  the inverses 
of                

b            
ts  at  t very  general  points,  whose values  at  non-integer  t 

 also  have  geometric  meaning.    In  addition, it  is not  hard  to  show (Proposi- 
tion 2.22Def.2.22) that for integer  values of t that are squares,  µ(t) = 

√
t holds. 

A further,  stronger  conjecture, motivated by our  main             
b 

is proposed  at 
the end of section 5Supraminimal curvessection.5. 

Knowing the  cone of curves allows to compute  µ, which for small t is done 
in section 5Supraminimal curvessection.5. Denote   

b    
= 1, F   = 0 and F      = √

Fi + Fi−1 the Fibonacci numbers,  and φ = (1 + 
ratio”. 

5)/2 = lim Fi+1 /Fi the “golden

 

Theorem C.  The value of µ(t) for t   [1, φ4 ] is given by b
  

Fi−2
 h 

 Fi  
 

Fi+2 
i

µ(t) = 
 Fi      

t   if t ∈ 2     ,           , 
i  2       −2b              

Fi+2 

 

h 
Fi+2

 F 2     i 
i+2    ,

Fi                 
if t ∈

 Fi−2 
,     2

 

where i ≥ 1 takes all odd values.  For  t ∈ [φ4 , 7 + 1/9], 
( 

1+t                   4 

µ(t) = 
b 

3         if t ∈ 
 
φ , 7

  
, 

8

3           if t ∈ [7, 7 + 1/9] .  

µ(t) = 
√

t,In particular there  is a sequence of rational squares  t < 8 with  b 
with an accumulation point at φ4 ; we suspect that at least some rational squares 
t > 9 can be dealt  with by existing  techniques, which by continuity of µ would 

allow to compute  µ(t) for nonsquare  t.                                                 
b 

b 
For anticanonical X  there exists a (   1)-curve computing µ(t). This implies 

that µ is piecewise linear  near  t.  We describe  a (countably 
b             

family of b 
(−1)-curves from  which  Theorem  CTI.3  follows, and  also  determine b 
other small values of t (see Figure 1In red, the known behavior  of b 
in yellow, the lower bound     tfigure.1). We conjecture  that this list is complete. √ 
If that is indeed  so, then  in particular b
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Figure  1:  In  red,  the  known  behavior  of µ(t) for t     9; in yellow, the  lower 
bound  

√
t.                                                   

b
 

 
 

9 cases, the (−1)-curves of Section 5Supraminimal curvessection.5  are the same 
unicuspidal  curves  which are known  to give the  asymptotically extremal  ratio 
between  degree  and  multiplicity, as explained  in Y. Orevkov’s  work [26] (see 
also the overview [15]). 

In what  follows we work over the field of complex numbers. 
 
 

2    Preliminaries 
 

We refer to the references O. Zariski–P.  Samuel [27, Chapter VI. and Appendix 
5.] and E. Casas–Alvero  [8, Chapter 8] for the general theory  of valuations and 
complete  ideals on surfaces.  Let us now briefly recall the  definitions  and  facts 
needed for the definition  of µ and the statement of the conjecture. 

Let  v be a rank  1 v      
b      

(meaning  that the  value  group  is an  ordered 
subgroup  of R) on the  field of functions  F  of a projective  algebraic  surface S. 
For  every  effective divisor  D  ⊂ S,  denote  v(D)  the  value  of any  equation  of 
D ∩ U , where U is an affine chart  intersecting D. 

Following [6], we denote 
 

µD (v) = max{v(D0 ) | D0  ∈ |D|} ,    and    µD (v) =  lim µkD (v)  
.

 

 
For every non-negative m ∈ R, the ideal sheaves 

k→∞        k

 

Im  = {f ∈ OS  | v(f ) ≥ m},     and    I + = {f ∈ OS  | v(f ) > m} 
 

are called valuation ideals.  The closed subscheme defined by I + is an irreducible 
denotes the valuation 

subvariety, called center  of the valuation, center(v). If Rv 
ring of v, the generic point of the center is the image of the closed point under the
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b

2.1[6,

µ(ξ, t) =

 

 
 
 
 

unique map Spec Rv  → S that exists by the valuative  criterion of properness.  Of 
course, all this continues  to apply if we substitute S by another  projective  model 
S0  (i.e., a smooth  projective  surface with a fixed isomorphism  K (S0 ) ∼= F ). 

If the center(v)  is a curve C , then  v is (up to a constant c ∈ R) the order of 
vanishing  along C ; thus,  v(D) = c · ordC  D = c · max{k | D − kC ≥ 0}. 

We are mostly  interested in valuations of S = P2  such that the  center(v)  is 
a closed point.  In this case the volume of v, as defined in [12], is 

 

dimC   (OS /Im )vol(v)  :=    lim 
m→∞ m2 /2

 

(note  that OS /Im  is an artinian C-algebra  supported at  the  center  of the  val- 
uation) and  the  volume  of a divisor  class D  on a surface  S  of dimension  d is 
defined as

vol(D)  := lim sup 
k→∞ 

h0 (S, kD) 

k2 /2     
.
 

 

 
 
µ can be boundedBoucksom-Küronya-MacLean-Szemberg show that the invariant b 

in terms  of values in arbitrary dimension; let us recall their  result  in the case of 
surfaces: 

 

Proposition 2.1  ([6, Proposition  2.9]). Let  D  be a  big divisor  and  v a  real 
valuation  centered  at a point p ∈ S.  Then 

µD (v) ≥ 
p

vol(D)/ vol(v) . 
 

When D is ample this is equivalent to the bound µD (v) ≥ 
p

D2 / vol(v) . Val- 

uations  which satisfy the equality  in Proposition    
b    

Proposition 2.9]Def.2.1, 
with D ⊂ S = P2  a line, will be called minimal. 

For the  sake of simplicity  we recall the  notion  of quasimonomial valuations 
specializing  to the  case when S = P2  and  the  center  of v is the  origin (0, 0) ∈ 

A2  = Spec C[x, y] ⊂ P2   = Proj C[X, Y, Z ], with  x  = X/Z, y = Y /Z .   In  this 
situation we write

 
µ(v) = lim

 
 

µd  (v)  
.µd (v) = max{v(f )|f ∈ C[x, y], deg f ≤ d} ,    and    b 

d→∞      d

Definition 2.2.   Given a series ξ(x) ∈ C[[x]] with  ξ(0) = 0 and  a real number 
t ≥ 1, let 

v(ξ, t; f ) := ordx (f (x, ξ(x) + θxt )) , 

where the symbol θ is transcendental over C. 
Equivalently, expand  f as a Laurent series 

f (x, y) = 
X 

aij  xi (y − ξ(x))j  , 
and put  

v(ξ, t; f ) := min{i + tj|aij =0 } .                                    (∗)

Then  f 7→  v(ξ, t; f )  is a  valuation which  we denote  v(ξ, t).  Such  
valuations are called monomial  if ξ = 0, and  quasimonomial in general.  
Slightly abusing language,  t will be called the  characteristic exponent  of v(ξ, t) 
(even if it is an integer).  For simplicity  we also write 

 

µ(v(ξ, t)) . b
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Remark  2.3.  The  valuation v(ξ, t) depends  only on the  btc-th  jet  of ξ, so for 
fixed t this  series can be safely assumed  to be a polynomial;  however,  later  on 
we’ll let t vary for a fixed ξ. 

It  is not  difficult  to  see directly  using  (∗equation.2.1), and  will be proved 
using  geometric  considerations in the  next  subsection  that vol(v(ξ, t)) = t−1 . 
The precise statement of Conjecture BTI.2  is now: 

 

Conjecture 2.4.  For  a sufficiently general choice of ξ, and every t ≥ 8 + 1/36, 
the valuation  v(ξ, t) is minimal. 

 
Cluster of centers of a valuation 

 

Next we introduce  the geometric structures attached to valuations v(ξ, t) which 
allow us to study  µ(ξ, t) and justify  the conjecture. 

Each  v             
b         

0-dimensional  center  naturally determines a cluster  of 
centers,  as follows. To begin with, let p1  = center(v)  in the projective  surface S. 
Consider the blowup π1  : S1  → S centered  at p1  and let E1  be the corresponding 
exceptional  divisor.  The center  of v on S1  may be E1   or a point p2  ∈ E1 . 

Iteratively blowing up the  centers  p1 , p2 , . . .  of v either  ends with  a model 
where the center  of v is an exceptional  divisor En , in which case 

 

v(f ) = c · ordEn  f 
 

for some constant c, and  v is called a divisorial  valuation, or this  process goes 
on indefinitely.   For  each center  pi  of v, general  curves through pi  and  smooth 
at pi  have the same value vi   = v(Ei ). 

Following [8, Chapter 4], we call the sequence K = (p1 , p2 , . . . ), with weights 
vi  = v(Ei  ), a weighted cluster of points,  which completely determines v. Indeed, 
for every effective divisor D ⊂ S,

v(D) = 
X 

vi  · multp 
i 

 

i De 
i ,                                         (†)

 

where  De 
i denotes  proper  transform at  Si  .  The  sum  may  be infinite,  but  for 

valuations with  real rank  1, which are the  ones we consider  here,  De  can have 
positive  multiplicity at only a finite number  of centers  [8, 8.2]. 

Sometimes  we shall say that a divisor goes through an infinitely near point 
to mean that its proper  transform on the appropriate surface goes through it. 

 

Definition 2.5.   With  notation as above,  given indices j < i, the  center  pi   is 
called proximate  to pj  (pi    pj ) if pi  belongs to the proper  transform Eej   of the 
exceptional  divisor  of pj .  Each  pi   with  i > 0 is proximate to  pi−1  and  to  at 
most one other  center  pj , j < i − 1; in this case pi  = Eej  ∩ Ei−1 and pi  is called 
a satellite  point.  A point which is not a satellite point is called free. 

 
Remark  2.6.  The  irreducible  components  of exceptional  divisors  can  be com-
puted  as proper  transforms if the  proximity  relations  are  known: P Ẽj    = Ej  −

pi  pj  
Ei  

Remark  2.7.  For every valuation v, and every center pi  such that v is not the di- 
visorial valuation associated to pi , equation  (†Cluster of centers  of a valuationequation.2.2)
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applied  to D = Ej   gives rise to the so-called proximity  equality

vj   =  
X

 
pi  pj  

 
vi  .

 
For  effective divisors  D  on S, the  intersection number  De  · Eej   ≥ 0 together 

with remark  2.6Def.2.6 yield the proximity  inequality 
X

multpj  (De 
j ) ≥  

pi  pj  

multpi (De 
i ) .

 
 

Assume now that v = ordEs   is the divisorial valuation with cluster of centers 
K  = (p1 , . . . , ps ), while πK  : SK  → S denotes  the  composition  of the  blowups 
of all points  of K .  Then,  for every m > 0, the  valuation ideal sheaf Im  can be 
described  as 

Im  = (πK )∗ (OSK (−mEs )) . 

Remark  2.8.  As soon as s > 1, the negative  intersection number  −mEs · Ees−1 = 
−m  implies  that all  global  sections  of OSK (−mEs )  vanish  along  Ees−1 ,  and 
therefore 

 

Im  = (πK )∗ (OSK (−mEs − Ees−1 )) = (πK )∗ (OSK (−Es−1 − (m − 1)Es )) . 
 

This  unloads  a unit  of multiplicity from ps  to ps−1 .  The  finite process of sub- 
tracting all exceptional  components that are met negatively,  (i.e., starting from 
a divisor D0  = −m1 E1  − · · · − ms Es and successively replacing  Di by Di − Eej  , 

starting with  i = 0, whenever  Di · Eej    < 0 for some j, until  one obtains  a Di 

such that Di · Eej   ≥ 0 for all j) is classically called unloading  the weights of the 
cluster.  The final uniquely  determined system  of weights m̄ i satisfies 

Dm = − 
X 

m̄ i Ei    is nef relative  to πK 

 
(recall that a divisor is nef relative  to a morphism  f when it intersects nonneg- 
atively  every curve mapping  to a point [24, 1.7.11]) and 

 

Im  = (πK )∗ (OSK (Dm )) . 
 

In this  case, general  sections  of Im  have multiplicity exactly  m̄ i at  pi , and 
no other  singularity.  More precisely,  for any  ample  divisor  class A on S,  the 
complete  system  |kA + Dm | for k      0 is base-point-free (were we denote  A = 
(πK )∗ (A)) and its general elements are smooth and meet each Ej  transversely at 
m̄ j − 

P
pi  pj  

m̄ i  distinct points.  Note that relative  nefness of Dm is equivalent 
to the proximity  inequality m̄ j ≥ 

P
pi  pj  

m̄ i . 
It follows using (†Cluster of centers  of a valuationequation.2.2) that the val- 

uation  of an effective divisor  D  on S  can be computed as a local intersection 
multiplicity 

v(D) = Ip1 (D, C ) 

where C is the image in S of a general element of |kA + Dm |. 
 

 
The unloading  procedure  just described  also yields the following.
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Lemma 2.9.   Let  v = ordEs    be the  divisorial  valuation  whose cluster  of cen- 
ters  is K  = (p1 , . . . , ps ) with weights vi ,  and  for every m  > 0 denote  Dm  = 
− 
P 

m̄ i Ei  the unique  nef divisor  relative  to πK  with Im  = (πK )∗ (OSK (Dm )). 
If m = k 

P 
v2  for some integer  k, then m̄ i = kvi  for all i. 

Proof.  It is clear that − 
P 

m̄ i Ei is nef relative  to πK  because of the proximity 
equalities  from remark  2.7Def.2.7.  Moreover,  because  every effective divisor D 
satisfies the proximity  inequalities,  if multp1 D < m̄ 1  then multpi  D < m̄ i for all 
i, and  by equation  (†Cluster of centers  of a valuationequation.2.2), v(D)  < m. 
Arguing  by induction on s, one sees that Im  = (πK )∗ (− 

P 
m̄ i Ei ). 

Remark  2.10.  Write  m0   for 
P 

v2 .  Then,  in the  context  of Zariski’s theory  of 
factorizations of complete  ideals, lemma 2.9Def.2.9 translates into 

 

Ikm0   = Im0   
, 

 

and  to the  fact that Im0    is a simple complete  ideal.  For other  values of m one 
has instead 

Ikm0 +δ  = Im0 
Iδ . 

Non-divisorial  valuations can be considered  to be limits  of divisorial  valua- 
tions and their  valuation ideals turn  out to be complete  as well, determined by 
finitely many  centers.  The ideal Ikm  is then  never a power of Im , rather there 
exists δ > 0 such that 

k                                  k Im   ⊂ Ikm   ⊂ Im−δ 

for all m  and  k.  Such  bounds  actually  hold in greater  generality,  namely  for 
Abhyankar valuations in arbitrary dimension;  see [12] by L. Ein, R. Lazarsfeld 
and K. Smith. 

 

 
Lemma 2.11. Let v = ordEn    be the divisorial  valuation  with cluster  of centers 
K = (p1 , . . . , pn ) and weights vi .  Then 

vol(v)  = 
 X 

v2 
 −1  

. 
 

Proof.  For m = k 
P 

v2 , dimC (OX /Im ) = 
P 

kvi (kvi  + 1)/2 by [8, 4.7]. 
 

Remark  2.12.  It  is proven  by Cutkosky  and  Srinivas  in [11, Corollary  1] that 
divisorial  valuations on surfaces  have  rational volume  under  mild  conditions. 
On the  other  hand  [22, Theorem  1.1] shows that this  is not  the  case in higher 
dimensions. 

 

 
Consider  the  group  of numerical  equivalence  classes of R-divisors  N1 (SK ), 

where SK is the blowup at the cluster of centers of v. One calls a rational ray in 
N1 (SK ) effective, if it is generated by an effective class. The Mori cone NE(SK ) 
is the  closure in N1 (SK ) of the  set  NE(SK ) of all effective rays,  and  it  is the 
dual of the nef cone Nef (SK ) which is the closed cone described by all nef rays. 

A (−1)-ray in N1 (SK ) is a ray  generated by a (−1)-curve, i.e., a smooth, 
irreducible,  rational curve C with C 2  = −1 (hence C · κ = −1, where κ denotes 
the canonical  class).  Mori’s Cone Theorem  says that 

 

NE(SK ) = NE(SK )< + Rn ,
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where NE(SK )< denotes  the subset  of NE(SK ) described  by rays generated by 
nonzero classes η such that η · κ ≥ 0 with κ being the canonical  class, and

Rn  =     
X

 
ρ a (−1)−ray 

 
ρ  ⊆  NE(SK )4  .

 
Remark  2.13.  In cases when NE(SK ) is a polyhedral  cone, Proposition 2.1[6, 
Proposition 2.9]Def.2.1 y ields that µD (v) is a rational number,  and therefore  v 
can be minimal only if 

p
D2 / vol(v) 

b  
rational. In fact, all examples of divisorial 

minimal valuations inclu  ded here correspond  to rational values of 
p

D2 / vol(v), 
even for nonpolyhedral NE(SK ).  For some examples  of non-divisorial  minimal 
valuations, see Remark 5.8Def.5.8; for these, vol(v) defines a quadratic extension 
of Q in which it is a square  (i.e., 

p
vol(v) ∈ Q(vol(v))). 

 
Centers of a quasimonomial valuation 

 

Quasimonomial valuations are  exactly  the  valuations whose cluster  of centers 
consists of a few free points followed by satellites,  which may be finite or infinite 
in number,  but  not infinitely many proximate to the same center.  We will work 
with  very  general  quasimonomial valuations  on P2 .   The  genericity  condition 
refers to  the  position  of the  free centers;  it  will be made  precise  below, after 
describing  the  continuity and  semicontinuity properties   of µ on  the  space  of 
quasimonomial valuations.                                                      

b
 

Remark  2.14.  [8] The cluster K of centers of v(ξ, t) can be easily described from 
the continued fraction  expansion

 
t = n1  + 

 

1 
       1          . 
n3 +  1 

. . .

K consists of s = 
P 

ni centers; if t = n1  then they all lie on the proper transform 
of the germ 

Γ : y = ξ(x) , 
 

otherwise the first n1 + 1 lie on Γ and the rest are satellites:  starting from pn1 +1 

there  are  n2  + 1 points  proximate to  pn1 , the  last  of which starts a sequence 
of n3  + 1 points  proximate to  pn1 +n2  and  so on.   If the  continued fraction  is 
finite,  with  r terms,   then  the  last  nr  points  (not  nr + 1)  are  proximate to 
pn1 +···+nr−1 .   The  weights  are  vi    = 1 for i = 1, . . . , n1 , then  vi   = t − n1   for 
i = n1  + 1, . . . , n1  + n2 , and  vi   = vn1 +···+nj−1   − nj vn1 +···+nj     for i = n1  + · · · + 
nj  + 1, . . . , n1  + · · · + nj+1 . 

If t is rational, there  are only finitely many  coefficients n1 , . . . , nr , so K  = 
(p1 , p2 , . . . , ps ) is finite and the valuation is divisorial.  More precisely, 

 

v(ξ, t; f ) = vs  · ordEs (f ) . 
 

The prime divisor components  Eei  of E1  on SK can then  be described as follows 
(where Eei  , as in Remark  2.6Def.2.6, is the proper transform in SK of the blowup 
of the point pi ).  Note that s = n1  + . . . + nr ; let si be the sum n1  + · · · + ni  , so 
s = sr . The only i with (Eei )2  = −1 is i = s, and in this case Ees = Es . For each 

21 ≤ i < r − 1, we have:  Eesi   = Esi  − Esi +1 − · · · − Esi+1 +1 , so (Eesi ) = −2 − ni+1 ;
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≥

2

βj

 

 
 
 

for i = r − 1 we have Eesr−1   = Esr−1  − Esr−1 +1 − · · · − Es , so (Eesr−1 ) = −1 − nr ;

and for every 1 ≤ j ≤ s not in the set {s1 , . . . , sr } we have Eej   = Ej  − Ej+1 , so 
(Eej  )2  = −2. 

If t is irrational, then  the  sequence  of centers  is infinite  and  the  group  of 
values has rational rank 2. There  is no surface SK , but  denoting  Sj   the blowup 
of the first j points of K , the above description of the divisors Eei  holds whenever 
it makes sense; for instance,  Eesi   = Esi  − Esi  +1 − · · · − Esi+1 +1 in every Sj   with 
j ≥ si+1 + 1. 

 

 
Corollary 2.15. Let v(ξ, t) be a quasimonomial valuation  as above.  Then 

vol(v(ξ, t)) = t−1 ,  µd (ξ, t) ≥ d
√

t , 
and 

µ(ξ, t)     
√

t , b 

µ(ξ, t) = 
√

t.so v(ξ, t) is minimal  whenever b 
 

Proof.  The  only  point that needs  proving  is the  value  of vol(v(ξ, t)), which 
follows from Lemma  2.11Def.2.11, taking  into  account the  values vi  computed 
above and using induction on the number  of terms  in the continued fraction  of 
t. 

 
The space of valuations 

Remark  2.16. In definition 2.2Def.2.2 one may allow formal series ξ(x) = 
P

j≥1 aj  x 
whose exponents  βj  form an arbitrary increasing  sequence of rational numbers, 
and  one still  obtains  valuations v(ξ, t) (no  longer  quasimonomial).  It  is even 
possible to  allow t = ∞, except  when  ξ is the  (convergent) Puiseux  series of 
a branch  of curve going through the  center  p1 .  In this  way, all real  valuations 
with center  at p1  are obtained (up to a normalizing  constant factor,  see [8, 8.2] 
or [14, Chapter 4]). 

The most natural topology in the set T of all real valuations with center at p1 

is the coarsest  such that for all f ∈ F , v 7→ v(f ) is a continuous  map T  → R.  
It is called the weak topology. For a fixed ξ, the map t 7→ v(ξ, t) is then 
continuous. There  is in T  a finer topology of interest: namely,  the finest 
topology such that t 7→  v(ξ, t) is continuous  for all ξ.  It  is called  the  strong  
topology.  With  the strong  topology,  T  is a profinite  R-tree,  rooted  at  the  p1 

-adic  valuation (see [14] for precise  definitions  and  proofs).   To  avoid  
confusion  with  branches  of curve,  we call arcs  the  branches  in T .  Maximal 
arcs are homeomorphic to the interval  [1, ∞] (respectively  [1, ∞)) and 
parameterized by t 7→ v(ξ, t) where ξ is not (respectively, is) the Puiseux 
series of a branch  of curve at p1 . 

The  arcs  of T  share  the  obvious  segments  given  by  coincident jets,  and 
separate at  rational values of t; these  correspond  to divisorial  valuations (also 
in this general case). 

 

 
Proposition  2.17. Fix  a  real  number  t > 1 and  a  natural number  d.   Set 
k = dte and denote  by Jk  ⊂ C[[x]] the space of (k − 1)-jets  of power series  with 
ξ(0) = 0, endowed with the Zariski  topology coming  from  the coefficients  map
Jk  

∼= Ak−1 , 
P 

ai xi 7→ (a1 , . . . , 
ak 

−1 ).
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Then the function ξ 7→ µd (ξ, t) descends to an upper semicontinuous function 
 

Jk  → h1, tiQ  ⊂ R 
 

which takes on only finitely many values. 
 

It  follows that for fixed t, µ(ξ, t) takes  its  smallest  value  for ξ with  very 
general jet ξ       (i.e., in a coun  

b     
intersection of Zariski-open subsets of J = 

Ak−1 ). 
 

Proof.  Because  only the  k free centers  of v(ξ, t) depend  on ξ (k  = n1   in the 
continued fraction  expansion  if t is an integer  and  k = n1  + 1 otherwise),  it is 
clear that the valuation only depends on the (k − 1)-th jet of ξ, and the existence 
of the function 

Jk  → h1, tiQ  ⊂ R 

is clear.  We will prove that it only takes  on a finite number  of values and that 
for fixed m, the preimage  of [m, ∞) is Zariski-closed. 

Given  fixed  t and  d,  there  exists  mt,d   ∈ h1, tiQ   such  that f  ∈ C[x, y], 
v(ξ, t; f )  ≥  mt,d  implies  f ∈ (x, y)d+1   independently on  ξ (by  unloading,  or 
using the definition  (∗equation.2.1)).  Thus 

 
µd (ξ, t) < mt,d 

 
for all ξ. 

Similarly,  there  exists i t,d such that no f ∈ C[x, y]d  has a proper  transform 
going through any  center  pi   of v(ξ, t) with  i > it,d .  Therefore  for every  f ∈ 
C[x, y]d , the value v(ξ, t; f ) belongs to the finite set

 
it,d M 

 
 

i=1 

 
 

Nvi  ∩ [1, mt,d ) ,

 
and the µd (ξ, t) belong to this set. 

Now let V  be the C-subspace  of C[θ, x, xt ] consisting  of polynomials  P  with 
degθ (P ) ≤ d and degx (P ) < mt,d . The space V  is obviously finite-dimensional, 
V  ∼= CN   after  taking  the basis given by monomials. 

Consider  the composition  of the substitution map 
 

Jk  × C[x, y]d  → C[θ][[x, xt ]] , 
 

given by (ξ, f  ) 7→ f (x, ξ(x) + θxt ), with truncation C[θ][[x, xt ]] → V , seen as 
an algebraic  morphism  of C-schemes. 

For each value m, the ‘incidence’ subset 
 

{(ξ, f ) ∈ Jk  × C[x, y]d | v(ξ, t; f ) ≥ m} 
 

is by definition  the preimage  of the Zariski-closed  set 
 

{η ∈ V | ordx (η(x))  ≥ m} 
 

hence Zariski-closed.  It is also closed under  scalar multiplication on the second 
component, so it determines a closed subset  Im ⊂ Jk  × P(C[x, y]d ). 

The locus in Jk  where µd (ξ, t) ≥ m is the  projection  of Im to Jk , therefore 
it is Zariski-closed.



12  

b

with 
b

∈ Q
se 

b

T

b
1                                                                        of the

b

T  → R
the str 

 

 
 
 
 

Proposition  2.18. For  every ξ(x),  the function  t 7→ µ(ξ, t) (for  t ∈ [1, ∞)) 
is 
Lipschitz continuous  with Lipschitz constant 1. 

 

Proof.  For every f ∈ C[x, y], the function  t 7→ v(ξ, t; f ) is a tropical 
polynomial function  of degree  at  most  deg(f ).   Therefore,  the  scaled  
function  µf   : t 7→ v(ξ, t; f )/ deg(f ) is continuous  concave and piecewise affine 
linear with slopes in 
{0, 1/ deg(f ), 2/ deg(f ), . . . , 1} (compare  with [5, Corollary  C]). In particular, it 
is Lipschitz  continuous  with Lipschitz  constant at most 1. 

The  function  t 7→ µ(ξ, t) in the  claim is supf ∈C[x,y] {µf }; therefore  it is also 
Lipschitz  continuous            Lipschitz  constant  at  most  1 (and  it  is not  hard  to 
see that it is actually  equal to 1). 

 
Remark   2.19.  We proved  in Proposition 2.17Def.2.17 that for a fixed t, very 

µ(ξ, t) which we denote  µ(t). b 
 

 
By the countability of the rational number  field, it follows that very general 

series ξ(x) give the same (minimal)  function  µ(ξ, t) of t      . Continuity of the 
functions  µ(ξ, t) then  imply that very general 

b  
ries give the same function  over b 

all of R, and also the following: 
 

Corollary 2.20. The function  t 7→ µ(t) is Lipschitz continuous  with 
Lipschitz constant 1. 

 

It  is immediate   to  extend  the  definition  of µ and  µ to  the  tree       of all 
valuations centered  at  p .  The  continuity properties    

b      
resulting  function 

µ : T  → R —which we shall not need— are summarized  as follows: 
 

Theorem 2.21. The function  µ :              is lower semicontinuous for the weak 
topology and continuous  for      

b   
ong topology. 

 

Proof.  As in the proof of propositon  2.18Def.2.18, for all f ∈ C[x, y], let µf (v) = 
v(f )/ deg(f ).   By definition  of the  weak topology,  µf   is continuous  for all f . 
Then,  µ(v)  = supf ∈C[x,y] {µf (v)},  as the  supremum of a family of continuous 
functions,  is lower semicontinuous. 

In  order  to  prove  continuity for  the  strong  topology,  one  needs  to  show 
continuity along all arcs in the profinite  tree T . It is not hard  to see that (with 
minor  changes)  the  proof  of propositon 2.18Def.2.18  works  for series  ξ  with 
rational exponents  as in Remark  2.16Def.2.16, showing the desired continuity. 

Alternatively, given a strong neighbourhood U of a given valuation v0 , there 
is a model of the plane in which every v ∈ U is quasimonomial. Then Proposition 
2.18Def.2.18 shows that µ is continuous  in U . b 

 
 

The next  claim will show the first analogy to Nagata’s  conjecture. 
 

Proposition  2.22. If t is the square  of an integer,  then  a very general  quasi- 
monomial  valuation  v(ξ, t) is minimal. 

 

Proof.  For  integral  values  of t, the  cluster  of centers  of v(ξ, t) consists  of the 
first  t points  infinitely  near  to  the  origin  along  the  branch  y = ξ(x),  and  for 
each integer  m = qt + r (with  0 ≤ r < t) 

 

Im  = (πK )∗ (OSK (−q(E1  + · · · + Et ) − (E1 + · · · + Er ))) .
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For  d > 0 and  very general  ξ, we want  to prove  that µd (ξ, t) ≤ d
√

t or, in 

other  words,  that for every  integer  m  > d
√

t, the  valuation ideal  Im   has  no 
sections of degree d: 

H 0 (OS (dL − q(E1  + · · · + Et ) − (E1 + · · · + Er ))) = 0 ,
 

where  L  denotes  the  pullback  of a  line  to  SK .   By  semicontinuity (Proposi- 
tion 2.17Def.2.17) it will be enough to see this for a particular choice of ξ, e.g., 
an irreducible  polynomial  of degree a = 

√
t. But  the  proper  transform on SK 

of the projectivized curve 
 

D : Y Z a−1 = Z a ξ(X/Z ) 
 

defined by ξ is then  an irreducible  curve of self-intersection zero, therefore  nef, 
and 

D · (dL − q(E1  + · · · + Et ) − (E1 + · · · + Er ))) = d
√

t − m < 0 . 
 

 

3    Anticanonical surfaces 
 

This  section  contains  a complete  description of the  Mori cone of SK  for v = 
v(ξ, t) with  t ≤  7 (see  Theorem  3.4Def.3.4  and  Proposition 3.6Def.3.6),  and 
substantial information for t = 7 +  1  , n2  ∈ N (see Proposition 3.8Def.3.8 and 
Corollary  3.11Def.3.11).   In  these  cases  the  rational surface  SK   obtained by 
blowing up  the  cluster  of centers  of a valuation v on the  plane  is anticanoni- 
cal,  meaning  it  has  an  effective anticanonical divisor.   Under  this  hypothesis, 
adjunction becomes a very powerful tool to study  the geometry  of SK . 

We begin by justifying  that SK  is anticanonical in these cases. 
 

Proposition 3.1.   Let v(ξ, t) be a divisorial  quasimonomial valuation  (so  t is 
rational), and  SK  the  blowup of its  cluster  of centers.  Let  A = [1, 7] ∪ {7 + 

n }n∈N  ∪ {9} ⊂ R. 

1.  If t ∈ A, then SK  is anticanonical. 
 

2.  If SK  is anticanonical for very general  ξ, then t ∈ A. 

Proof.  The question  is whether  the anticanonical class −κ = 3L − 
P 

Ei on SK 

(where L denotes  the pullback  of a line) has nonzero global sections. 
Suppose  t is an integer.   Then  K  consists  of t free points;  if t ≤ 9, there  is 

a cubic going through them  all, so −κ  is effective.  On the  other  hand,  for an 
integer  t > 9, there  is no such plane cubic for general K . Thus  (1) and (2) hold 
when t is an integer.

Now suppose t = n1 +  1 is a nonintegral rational. Then K = (p1 , . . . , pn +n  )n2                                                                                                                         1      2 

has n1  + 1 free centers  and  n2  − 1 > 0 satellites,  all of them  proximate to pn1 ; 
so Een1   = En1 − En1 +1 − · · · − En1 +n2 .  A simple unloading  computation  (see 
Remark  2.8Def.2.8 and 2.14Def.2.14) then  shows that 

H 0 (OS (−κ))  =   H 0 (OS 

∼=    H 0 (OS 

(3L − 
X 

Ei )) 

(3L − 2E1  − (E2 + · · · + En1 ))
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(the divisors Ẽn1 , Ẽn1 −1 , . . . , Ẽ1  intersect negatively and have been subtracted). 
Consequently, SK  is anticanonical exactly  when there  exists a cubic singular  at 
p1  and  going through the  free points  p2 , . . . , pn1 .  (If n1  > 1 then  both  p2  and 
p3  are free, so if the  cubic is irreducible  its singularity is a node.)  For n1  ≤ 7, 
there  is always such a cubic, so (1) holds, while for a general choice of the  free 
points  we must  have n1  ≤ 7, so (2) holds. 

If the continued fraction  for t has more than  2 coefficients n1 , n2 , . . . , nr , the 
corresponding  unloading  computation consists in subtracting, for i = r − 1, r −
2, . . . , 1, the  divisors  Ẽn1 +···+ni , Ẽn1 +···+ni −1 , . . . Ẽn1 +···+ni  1 +1 , and  leads  to
H 0 (OS (3L − 2E1  − (E2 + · · · + En1 +1 )), so SK  is anticanonical exactly  when 

and  going through the  free points  p , . . . ,
there  exists  a cubic  singular  at  p1                                                                                              2 

pn1 +1 .   Such  a cubic  always  exists  if n1   ≤ 6, so (1)  holds,  and  for a general 
choice of the free points, we must  have n1  + 1 ≤ 7, so (2) holds. 

 
The next  lemma is needed for the proof of Proposition 3.6Def.3.6. 

 
Lemma 3.2.   Let v(ξ, t) be a divisorial  quasimonomial valuation  (so t is ratio- 
nal),  and SK  the blowup of its cluster  of centers. Let B = [1, 3] ∪ {3 +  1 }n  N ∪ 
{4, 5} ⊂ R. 

 

1.  If t ∈ B, then −κ − L is effective on SK . 
 

2.  If −κ − L is effective on SK  for very general  ξ, then t ∈ B. 
 

Proof.  The  proof is similar  to the  one for Proposition 3.1Def.3.1.  The  integer 
cases are well known and easy to see.

Next  say t = n1  +   
1

 

is a nonintegral rational.  Then  (−κ − L) · Een1 < 0,

so unloading  (as  in the  proof of Proposition 3.1Def.3.1)  gives H 0 (OS (−κ −
L)) ∼= H (OSK (−κ − L − Een1 ) ∼= H (OSK (2L − 2E1  − (E2 + · · · + En1 )) . The
class of the  proper  transform of the  line through p1   in the  direction  of p2   is 
Le  = L − E1  − · · · − Ei  for some 2 ≤ i  ≤ n1  + 1.   Thus  (2L − 2E1  − (E2 + 
· · · + En1 )) · Le < 0. Therefore,  if n1  ≤ 3, subtracting Le  and unloading  we have
H 0 (OS (2L − 2E1  − (E2 + · · · + En ))) ∼= H 0 (OS (L − E1  − E2 )) = 0.  Thus
(1) holds for such t, while for a general  choice of the  free points  we must  have 
n1  ≤ 3, so (2) holds for such t. 

Finally, if the continued fraction for t has more than  2 coefficients ni , the cor-
responding  unloading  computation leads to H 0 (OS (−κ − L)) ∼= H 0 (OS (2L −
2E1 − (E2 + · · · + En1 +1 )) . Again Le = L − E1 − · · · − Ei for some 2 ≤ i ≤ n1 + 1,
so subtracting Le and unloading  gives H 0 (OS (2L − 2E1 − (E2 + · · · + En1 +1 )))
H 0 (OS (L − E1  − · · · − En1 +2− i )).  The  latter is clearly nonzero if n1 ≤ 3, so
(1) holds, and  for a general  choice of the  free points,  we must  have n1  ≤ 2, so 
(2) holds. 

 
Remark  3.3.  Note that if t ≤ 7, then  K  has at  most  7 free centers,  so there  is 
always a divisor Γe  in |3L − 2E1  − 

P
i>1,pi   free  Ei |.  For  general  ξ, p1 , p2 , p3  are 

 
not aligned and p1 , . . . , p6  do not belong to a conic, so Γe can be assumed  to be 
the proper transform of an irreducible  nodal cubic Γ, and ΓK = Γe + 

P 
Eei  on SK 

is a particular anticanonical divisor which contains  all exceptional  components 
(independently of t). For nongeneral  ξ, Γe may be reducible, but ΓK = Γe + 

P 
Eei  

still determines an effective anticanonical divisor which contains  all exceptional 
components.
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Theorem 3.4.   Let v(ξ, t) be a divisorial  quasimonomial valuation  with t ≤ 7, 
and  SK  the  blowup of its  cluster  of centers.  Let  s  be the  number  of centers. 
Then  the number  of (−1)-curves other than  Es = Ees is at most s, and NE(SK ) 
is a polyhedral  cone,  spanned  by the classes  of the Eei  , Γe  and  the (−1)-curves, 
where Γ is a nodal cubic as above. 

 
Proof.  Let  ΓK  be an  effective anticanonical divisor  containing  all exceptional 
components  Eei ; for general ξ we can write ΓK = Γe + 

P 
Eei , where Γ is a nodal 

cubic.   Particular cases  in  which  the  cubic  is reducible  are  treated  similarly 
and  we leave the  details  to the  reader.   We claim that every irreducible  curve 
C ⊂ SK  which is not  a component  of ΓK  lies in NE(SK )   .  Indeed,  C  is the 
proper  transform of a curve  πK (C ) ⊂ P2 ; if πK (C ) does not  go through the 
origin p1  of K , then  C intersects Γe and so 

 

C · κ = −(C · (ΓK )) = −(C · Γe) < 0 . 
 

Otherwise,  C intersects some Eei  and so 
 

C · κ = −(C · (ΓK )) ≤ −(C · Eei ) < 0 . 
 

Thus  by Mori’s cone theorem,  NE(SK ) is generated by the rays spanned  by the 
components  of ΓK and the (−1)-curves, so it only remains to bound the number 
of (−1)-curves. 

But  a (−1)-curve C satisfies C · κ = −1, so if it is not  a component of ΓK , 
it must  intersect it in exactly  one component.  Write  C = dL − 

P 
mi Ei .  If C 

meets  only Eek , it must  satisfy  mj   = 
P

pi  pj  
mi (i.e., C · Eej   = 0) for all j = k,

mk  = 
P

pi  pk mi  +1 (i.e., C ·Eek = 1) and 3d−
P 

mi = 1 (i.e., C ·ΓK = 1). These
are s + 1 linearly  independent conditions  which uniquely  determine the class of 
C ; so there is at most one (−1)-curve meeting Eek . On the other hand,  C cannot 
meet only Γe, because then C · Eej   = 0 for all j, which implies mj   = C · Ej   = 0 for 
all j, and hence 1 = C · ΓK = 3d − 

P 
mi = 3d. Thus the number  of (−1)-curves 

not components  of ΓK  is at most s. 
 

Remark  3.5.  Along the way we proved that there  are finitely many curves with 
negative  selfintersection  when t ≤ 7. Indeed,  if C is such a curve, and it is not a 
component of ΓK = Γe+

P 
Eei  then C ·κ < 0, which implies 0 > C 2 +C ·κ = 2g−2, 

so C is a rational curve and in fact a (−1)-curve, of which there  are at most s. 

 
For  t ∈ B,  one can be a bit  more precise:  not  only do the  negative  curves 

generate  the  Mori cone over  R,  they  generate  the  monoid  of effective classes 
(over N). 

 

Proposition 3.6.   Let v(ξ, t) be a divisorial  quasimonomial valuation  with t ∈ 
B,  t > 1,  and  SK  the  blowup of its  cluster  of centers.  Let  s  be the  number 
of centers.  Then  the  monoid  in  Pic SK  

∼= Zs+1  of the  effective classes  has  a 
minimal  (finite)  set of generators consisting  of the classes of the Eei , the (−1)- 
curves,  and the components  of −κ − L meeting  −κ − L negatively. 

 
Proof.  Thanks  to Lemma 3.2Def.3.2, we can apply [17, Proposition III.ii.1].
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Remark  3.7.  A similar  result  holds for any divisorial  quasimonomial valuation 
v(ξ, t) when  t = 4 +   1  , namely  the  effective monoid  in Pic SK  is generated 

by Eei , i = 1, . . . , s = n1  + n2 , and  the  proper  transform Ee0   of L − E1  − E2 

(and  Q = 2L − E1  − · · · − E5   if Ee0 = L − E1  − E2 , i.e., if p3  does not  belong 
to the  line through p1  in the  direction  of p2 ).  We sketch  the  argument in case 
Ee0 = L − E1  − E2 .  Take  the  basis  D0 , . . . , Ds  for the  divisor  class group  of 
SK ,  satisfying  Di · Eej    = δij  ,  where  δij    is Kronecker’s  delta,   hence  δij    = 0 
for i = j and  1 if i = j.  (Thus  Di  is just  the  basis  dual  to  Eej  , specifically: 
D0    = L,  D1    = L − E1 ,  D2    = 2L − E1   − E2 ,  D3    = 2L − E1   − E2   − E3 , 
D4   = 2L − E1  − E2  − E3  − E4 , D5   = Q  = 2L − E1  − E2  − E3  − E4  − E5 , 
D6  = 4L − 2E1  − 2E2  − 2E3  − 2E4  − E5  − E6 , D7  = 6L − 3E1  − 3E2  − 3E3  − 
3E4 −E5 −E6 −E7 , D8  = 8L−4E1 −4E2 −4E3 −4E4 −E5 −E6 −E7 −E8 , and so on, 
so for 4 < i ≤ s −4 we have Di+4 = 2iL − iE1 − iE2 −iE3 − iE4 −E5 −. . . −Ei+4 .) 
Every  prime  divisor D not  among  the  Eej    is 

P
i (D · Eei )Di , hence it suffices to 

check the divisors Di . It is easy to write down the classes Di explicitly and then 
to check that each Di is a nonnegative integral  sum of classes Eej  , j ≥ 0, when 
i < 5, and  a nonnegative integral  sum  of the  classes Q and  Eej  , j ≥ 1, when 

i ≥ 5. (Essentially the  same argument works when Ee0 = L − E1  − · · · − El for 
l > 2, except  the  result  is that Di  is a nonnegative integral  sum of the  classes 
Eej  , j ≥ 0, for all i.  In this case we note that Q · Ee0 < 0 so Q is no longer prime, 
and Ee0 · Ee4 having  to be nonnegative forces l ≤ 5.)

In fact, we can show that a similar result holds for t = n1 +  1
 also for n1  = 5

and 6, namely  that there  are only finitely many  prime divisors of negative  self- 
intersection on SK , and  they  generate  the  effective monoid.  The  proof is more 
involved,  however,  since,  for n1   = 5, D6   = 2L − E1  − · · · − E6   need  not  be 
effective but  it could be and  if it is, it may but  might not  be a prime  divisor. 
Likewise,  for n1   = 6, additional cases arise:   3L − 2E1  − E2  − · · · − E7   and 
5L − 2E1  − · · · − 2E6  − E7  − E8   are effective but  may or might not  be prime, 
and 2L − E1  − · · · − E6   and 2L − E1  − · · · − E7   may or might not be effective. 
Nonetheless,  the  proof follows similar  lines (in  each  of the  several  cases,  find 
an explicit  finite set of generators  for the effective monoid, and then  show each 
generator is a sum  of negative  curves).   Because  checking  the  various  cases is 
somewhat  lengthy,  we do not include the proof here. 

 
For 7 < t < 8, it is not clear which values of t give polyhedral  Mori cones, but 

C. Galindo  and F. Monserrat [16] give some positive  results  in this context. In 
particular, their Corollary 5, (1) shows that for t = 7+1/n2  with n2  = 1, 2, . . . , 8, 
NE(SK ) is polyhedral.   We show this result  is sharp,  in the sense that NE(SK ) 
is not  polyhedral  for n2   > 8,  provided  that ξ is very  general  (see  Corollary 
3.11Def.3.11).   On  the  other  hand,  parts  (2)  and  (3)  of [16, Corollary  5] are 
sharpened by Theorem  3.4Def.3.4 above. 

In  preparation for proving  Corollary  3.11Def.3.11,  we first  prove  a  result 
concerning  prime divisors C with C 2  < −1. 

Proposition 3.8.   Let v(ξ, t) be a very general  divisorial  quasimonomial valu- 
ation  with t = 7 + 1/n2   for n2   ≥ 1, and  let SK  be the blowup of its cluster  of 
centers. The only prime  divisors C in SK  with C 2  ≤ −2 are  components  of the 
exceptional  divisors Ei . 

Proof.  As before, let Γ be a nodal cubic curve which has its node at the origin
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K

 

 
 
 
 

and  goes through six  additional free  centers,   p2 , . . . , p7   ∈ K .   Then  ΓK   =
Γe + 

P7 
Ei on SK  is the unique effective anticanonical divisor.i=1  
e 

By adjunction we have C 2 + κS 

 

· C = 2g − 2, so C 2  < −2 implies ΓK · C < 0,
hence C is a component of ΓK . Computing the self-intersection of each of them
shows that the  only possibility  is C = Ee7 = E7  − E8  − · · · − Es where again  s 
is the total  number  of blowups and C 2  = −1 − n2 .

By adjunction again, if C 2  = −2, then  C is rational and κS · C = 0, i.e., it
2)-curve.  Thus  the  question  is what  (− 2)-curves  can occur on SK .  The

exceptional  components  Eei   for i = 7, s are  (−2)-curves.  Now assume  that C 
is not  one of them.   Then  ΓK · C = 0 implies C · Eei  = 0 for i = 0, . . . , 7, and 
C · Eei  ≥ 0 for i > 7. 

Write  C = dL − m1 E1  − · · · − ms Es . The constraint C · Ee7 = 0 gives m7  = 
m8  + · · · + ms . The constraints C · Eei  = 0 for i = 1, . . . , 6 give m1  = · · · = m7 . 
Taking  m = m1 , C · Γe = 0 gives 3d = 7m + m8  + · · · + ms = 8m, so d = 8m/3. 
Note that d is an integer. 

Consider the case that n2  = 1. Then −2 = C 2  = (8m/3)2 − 8m2  = −8m2 /9. 
This has no integer  solutions,  so no C exists. 

Next  consider  the  case that n2   = 2, so s = 9.  The  possible solutions  C to
C 2  = −2, C · κS = 0 with C · L ≥ 0 are known (see the second half of the proof

Ej  ) − i, j ≤ 9, i = j , 
0;9, i, j, k distinct, r ≥ 

(2L − Ei1  − · · · − Ei6 ) − rκSK  with 1 ≤ i j ≤ 9, i j distinct for 1 ≤ j ≤ 6, r ≥ 0; 
and (3L − 2Ei1  − Ei2 − · · · − Ei8 ) − rκSK , 1 ≤ i j ≤ 9, i j distinct for 1 ≤ j ≤ 8, 
r ≥ 0.  An exhaustive check shows that each of these  divisors  intersects some 
exceptional  component or Γ negatively,  and thus  is either  itself a component of 
an exceptional  curve, or is not reduced  or irreducible. 

Now consider  the  case  that n2    ≥  3,  so s  ≥  10,  and  we can  write  C  = 
dL−m(E1 +· · ·+E7 )−m8 E8 −· · ·−ms Es = (8m/3)L−m(E1 +· · ·+E7 )−m8 E8 − 
· · ·−ms Es . Let m = 3b, so C = 8bL−3b(E1 +· · ·+E7 )−m8 E8 −· · ·−ms Es . Then 
ΓK · C = 0 gives 3b − m8 − · · · − ms = 0 and C 2  = −2 gives b2 − m2 − · · · − m2  = 

8                        s 
−2.   Numerical  considerations no longer  suffice; there  are  many  solutions  to 
3b − m8  − · · · − ms = 0 and  b2 − m2  − · · · − m2   = −2.  For  example,  we have 

8                          s 
C = 8L − 3(E1 + · · · + E7 ) − E8  − E9  − E10  (i.e.,  s = 10, n2   = 3, b = 1, and 
m8   = m9   = m10   = 1).  The  following lemma  however  shows that such C  can 
not be the class of a prime divisor, and finishes the proof. 

 
Lemma 3.9.   Let SK  be as in Proposition 3.8Def.3.8.   Then  there  is no prime 
divisor C on SK  with C · κSK  = 0 other  than  Eei  for i = 7. 

 

Proof.  By the  end of the  proof of Proposition 3.8Def.3.8, if such a C exists  it 
must  be C = dL − m(E1 + · · · + E7 ) − m8 E8  − · · · − ms Es , where d = 8m/3, 
m = 3b = m8  + · · · + ms for some b, and m8  ≥ · · · ≥ ms > 0. The divisor class 
8L − 3(E1 + · · · + E7 ) is effective and base point free, and has irreducible  global 
sections;  in fact  it  is the  class of a homaloidal  net,  see Proposition  5.4Def.5.4 
below.  In particular it is nef.  Pick an irreducible  B ∈ |8L − 3(E1 + · · · + E7 )|. 
Since B · Γe = B · Eei  = 0 for i < 7, we see B|ΓK    is a divisor which vanishes  on 
each  component  Eei  , i < 7 of ΓK , and  consists  of a divisor  B0  of degree 3 on 
the interior  of component Ee7 . Since Ei  |ΓK  = Es |ΓK  for i ≥ 8 and Ei is disjoint 
from Eej   for i ≥ 8 and j < 7, we see (−m8 E8 − · · · − ms Es )|ΓK  is a divisor which
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is trivial  on each  component  of ΓK  except  Ee7 , and  on Ee7 it  gives the  divisor 
(m8 + · · · + ms )p8  = mp8  = 3bp8 . Thus OΓK (C ) is the same as OΓK (bB0 − 3bp8 ). 

Consider  the restriction exact  sequence 
 

0 → OSK (C − ΓK ) → OSK (C ) → OΓK (C ) → 0.
 

Then, since C is by assumption a prime divisor, we have h0 (SK , OS 

h0 (OS
 

 

(C −ΓK )) <

K (C )),  which by taking  cohomology of the  short  exact  sequence implies
h0 (OΓ (bB0 − 3bp8 )) > 0. But deg(bB0 − 3bp8 ) = 0 so h0 (OΓ (bB0 − 3bp8 )) > 0
implies bB0

 − 3bp8 ∼ 0 (where ∼ denotes  linear equivalence).  Since the class B0

is fixed of positive degree but p8 is very general, this would imply that 3b(p − q)
for every pair of interior  points p, q ∈ Ee7 , contradicting the fact that the identity 
component of Pic(ΓK ) is isomorphic to the multiplicative group C of the ground 
field (and so not every element is a torsion element).  Thus there is no such prime 
divisor C . 

 

Remark  3.10.  When 8 ≤ s ≤ 15, it is enough for p8  to be a general, rather than 
very general, point of Ee7 in order to conclude that SK has no (−2)-curves other 
than  those  arising  as components  of the  exceptional  loci of the  points  blown 
up.  To see this,  consider  a prime  divisor C ⊂ SK  such that KSK  · C = 0 and 
C ·L > 0. Write C ∼ dL−m1 E1 −· · ·−ms Es . Then,  as above, C = dL−m(E1 + 
· · · + E7 ) − m8 E8  − · · · − ms Es = b(8L − 3(E1 + · · · + E7 )) − m8 E8  − · · · − ms Es 

and m = m8  + · · · + ms , so 
 

−2 = C 2  = b2 − m2  − · · · − m2  ≤ b2 − 
    m      

(s − 7) = b2 s − 16 
,8                          s 

 
hence for 8 ≤ s ≤ 15 we have 

(s − 7)2 s − 7

 

d2  = 8b2 ≤ 8 
2s − 14 

. 
16 − s 

 

Thus  for 8 ≤ s ≤ 15 we have d2  ≤ 128, so d ≤ 11. 
I.e.,  for 8 ≤ s ≤ 15 we see that d is bounded  (i.e.,  C · L ≤ 11) and  hence 

that there  are  only finitely  many  possible (−2)-classes  C .  Since it  is only for 
these  classes that we must  avoid C |−KX  = 0 in order for C not to be effective, 
it  is enough  for p8  to  be general,  in order  to  know that every  (−2)-class  is a 
component of the exceptional  locus of a blow up. 

 
Corollary 3.11. Let v(ξ, t) be a very general  divisorial  quasimonomial valua- 
tion  with t = 7  + 1/n2   for n2   ≥ 1, and  let SK  be the blowup of its  cluster  of 
centers.  Then  NE(SK ) is a cone  with at  most  countably  many  extremal  rays, 
spanned  by the  classes  of the  Eei ,  Γe  and  the  (−1)-curves, where  Γ is a  nodal 
cubic as above.  Moreover,  when n2  > 8, there  are  infinitely  many (−1)-curves. 

 

Proof.  Because  of Mori’s theorem,  and  because  every  divisor  C  in NE(SK )<

either  is a component of ΓK = Γe + 
P7 Ei or satisfies C · ΓK = 0, it is enoughi=1  

e 
by Proposition 3.8Def.3.8 to show that the only prime divisors with C · ΓK = 0 
are the (−2)-curves of the form Eei . But  this follows from Lemma 3.9Def.3.9. 

There  will indeed be infinitely many extremal  rays when n2  ≥ 9, because in 
this situation there are infinitely many (−1)-curves C . Briefly, we reduce to the 
case that SK  is the blow up of a cluster  of 9 infinitely near points  coming from
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blowing up 9 times  at  a very general  point of a nodal  cubic.  In this  situation, 
the  only restrictions for a divisor C with  C 2  = C · κ = −1 to be a (−1)-curve 
follow from  the  proximity   inequalities, which  impose  restrictions only  to  the 
monotonicity of the multiplicities of C at the centers  of the blowups. 

In more detail,  apply  the degree 8 Cremona  map Φ8  given by |8L − 3(E1 + 
· · · + E7 )| (see Proposition 5.4Def.5.4), which maps SK  to P2 , mapping  E7   to a 
nodal cubic Γ0  and representing SK  as a blowup of P2  of two clusters  of points.
One  is a cluster  of 7 points  p0 , . . . , p0 on Γ0  infinitely  near  the  node,  and  the1                7
other  is a cluster  of n2   points  p0 , . . . , p0 on Γ0  infinitely  near  p0 , which is a8                7+n2                                                                8
very  general  point  of Γ0 .  If n2   ≥ 9, the  blowup  of p0 , . . . , p0 gives a surface8                16
S with  infinitely  many  (− 1)-curves.   Blowing up the  remaining  points  p0

 does 
1)-not affect this, since none of the remaining  points p0  can be on any of the (− 

curves on S.  (This  is because  the  generality  of v(ξ, t) causes every (−1)-curve
on S except  E0 to meet  the  proper  transform Γe0  at  points  not  infinitely  near
to either  p1  and  p8 .  For the  fact that S has infinitely many  (−1)-curves, using

 0                          0 

the notation of Remark  3.12Def.3.12, note that there are infinitely many classes
C = dL0 −m8 E0 −· · ·−m16 E0 with C 2  = C κS   = −1 such that m8  ≥ · · · ≥ m16 ,8                               16
where κS is the canonical class of S.  In fact it is not hard  to see that all C with 

2
C 2  = C κS   = −1 are precisely the  classes C = E0

 

arbitrary class satisfying  N · κS   = 0 and  N · E0
 

+ N +  N   κS   where N  is an 
= 0, hence N  is any  integer

linear combination of L 0 − E0  − E0  − E0 , Ee0  = E0  − E0 , . . . , Ee0 = E0 − E0   .8           9           10       8            8           9 14            14           15
Clearly  there  are not only infinitely many  such C but  also infinitely many  also 
satisfying  m8   ≥ · · · ≥ m16 .  Any divisor  D  on S  with  D · κS   = 0 is by linear
algebra  an integer  linear  combination of L 0  − E0  − E0  − E0 , Ee0 , . . . Ee0 .  If D8            9            10       8              15 

is in addition  a prime divisor but  not  one of the  Ee0  nor −κS , then  D is in the 
kernel of the functorial  homomorphism π : Pic(S)  → Pic(Γe0 ), but the expression
of D  as a linear  combination of L 0  − E0  − E0  − E0 , Ee0 , . . . , Ee0 must  involve8            9            10       8                 15
L 0 −E0 −E0 −E0 , which implies that the image of L 0 −E0 −E0 −E0 under π has8         9         10 8         9         10
finite order, contradicting the cluster p8 , . . . , p7+n2   

being very general.  Thus the
 0                         0

only prime divisors satisfying D · κS   = 0 are Ee0 , . . . Ee0 
 

and −κS . It now follows8 
by [23, Proposition 3.3] that every class C = dL

 15 
− m8 E8  − · · · − m16 E16  with0                             0                                                       0 

2
 

C   = C κS   = −1 such that m8  ≥ · · · ≥ m16   is the class of a (−1)-curve.) 
 

Remark  3.12.  Here we explain  the  action  of Φ8 , used in the  proof of Corollary 
3.11Def.3.11, in terms of the components  of E1 . With s = 7+n2 , the components 
are Ee1 = E1  − E2 , Ee2 = E2  − E3 , Ee3 = E3  − E4 , Ee4 = E4  − E5 , Ee5 = E5  − E6 , 
Ee6 = E6 −E7 , Ee7 = E7 −E8 −· · ·−Es , Ee8 = E8 −E9 , . . . , Ees−1  = Es−1 −Es and 
Ees = Es . Applying Φ8  is equivalent to blowing down the (−1)-curve 3L − 2E1 − 

E2  − · · · − E7 , followed by Ee1 , Ee2 , Ee3 , Ee4 , Ee5 , and Ee6 . Under  this blow down, 
Ee7 maps to a nodal cubic C 0   whose node is the image of the contracted curves, 
while Es , Ees−1 , · · · , Ee8  contract to a smooth point on this cubic.  Reversing this 
blow down gives a blow up of P2  at  two clusters  of points,  the  first p0 , . . . , p0 , 1                7
and  the  second p0 , . . . , p0 where p0 , p0 ∈ P2   and  all of the  points  are  free but8                s                1     8 
lie on the  proper  transform of C 0 .  In terms  of the  exceptional  divisors  E0  of
the  centers  p0   we have  Ee0 = E0  − E0 = E6  − E7 , Ee0 = E0  − E0 = E5  − E6 ,i                   1             1            2 2             2            3

3  = E3  − E4  = E4  − E5 , Ee4 = E4  − E5  = E3  − E4 , Ee5 = E5  − E6  = E2  − E3 ,Ee0            0                  0
 

0                   0                  0 0                   0                  0

6   = E6  − E7   = E1  − E2 , E7   = Ee7 = 3L − 2E1  − E2  − · · · − E7 , and  also
 

Ee0              0                    0                                                             0                      0
 

8  = E8  − E9   = E8  − E9 , . . . , Ees−1 = Es−1 − Es = Es−1 − Es and  Es = Es .Ee0             0                   0
 

0                             0                            0                                                                                 0
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1                s                 sequence                                                  1               s 

√
b

→∞

 

 
 
 
 

We  also have  L 0   = 8L − 3E1  − · · · − 3E7 , and  Ee7  = E7  − E8  − · · · − Es = 
3L 0 − 2E0  − E0  − · · · − E0 . 1           2                         s 

 

 

4    A  variation on  Nagata’s conjecture 
 

In this section we elaborate  on the close analogy with Nagata’s  conjecture. 
Let K  be a finite union  of finite weighted  clusters  on P2 , and  assume  that 

the proximity  inequalities 
mp  ≥ 

X 
mq 

q   p 

are satisfied,  with the sum taken  over all points  q ∈ K  proximate to p. 
Then                                

X
HK,m = π∗ 

OSK  
− 

 

 
is an ideal sheaf on P2  for which 

 
p∈K 

mp Ep 

 
h0 (HK,m (d)) = 

 

(d + 1)(d + 2) 
2 

X 
− 

p∈K 

 

mp    (mp + 
1) 
2

 

for d     0, and its general member defines a degree d curve with multiplicity mp 

at each p ∈ K . 
It  is expected  that, if K  is suitably  general,  then  the  dimension  count  is 

correct  as soon as it gives a nonnegative value: 
 

Conjecture 4.1  (Greuel-Lossen-Shustin, [13, Conjecture 6.3]). Let K  be a fi- 
nite union of weighted clusters on the plane, satisfying the proximity inequalities, 
and  HK,m  the corresponding ideal sheaf.  Assume  that  K  is general  among  all 
clusters  with the same proximities,  and let d be an integer  which is larger  than 
the sum of the three  biggest multiplicities  of m.  Then

 

h0 (HK,m (d)) = max 


0, 

 
(d + 1)(d + 2)     X 

− 

 
mp    (mp + 1)  

.
               2                

p∈K            
2          

 
Proposition 4.2.  If the Greuel-Lossen-Shustin conjecture holds, then ∀t ≥ 9 a 
very general  quasimonomial valuation  v(ξ, t) is minimal. 

 
Proof.  By  continuity of µ(t), it  is  enough  to  consider  rational t >  9.   Let 
K  = (p , . . . , p )  be  the 

b                
of centers,  with  weights  (v , . . . , v ).   For 

each  integer  k > 0, set  mk   = kt/vs .  We shall prove  that there  is a sequence
of integers  dk  with  mk   > dk 

√
t and  limk mk /dk = 

√
t such that if ξ is very

general, then  the valuation ideal Imk    has no sections  of degree d. It will follow
that µ(ξ, t) ≤ limk→∞ mk /d ≤ t and v(ξ, t) is minimal.

By  Lemma  2.9Def.2.9,  the  ideal  Imk      =  (πK )∗ (OSK (− 
P 

m̄ i Ei ))  is  sim- 
ple  and  the  three  largest  multiplicities are  m̄ 1   = m̄ 2   = m̄ 3   = k/vs .   Hence 
m̄ 1  + m̄ 2  + m̄ 3   = 3k/vs   < 

√
tk/vs .   Without loss of generality  we may  as- √

sume  that k is large enough  that there  exist  integers  dk   < mk / t which also
satisfy dk  > m̄ 1 + m̄ 2 + m̄ 3 . In this case the hypothesis  in conjecture  4.1Greuel- 
Lossen-Shustin,  [13, Conjecture 6.3]Def.4.1  is satisfied  and  h0 (HK,m (dk ))  =
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/ i

≥

b

√  

t).

p

 
 
 
 

max {0, (dk  + 1)(dk  + 2)/2 − 
P 

m̄ i (m̄ i + 1)/2} .  By  way  of contradiction,  as- 

sume Imk   has sections of degree dk . Then (dk + 1)(dk  + 2)/2 ≥ 
P 

m̄ i (m̄ i + 1)/2,
which together  with  dk  < mk    

√
t = 

= m  , a contradiction.
 

P 
m̄ 2  implies 3dk  + 2 > 

P 
m̄ i ≥ 10 m̄ 1  >

kt/vs          k 
 

With  this in mind, we propose the following: 
 

Conjecture 4.3  (Nagata’s  Conjecture for quasimonomial valuations).  For  all 
t    9, we have µ(t) = 

√
t. b 

 

Proposition 4.4.  Conjecture 4.3Nagata’s  Conjecture for quasimonomial  valuationsDef.4.3 
implies Nagata’s  conjecture. 

 

Proof.  Let  t > 9 be a nonsquare  integer.   By a “collision  de front”  [20] and 
semicontinuity, Nagata’s  conjecture  for t points  would follow by showing that, 
for a  very  general  ξ(x)  ∈ C[[x]],  and  for every  couple  of integers  d, m  with 
0 < d < m

√
t, the  ideal  (xt , y − ξ(x))m ∩ C[x, y] has  no nonzero  element  in 

degree d. But  this is an immediate  consequence of µ(t) = 
√

t. b 
 

 In view of the computations in next section, we expect that in fact the range 
of t for which µ(t) = 

√
t is larger,  see Conjecture 5.11Def.5.11. b 

 
 

5    Supraminimal curves 
 

If some valuation v is not  minimal,  this  is due  to  the  existence  of a curve  C 
(which may be taken  irreducible  and reduced)  with larger valuation than  what 
one would expect  from the  degree.  These  curves  will be called supraminimal, 
and are the subject  of this section.  For simplicity,  we fix p1  = (0, 0) ∈ A2  ⊂ P2 

as before. 

Lemma 5.1.   If there  is an irreducible  polynomial f ∈ C[x, y] with 
 

1 
v(ξ, t; f ) > p

vol(v(ξ, t)) 
deg(f ) ,

 
 

then v(ξ, t; f ) = µ(ξ, t) deg(f ). 
µ(ξ, t) >           1             , then  there  is such an  irreducible  polyno-Moreover,  if b 

mial f . 

√
vol(v(ξ,t))  

 
 
µ(ξ, t).In the case above we say that f computes  b 

 

Proof.  By continuity of µ(ξ, t) as a function  of t, it  is enough  to consider  the 
case t ∈ Q.  Let v = v(ξ, 

b
 

Let f be as in the claim, and d = deg f . It will be enough to prove that, for 
every polynomial  g with degree e and v(g) = w >     e       , f divides g. Choose 

vol(v) 

an integer  k such that kw ∈ N is an integer  multiple  of t, and consider the ideal 
 

Ikw = {h ∈ C[x, y] | v(h) ≥ kw}. 
 

A general  h  ∈ Ikw  has  kw/t  Puiseux  series roots,  each  of them  of the  form 
ξ(x) + axt + . . . ; therefore  the local intersection multiplicity of h = 0 with f = 0 
is

kw                  kwd kwd
I0 (h, f ) ≥ v(f ) >             = 

t            t   vol(v) 
√

t 
.                             (‡)
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√

√                           ·

b

f                                       ≥   f

f                                                     is 

≤   ≤

the function

 

 
 
 
 

Since obviously gk  ∈ I , the intersection multiplicity I0 (gk , f ) is bounded  below 
by (‡Supraminimal curvesequation.5.3), and therefore 

wd 
I0 (g, f ) > √

t 
= dw

 
 

so f is a component of g. 

p 
vol(v) > de,

µ(v) >       1         .  So there  is a polynomial  g ∈ C[x, y] of degreeNow assume  b √
vol(v)

e with  v(g) >     e       .  Since v(f1     f2 ) = v(f1 ) + v(f2 ), it follows that at  least 
vol(v) 

one irreducible  component f of g, satisfies v(f ) >    deg   f  

. 
vol(v) 

 

Proposition 5.2.  Assume that d ∈ N, m1 /n1 , . . . , mr /nr ∈ Q, with gcd{mi , ni } = 
1 are  such that,  for a very general  ξ(x),  there  exists an  irreducible  f ∈ C[x, y] 
with deg(f ) = d which decomposes  in C[[x, y]] as a product  of r irreducible  se- 
ries  f = f1 . . . fr with ordx f i (x, ξ(x))  = mi , ordx f i (x, y) = ni .  Consider  the 
tropical  polynomial 

r 

µf (t) = 
X 

min(ni t, mi ). 
i=1 

Then  µ(t) ≥ µf (t)/d, with equality at all values of t such that  µf (t) > d
√

t. 
 

Proof.  It is immediate  that v(ξ, t; f ) = µ  (t), so the  inequality µ(t)     µ  (t)/d 
is clear.  Now assume that µ  (t) > d

√
t. This implies that v(ξ, t) 

b 
not minimal, 

µ(v(ξ, t)) = µ(t). b 
 

Example  5.3.  The  easiest  examples  of the  situation described  in Proposition 
5.2Def.5.2 are given by (smooth) curves of degree 1 and 2. 

Namely, for d = 1, m1 /n1 = 2, it is trivial  that for general ξ(x),  there  exists 
a degree 1 polynomial  f with  ordx f (x, ξ(x))  = 2, ord f i (x, y) = 1; one simply 
has to take  the  equation  of the  tangent line to y − ξ(x) = 0, or f = y − ξ1 (x) 
(where ξ1  denotes  the 1-jet). 

In the  same vein, for d = 2, m1 /n1 = 5, it is easy to show that for general 
ξ(x), there exists a degree 2 polynomial f with ordx f (x, ξ(x)) = 5, ord f i (x, y) = 
1, which for general ξ is irreducible;  one simply has to take  the equation  of the 
conic through the first five points infinitely near to (0, 0) on the curve y−ξ(x)  = 0 
(more  fancily,  the  curvilinear  ideal (y − ξ(x)) + (x, y)5  ⊂ C[x, y] has maximal 
Hilbert  function  and colength  5, and therefore  a unique element in degree 2 up 
to a constant factor). 

Proposition 5.2Def.5.2 then  gives that 


t        if 1 ≤ t ≤ 2,  computed by a line, 

 

µ(t) = b 

2          if 2 ≤ t ≤ 4,  computed by a line, 
t/2      if 4 ≤ t ≤ 5,  computed by a conic, 


5/2     if 5     t    25/4,  computed by a conic.

 
In order to construct the supraminimal curves in general position computing 

µ for small values of t, we need certain  Cremona  maps, presumably b 
well known, which have been used by Orevkov  in [26] to show sharpness  of his 
bound  on the degree of cuspidal  rational curves.
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

K K K



 

 
 
 
 

Proposition 5.4.  Let K = (p1 , . . . , p7 ) be a general  cluster  with pi+1  infinitely 
near to pi  for i = 1, . . . , 6. There  exists a degree 8 plane Cremona map Φ8  whose 
cluster  of fundamental points  is K , with all points  weighted with multiplicity  3, 
and satifying the following properties: 

 
1.  The characteristic matrix  of Φ8  is 

    
8       3       3       3       3       3       3       3   


 

                                                                          
  −3    −1    −2    −1    −1    −1    −1    −1                                                                                                                                                       
  −3    −2    −1    −1    −1    −1    −1    −1                                                                                                                                                       
  −3    −1    −1    −1    −2    −1    −1    −1                                                                                .  
  −3    −1    −1    −2    −1    −1    −1    −1                                                                                                                                                       
  −3    −1    −1    −1    −1    −1    −2    −1                                                                                                                                                       
  −3    −1    −1    −1    −1    −2    −1    −1                                                                             

−3    −1    −1    −1    −1    −1    −1    −2 
 

2.  The inverse  Cremona map is of the same type, i.e.,  it has the same char- 
acteristic matrix  and its fundamental points are a sequence, each infinitely 
near  to the preceding  one. 

 

3.  The  only curve  contracted by Φ8  is the  nodal  cubic which is singular  at 
p1  and  goes through  (p2 , . . . , p7 ).   The  only expansive  fundamental point 
is p7 , whose relative  principal  curve is the nodal  cubic going through  the 
fundamental points  of the inverse  map,  and singular  at the first of them. 

 

Recall that the characteristic matrix  of a plane Cremona  map is the matrix 
of base change in the Picard  group of the blow up π : S → P2  that resolves the 
map,  from the  natural base  formed  by the  class of a line and  the  exceptional 
divisors, to the natural base in the image Pb2 , formed by the class of a line there 
(the  homaloidal  net in the original P2 ) and the divisors contracted by the map 
(which  are the  exceptional  divisors of π0  : S → Pb2 ), see [1]. We use it later  on 
to compute  images of curves under  Φ8 . 

 

Proof.  This  proof is taken  from [26, p.  667]; the  only modification  lies in the 
remark  that K  can  be  taken  general.   Indeed,  for K  general,  there  exists  a 
unique  irreducible  nodal  cubic  Γ with  multiplicity 2 at  p1  and  going through 
p2 , . . . , p7 .  Φ8  is then  defined as follows:  let πK  : SK  → P2   be the  blowup  of 
all points  on K .  The  (proper)  exceptional  divisors Ee1 , . . . , Ee6 are (−2)-curves, 
E7   is a (−1)  curve.  The  proper  transform Γe  ⊂ SK  is another  (−1)-curve that 
meets the (proper)  exceptional  divisors Ee1 and E7 . Blow down Γe, Ee1 , . . . Ee6  to
obtain  another  map  π0 : SK  → Pb2 .  Then  take  Φ8  = π0

 ◦ π−1 .  All the  stated
properties  are easy to check. 

 
Denote  F−1 = 1, F0  = 0 and Fi+1 = Fi + Fi−1 the Fibonacci  numbers,  and 

φ = (1 + 
√

5)/2 = lim Fi+1 /Fi the “golden ratio”. 
 

Proposition 5.5.   For  each odd i ≥ 1, there  exist rational curves Ci  of degree 
Fi with a single cuspidal singularity  of characteristic exponent Fi+2 /Fi−2 whose
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i
F

F        
 

2

F

i+2 i

− 

b

; vi

(c)].

µ

.

−

,

i

 

 
 
 
 

six  singular  free  points  are  in  general  position.    These  curves  become  (−1)- 
curves in their  embedded resolution, and are  supraminimal for t in the interval  

 F 2   

F 2      , 
i−2 

2   
i+2 

2 
i

Note  that for i  = 1 the  line  is actually   not  singular  (the  “characteristic 
exponent” is 2, an integer)  but  the  statement in that case means  that the  line 
goes through the  first two of six infinitely  near  points  in general  position,  i.e., 
the exponent is interpreted as mi /ni = 2 in Proposition 5.2Def.5.2. 

 

Proof.  The  existence  of such  curves,  without the  generality  statement, is [26, 
Theorem  C, (a)  and  (b)].  Since the  construction goes by recursively  applying 
the  rational map  Φ8 , and  the  free singular  points  of Ci   are  exactly  the  seven 
fundamental points  of Φ8 , it follows from 5.4Def.5.4 that these  can be chosen 
to be general.  They  are (−1)-curves after  resolution  because the starting point 
of the  construction are the  two lines tangent to the  two branches  of the  nodal 
cubic Γ (which becomes an exceptional  divisor after  Φ8 ) i.e., (−1)-curves (each 
is a line through a point and an infinitely near point). 

Now, with notation as in Proposition 5.2Def.5.2, 
( 

Fi−2 t   if t ≤  
Fi+2 ,

µf (t) = Fi  
Fi+2

 
Fi−2 
Fi+2

Fi                
if t ≥ Fi    2 

. 

supraminimality in the claimed interval  follows. 
 

Corollary 5.6.   For  every odd i,
  

Fi−2
 h 

 F 2
 

Fi+2 

i

µ(t) = 
 Fi     

t   if t ∈ 
i 

F 2 
i−2 Fi−2      

,
b              

Fi+2 

 

h 
Fi+2

 Fi+2 

i

Fi                
if t ∈ Fi−2 

,     2       .
 

Remark  5.7.  We proved that supraminimal values of µ are computed  by a single b
irreducible  curve.  In contrast, we see that the minimal values at t = F 2 /F 2 are
computed both  by Ci   and  Ci+2 .  In fact,  the  two  divisors  Fi+2 Ci   and  Fi Ci+2 

generate  a  pencil  whose  general  members  also  compute  µ(t); they  are  again 
unicuspidal  rational curves classified in [15, Theorem  1.1, 

b
 

Remark   5.8.  In  addition   to  the  preceding  family  of curves,  nine  additional 
(   1)-curves compute  µ(t) for some range of t (see Table  5.1Sporadic  supramin- 
imal curves.   Here (d 

b  
) denotes  the  degree and  multiplicities sequence,  with 

×k  meaning  k-tuple  repetition, and  mi /ni follows the  notation of Proposition 
5.2Def.5.2, with  ×2 again  meaning  repetitiontable.5.1).  The  existence  of these 
curves is proved as follows. D1  and D2  are well known.  The rest are obtained by 
applying the Cremona  map Φ8  to already  constructed curves (the names chosen 
indicate  that curve X ∗ is built from curve X ). Recall that, because the intervals 
where a degree d curve C computes  µ are those where µf (t) ≥ d

√
t (Proposition 

µ) the endpoints  correspond  to values of t where b 
is minimal.  Note that all such endpoints  given in Table  5.1Sporadic  supramin- 
imal curves.   Here (d; vi ) denotes  the degree and  multiplicities sequence,  with 
×k  meaning  k-tuple  repetition, and  mi /ni follows the  notation of Proposition 
5.2Def.5.2, with ×2 again meaning  repetitiontable.5.1 are squares in Q or in the 
quadratic field to which they  belong.  This  is due to the  fact  that they  satisfy 
µf (t) = d

√
t, and  µf (t) is a piecewise affine linear  function  of t with  rational 

coefficients.
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3
                        

4

1

1

−

≤

∈                                      −

i  and

where

2 
i

,

,

 
 
 
 
 

Name                (d; vi )                             mi /ni                                             t 

D1                      (3; 2, 1×6 )                             1,7                                     
h
φ4 , 

  
8 
 

 

D∗                           ×7         ×7
 

 

1   ×2
 

24+
√

457   
2 √     2 

 

2              (48; 18 , 3, 2 )            7, 
  

7 + 8 

      
, 8 17               , 

 
24 − 455

       √      2       √     2 
 

C ∗∗
 

×7    ×7    ×2          ×2                1
 

1                 32−
 

177
 

16+
 

179
1            (64; 24    , 3    , 1    )    7 , 7 + 7+1/2 , 7 + 7 7                , 

     √    2 
11 

√   2 
 

1               (24; 9
 

, 2, 1
 

)                 7, 7 + 7 , 8
 

4             , 
 
12 −    87

D∗                          ×7         ×6 
1                                      6+   22

        √     2                 2 
 

5           (40; 15    , 2    , 1    )          7
 

, 7 + 6+1/2

 

13               , 
  

40  

 

C ∗                        ×7    ×6    ×2 ×2                1 20+ 218 107

      √   2              2 
 

3                  (16; 6    , 1
 

)                     7, 7 + 5

 

5             , 
  

16 

 

C ∗                            ×7    ×5 
1                                           8+ 
 

  
  

35 
 2 

29             43 

 
    √     2 

 

D3              (35; 13×7 , 4, 3×3 )                  7 + 1 , 8   
35− 

13                      2 
877

     √  2              2 
 

1                    (8; 3    , 1
 

)                      7, 7 + 2

 

2            , 
  

8  

 

C ∗                           ×7    ×2 
1                                            4+  2             22

 
D2                       (6; 3, 2×7 )                            1, 8 

    
3+

√
7 
  2

 
2 

 
  

17   2 
 
 

6
 

 
Table  5.1:  Sporadic  supraminimal curves.  Here (d; vi ) denotes  the  degree and 
multiplicities sequence,  with ×k meaning  k-tuple  repetition, and  mi /ni follows 
the notation of Proposition 5.2Def.5.2, with ×2 again meaning  repetition. 

 
 

Example  5.9.  As  an  example,   let  us  show  the  existence  of D∗ .    Let  K   = 
(p1 , . . . , p8 ) be a general cluster  with each point infinitely near to the preceding 
one; we want to show that there  is an irreducible  curve of degree 24 with three 
branches,   two  smooth,  one of which  goes through (p1 , . . . , p7 )  and  the  other 
through all of K , and one singular,  with characteristic exponent 50/7.  Because 
K is general, there  exist a cubic curve D1  with multiplicities [2, 16 , 0] on K and 
another  cubic Γ through K that has a node at some other  point q1 . Choose one 
of the branches  of Γ and let q2 , . . . , q7 be the points infinitely near to q1 on that 
branch.  Apply the Cremona  map Φ8  based on (q1 , . . . , q7 ): then  D∗  = Φ8 (D1 ). 

All these  computations together  show that indeed,  (   1)-curves  compute  µ 
in the anticanonical range:                                                                                         

b
 

 

Theorem 5.10. For t   A, µ(t) is computed by (   1)-curves;  more precisely, the 
(infinitely  many)  curves C  

b     
7 of the curves in table 5.1Sporadic  supramin- 

imal  curves.   Here  (d; vi ) denotes  the  degree  and  multiplicities  sequence,  with 
×k  meaning  k-tuple  repetition, and  mi /ni  follows the  notation of Proposition 
5.2Def.5.2,  with ×2 again  meaning  repetitiontable.5.1. 

 

Figure  1In red,  the  known  behavior  of µ(t) for t    9; in yellow, the  lower 
bound  

√
tfigure.1 shows µ(t) in the ranges   

b       
it is known, together  with the

lower bound  
√

t.            
b

 
 

1                    5 

 

 
µ in ranges of t which do not intersect
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The two curves C ∗∗ and C ∗ compute  b 
the  anticanonical locus A.  We expect  that there  are no more curves with such 
behavior,  and so propose the following strengthening of conjecture  4.3Nagata’s 
Conjecture for quasimonomial valuationsDef.4.3:
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5.1Sp 

 
 
 
 
 

Conjecture  5.11. Let  t ∈ R be such  that  µ(t) > 
√

t. Then  µC (t) > 
√

t for 

a curve C which is either  on the list of table 
b        

oradic  supraminimal curves. 
Here  (d; vi )  denotes  the  degree  and  multiplicities   sequence,  with  ×k  meaning 
k-tuple  repetition, and  mi  /ni  follows the  notation of Proposition  5.2Def.5.2, 
with  ×2  again  meaning  repetitiontable.5.1 or  one  of the  Ci .   Equivalently,  if 
t > 7 + 1/9  is not  contained  in  any  one  of the  intervals  of table 5.1Sporadic 
supraminimal curves.  Here (d; vi ) denotes the degree and multiplicities  sequence, 
with ×k meaning  k-tuple repetition, and mi /ni follows the notation of Proposi- 
tion  5.2Def.5.2,  with ×2  again  meaning  repetitiontable.5.1, then  a very general 
valuation  v(ξ, t) is minimal. 

 
Obviously,  Conjecture 5.11Def.5.11 implies Conjecture 2.4Def.2.4. 

Remark   5.12.  For  t > (17/6)2 , it  is possible  to  show (using  Cremona  maps) 
that no (−1)-curve is ever supraminimal.  Thus  conjecture  5.11Def.5.11 splits 
naturally into  two conjectures:   first,  that all  supraminimal curves  are  (−1)- 
curves,  and  second,  that the  only  supraminimal  (−1)-curves in  the  interval 
[7, 8] are the ones above.  Our evidence for the latter statement is experimental, 
obtained by a computer search. 
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[1]  Alberich-Carramiñana,  M.  Geometry of  the   plane Cremona maps. Lecture Notes   in 
Mathematics, 1769.  Springer-Verlag, Berlin, 2002.  xvi+257 pp.  ISBN:  3-540-42816-X 

[2]  Berkovich, V.  G.,  Spectral theory and  analytic geometry over  non-Archimedean fields. 
Mathematical  Surveys and   Monographs,  33.  American Mathematical  Society, Provi- 
dence,  RI,  1990.  x+169 pp.  ISBN:  0-8218-1534-2 

[3]  Biran, P. Constructing new  ample  divisors out  of old  ones,  Duke  Math. J. 98  (1999), 
113–135. 

[4]  Boucksom, S.,  Favre, C.,  and  Jonsson, M.,  Differentiability of volumes  of divisors and 
a problem of Teissier. J. Algebraic Geom.  18 (2009),  no.  2, 279–308. 

[5]  Boucksom, S.,  Favre, C.,  and  Jonsson, M.,  A  refinement of Izumi’s theorem, preprint 
arXiv:1209.4104 
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[20]  Hirschowitz,   A.,   La   méthode   d’Horace  pour   l’interpolation  a   plusieurs  variables, 

Manuscr. Math. 50  (1985),  337–388. 
[21]  Jonsson, M., Dynamics on Berkovich spaces in low dimensions, in Berkovich spaces  and 

applications, 205–366,  Lecture Notes  in Math., 2119,  Springer, Cham, 2015 
[22]  Küronya, A., A divisorial valuation with irrational volume.  J. of Algebra 262 (2003),  no. 

2., 413–423. 
[23]  Lahyane, M.,  and  Harbourne, B.,  Irreducibility of −1-classes on  anticanonical rational 

surfaces and  finite  generation of the  effective  monoid, Pacific J. Math., 217  (1)  2005, 
101–114. 

[24]  Lazarsfeld, R.,  Positivity in  algebraic geometry. I.  Classical setting:  line  bundles and 
linear  series.  Ergebnisse der  Mathematik und  ihrer  Grenzgebiete. 3. Folge.  A Series  of 
Modern Surveys in Mathematics [Results in Mathematics and  Related Areas. 3rd Series. 
], 48. Springer-Verlag, Berlin, 2004.  xviii+387 pp.  ISBN:  3-540-22533-1  . 

[25]  Manin, Yu I.:  Cubic forms  – algebra, geometry, arithmetic, North Holland (1986). 
[26]  Orevkov, S.  Yu.,  On  rational cuspidal curves. I. Sharp estimate for  degree  via  multi- 

plicities. Math. Ann.  324 (2002), no.  4, 657–673. 
[27]  Zariski,  O.,   Samuel, P.,  Commutative algebra. Vol.  II.  Reprint  of  the   1960  edition. 

Graduate Texts in Mathematics, Vol.  29. Springer-Verlag, New  York-Heidelberg,  1975. 
x+414 pp. 


