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Abstract 

 

The slow melting flesh (SMF) trait in peach [Prunus persica (L.) Batsch] defines a slower process of 

postharvest fruit softening than the prevalent melting flesh (MF) types. This gives a longer shelf-life and a 

delayed harvest time resulting in better fruit quality. Unlike other known fruit texture traits, SMF is 

difficult to measure and has a complex inheritance. We examined this character over two years in the 

offspring of two crosses, both with ‘Big Top’, a SMF nectarine, as female parent, and a melting flesh 

(MF) nectarine as male parent (‘Armking’ and ‘Nectaross’). Following harvest, a texturometer was used 

to provide a textural profile analysis, and fruit firmness evolution was measured with a penetrometer over 

a period of 5 days’ storage at 20ºC. Linkage maps were constructed with a high density SNP chip, and a 

phenotype-genotype analysis allowed the detection of three independent genomic regions where most 

QTLs (quantitative trait loci) were located. Two of these, on linkage groups 4 and 5, explained the 

variability for two characters - maturity date and firmness loss - that is, the QTL on linkage group 4 found 

in the MF parents and that on linkage group 5 in ‘Big Top’. A third region on linkage group 6, identified a 

QTL for maturity date only in ‘Armking’, having no apparent association to the softening process. The 

relationship between maturity date and fruit firmness loss and a hypothesis on the inheritance of the SMF 

character are discussed.        
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Introduction 

 

Postharvest behavior is a critical aspect of quality in the climacteric peach fruit. Depending on the 

postharvest conditions peaches can be kept at most for three to four weeks after harvest (Ramina et al. 

2008). The key aspect determining peach fruit shelf-life is softening, with the melting flesh (MF) types, 

which dominate the peach fresh market, having the fastest softening rate and consequently the most 

reduced postharvest life. Increasing shelf-life has been one of the main objectives of breeding programs 

although the progress has been, to date, quite limited. 

Three peach variants capable of retaining the flesh consistency after harvest have been characterized both 

at the genetic and physiological level. One is non-melting flesh (NMF), characteristic of canning peaches, 

where fruit texture is firm at maturity, softening slowly after ripening without melting (Bassi and Monet 

2008). This character is determined by a major gene (M/m) located in the central region of linkage group 

4 (G4) of the peach map (Peace et al. 2005), with the recessive allele (m) determining the non-melting 

character. The causal gene of M has been associated with the activity of an endopolygalacturonase gene in 

peach (Lester et al. 1996). In fact, M co-locates with the position of a genomic region with various 

endopolygalacturonase genes, two of which, PpEndoPGM and PpendoPGF, corresponding to sequences 

Prupe.4G262200 in v2.0.a1 of the peach genome (ppa006857m in v1.0) and Prupe.4G261900 

(ppa006839m in v1.0), respectively, are responsible for the MF vs. NMF and the clingstone vs. freestone 

characters (Gu et al. 2016). Another trait related with fruit firmness is the stony-hard (SH) flesh type, 

determined by a single gene Hd/hd, where fruit of stony-hard individuals bearing the hdhd genotype are 

characterized by the absence of ethylene production and with high firmness values during postharvest 

storage (Haji et al. 2001, 2005; Begheldo et al. 2008; Giné-Bordonaba et al. 2016). Nonetheless, 

exogenous application of ethylene to SH fruit has been shown to promote postharvest softening (Haji et 

al. 2001; Hayama et al. 2006). This character has been studied in detail by Pan et al. (2015), who 

identified a YUCCA flavin mono-oxygenase gene (PpYUC11, ppa008176m in v1.0, and 

Prupe.6G157400 and Prupe.6G157500 in v2.0.a1 of the peach genome) in the central part of 

chromosome 6, involved in the auxin biosynthesis pathway, as a strong candidate for the Hd gene. A high 

concentration of IAA (indol-3 acetic acid) is required for the normal climacteric ripening process: the hd 

allele of PpYUC11 results in a dramatic decrease of IAA accumulation in stony-hard fruit, thereby 

impairing ethylene production.  

The third trait is for slow ripening (SR) fruit where peaches do not mature and soften at all, even after 

treatment with ethylene, and remain attached to the tree after leaf fall. This character is determined by a 

single gene, Sr/sr (Ramming 1991), located on chromosome 4 (Eduardo et al. 2015; Núñez-Lillo et al. 

2015), but at a different position from the M/m gene. A candidate gene for this character is a NAC 

transcription factor (ppa008301m in v1.0; Prupe.4G186800 in v2.0.a1) responsible for controlling the 

ethylene pathway and possibly involved in peach maturity date (Pirona et al. 2013; Eduardo et al. 2015). 

In contrast to all the above-mentioned, slow melting flesh (SMF) peaches also produce fruit that are hard 

at physiological maturity, similar to MF peaches, but melt at slower rate than MF types during 

postharvest (Bassi and Monet 2008). These features are appreciated by growers and retailers as fruit can 



4 
 

be harvested at a more advanced stage of maturity and shelf-life is extended. In addition, advanced 

maturity at harvest may lead to fruit with improved organoleptic quality by increasing the sugar content 

(Iglesias and Echeverría, 2009). From a physiological point of view, no strong relationships between the 

rate of firmness loss and the capacity of the fruit to produce ethylene have been found when comparing 

SMF and MF varieties (Ghiani et al. 2011; Giné-Bordonaba et al. 2016). Several peach and nectarine 

cultivars from Californian breeders have this SMF character, such as the ‘Rich Lady’ and ‘Diamond 

Princess’ peaches, and the red-skinned, yellow-fleshed nectarine ‘Big Top’, which has become a 

reference for Spanish nectarine production over the last decade (Iglesias 2012).   

Unlike the other three characters (NMF, SH and SR), that have a simple Mendelian inheritance, SMF is 

poorly characterized at the genetic level, in part due to the difficulty of measuring this character (Bassi 

and Monet, 2008). A first approach has been recently provided by Zeballos et al. (2016), who measured 

fruit firmness in a ‘Big Top’ × ‘Venus’ population and found a QTL on G5 of the ‘Big Top’ map which 

explained approximately 20% of the total variation for this character. In this paper we analyze two 

segregating progenies with ‘Big Top’ as one of the parents, and analyze their fruits for several parameters 

related with flesh texture. By doing so, we attempt to provide additional evidence to help in 

understanding the genetic basis of this important character and to facilitate the incorporation of SMF in 

new varieties through breeding programs.   

 

Materials and Methods 

Plant populations 

In this work we used two yellow-fleshed nectarine F1 populations. The first population (N=75) was from 

the cross between ‘Big Top’ and ’Armking’ (Bt×Ak), and the second (N=48) from crossing ‘Big Top’ 

and ‘Nectaross’ (Bt×Nr). ‘Armking’ and ‘Nectaross’, both regular melting (MF) varieties, were used as 

pollen donors, whereas ‘Big Top’ is a SMF variety that was the pistillate parent. Both populations and 

parental lines were grafted on ‘Garnem’ rootstock and grown using standard cultural practices at IRTA’s 

experimental station in Gimenells, Lleida (Spain).  

 

Phenotyping and data analysis 

Fruits were harvested at optimum commercial maturity based on grower’s recommendations and their 

firmness values reached 50.0 ± 5.0 Newtons. Additionally, the visual inspection of all fruits for each tree 

to confirm the appropriate ripe stage of each individual and the maturity date (MD = number of Julian 

days till harvest day) was further recorded. The apparent maturity of each individual fruit, based on the 

index of absorbance difference (IAD = A670-A720; Ziosi et al. 2008; DA-Meter, TR Turoni, Forli, Italy), 

was assessed in the laboratory, and fruit with homogenous medium apparent maturity (based on a normal 

distribution) were selected (n=50) for further analysis and stored at 20ºC (Giné-Bordonaba et al. 2016). 

Samples were taken after 0, 1, 2, 3 and 5 days storage to measure fruit firmness by means of a hand-held 

penetrometer, equipped with an 8mm plunger (Effegi, Milan, Italy), after removing the peel of the fruit on 
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two opposite sides. The percentage of firmness loss was calculated at day three (FL3d) and five (FL5d) 

by dividing the corresponding firmness by the initial fruit firmness (F0) and multiplying by 100. 

Additionally, we studied the textural properties of the fruit flesh on the day of harvest, performing a 

texture profile analysis (TPA) on an additional ten fruits per individual. TPA was with a TA-XTplus 

Texture Analyzer (Stable Micro Systems Ltd, Godalming, Surrey, UK) equipped with a P/75 flat probe, 

using the following test conditions: pre-test speed, 2mm/s; test and post-test speed, 5mm/s; and 50% 

deformation with an activation force of 0.05N. The textural parameters obtained were Hardness, 

Springiness, Gumminess, Resilience, Chewiness and Cohesiveness (see Bourne 2002, for a detailed 

description of TPA parameters and their relationship with sensory ratings).   

All data were analyzed with R v3.2.1 (R Core Team 2015). We tested for data normality using a Shapiro-

Wilk test, with data being considered not normal if p-value <0.05. Traits in different years were 

correlated with the Spearman’s rank correlation coefficient.  

 

Genotyping and linkage map construction  

Genomic DNA was extracted from young leaves using the CTAB method (Doyle and Doyle, 1990), 

followed by a purification step using columns from the DNeasy plant extraction kit (Qiagen, Hilden, 

Germany). Linkage maps were built using a set of 24 microsatellite (or simple-sequence repeats, SSR) 

markers (Table 1S) and the segregating SNP markers obtained with the 9K Illumina SNP chip developed 

by the Peach SNP International Consortium (Verde et al. 2012). For SNPs, genotypes were scored with 

GenomeStudio data analysis software (Illumina Inc.) following the same criteria as in Donoso et al. 

(2015).  

All SNPs heterozygous in one or both parents were included for mapping except those that lacked one of 

the expected genotypic classes (two for 1:1 and three for 1:2:1 ratios). A map was initially constructed for 

the parents of both progenies. Depending on the genotype of each parent, markers segregated 1:1 when 

only one parent was heterozygous, and 1:2:1 when both parents were heterozygous for the same alleles. 

Markers with 1:2:1 ratios were converted into 1:1 by discarding the heterozygous genotypes and using 

only the two homozygous classes. The phase for the latter markers was determined by comparing them 

with other 1:1 markers in the same chromosome region. SSRs segregating 1:1:1:1 (both parents 

heterozygous and segregations involved three or four alleles) were converted into two 1:1 segregations, 

one for each parent, based on their genotype. We grouped all the markers that co-segregated and selected 

only one as a representative of the entire region or ‘bin’. The mapping data file used for map construction 

consisted only of one marker per bin, so reducing the complexity of map construction. Maps were built 

with MAPMAKER/EXP 3.0 software (Lander et al. 1987) using the Kosambi mapping function. Markers 

were grouped with a minimum LOD score of 4.0 and a maximum gap of 37.5 cM. Based on these criteria, 

we built the genetic linkage maps for the three parental lines: ‘Big Top’ (Bt), ‘Armking’ (Ak) and 

‘Nectaross’ (Nr). In the case of ‘Big Top’, we first built two different maps, one for each population. 

Then we constructed a consensus map of ‘Big Top’ using data from the 123 individuals of the two 

populations at once, since the markers that segregate for this line are expected to be the same in each 

population dataset, resulting in a more accurate genetic map than either of the individual ‘Big Top’ maps. 



6 
 

 

QTL analysis 

QTLs were detected using MapQTL 6.0 ® (Van Ooijen 2009) using interval mapping (IM) and the 

Kruskal-Wallis test. The data were initially analyzed using the maps of each parent (‘Armking’, 

‘Nectaross’ and twice ‘Big Top’, one for Bt×Ak and the other for Bt×Nr) as a BC1 population taking only 

1:1 segregations, including those derived from 1:2:1 and 1:1:1:1 ratios, as described above. This made it 

possible to identify in which parent the QTL was heterozygous or if it was heterozygous in both parents. 

An additional analysis taking data from all markers (1:1 and full 1:2:1/1:1:1:1 segregations) of Bt×Ak and 

Bt×Nr with the CP mode of MapQTL allowed a better estimation of QTLs that were heterozygous in both 

parents. The significance threshold for a QTL was LOD≥3.0 although, exceptionally, QTLs with 

3.0≥LOD≥2.0 one year were also considered if there was a QTL with a LOD≥3.0 in the same region in 

the other year. Additionally, all QTLs accepted required a significant Kruskal-Wallis test with p≤0.01 at 

the position of the marker closest to the maximum LOD. A QTL was defined as consistent when it was 

detected at the same region of the same population in both seasons.  

The regions containing the QTLs were defined by the genome fragment between the markers having the 

maximum LOD minus one and a broader fragment with LOD minus two. We studied in more detail the 

QTLs for maturity date on G5 and G6 and for them estimated the joint interval for the data from 2013 and 

2014 by the most extreme markers of the regions (LOD-1) identified both years. The protein sequence of 

gene Prupe.4G186800, the candidate for the maturity date (MD) gene located on G4, was used to look for 

homologues of this NAC transcription factor gene in the peach genome and in these two QTL regions. 

Blast was performed through GDR webpage (https://www.rosaceae.org/tools/ncbi_blast) using blastp 

program (Altschul et al. 1997), looking for matches in the peach genome sequence v2.0.a1 with the 

database of all transcript peptides.  

 

Results 

Linkage maps 

The 9K Illumina SNP chip and the 24 SSRs used provided information on a total of 2,201 segregating 

markers in Bt×Ak and 2,362 in Bt×Nr. Most of them coalesced in the eight chromosomes of peach: 2,198 

(99%) in Bt×Ak and 2,318 (98%) in Bt×Nr and the rest were unmapped. For the mapped markers, the 

majority were heterozygous in only one of the parents and segregated 1:1; 1,707 (78%) in Bt×Ak and 

1,673 (72%) in Bt×Nr. The remaining 22-28% of the markers, segregating 1:2:1, corresponded to 

chromosomal regions heterozygous in both parents and mapped alone occasionally, tending to cluster in 

specific regions of the genome, mixed with other markers segregating 1:1 that were generally much less 

abundant in these regions. The patterns of these regions were specific for each particular cross and 

represented 8% of the total physical distance of the Bt×Ak and 16% of the Bt×Nr maps.  

Considering the data used for the construction of the map for each parent (Table 1), the map of ‘Big Top’ 

(using the ensemble of data of the 123 individuals of both populations) had 1,596 mapped markers, and 

https://www.rosaceae.org/tools/ncbi_blast
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those of ‘Armking’ 1,069 and ‘Nectaross’ 1,392. As expected, a high proportion of markers (88%) 

segregating in either population used for the construction of the ‘Big Top’ map were the same. The ‘Big 

Top’ map (Figure 1) comprised 210 bins distributed along the eight linkage groups of the Prunus map 

(G1 to G8), spanning a genetic distance of 447.0 cM (Table 1). The ‘Armking’ map had 126 bins 

distributed through 9 groups, as markers from G1 could not be joined as expected from the Prunus 

reference map and were split into two groups (Figure 2). These nine groups summed a total genetic 

distance of 450.0 cM (Table 1). For the ‘Nectaross’ genetic map, 94 bins coalesced into the expected 

eight linkage groups (Figure 3) for a total genetic distance of 320.4 cM (Table 1). The nearly double 

number of bins found in the ‘Big Top’ map compared to the other two is a logical consequence of the 

higher population size that allowed detection of more recombination events. Linkage maps built for the 

three parents, Bt, Nr and Ak presented good collinearity with the 2.0 version of the peach reference 

genome and were syntenic to the reference Prunus map based on the ‘T×E’ population (Donoso et al. 

2015). The only exception was a fragment of 15.8 cM between markers snp_6_5294415 and 

SNP_IGA_618376, in the proximal end of G6 of the Ak map (Figure 2) that had an inverted order, which 

seems attributable to imprecise mapping positioning due to the large gap without markers (28.8cM) that 

connects this fragment to the rest of the chromosome. 

 

Phenotyping 

Data distribution for each trait was very similar across seasons in both Bt×Ak (Figure 1S) and Bt×Nr 

(Figures 1S, 2S and Table 2S). A substantial percentage of the characters (44.4%) did not follow a normal 

distribution in different populations or years. Gumminess was the only character that was normally 

distributed across populations and seasons, MD was not normal in all cases, and the remaining traits 

adjusted to normality only at certain times.  

The Spearman correlation values (Table 3S) for the same character between years were very high for MD 

(0.89 and 0.78 for Bt×Ak and Bt×Nr, respectively) and much lower for the rest. Only FL3d and FL5d had 

positive and highly significant values, with the exception of FL5d (0.26) in Bt×Nr. Hardness was also 

positively correlated between years in Bt×Ak but negative and non-significant in Bt×Nr. When looking 

for correlations between different traits in the same year, these were significant and positive for FL3d and 

FL5d for both years and populations, and negatively correlated with MD in all eight possible cases, 

although only significantly in five of them. Some characters, such as hardness, gumminess and 

chewiness, correlated positively and steadily over years and populations, whereas the correlation for the 

rest was much more erratic.  

 

QTL analysis 

With the maps of each parent of the Bt×Ak and Bt×Nr progenies we found 20 QTLs: six in ‘Armking’, 

three in ‘Nectaross’, six in ‘Big Top (Ak)’, two in ‘Big Top (Nr)’ and three for the ‘Big Top’ map taking 

the data from both populations (Table 2). Considering the QTLs that were consistent in at least one of the 
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three parents (in the different versions of Bt that were consistent at least once), we found eight: qP-MD5, 

qP-FL3d5, qP-FL5d5 in Bt, qP-MD4, qP-MD6, qP-FL5d4 and qP-Har4 in Ak and qP-MD4 in Nr. The 

analysis using the integrated maps of both Bt×Ak and Bt×Nr progenies yielded similar results (Table 4S), 

with the detection of 32 QTLs, 11 more than with the parental maps, and with all new QTLs found only 

one year, except for qP-FL3d4, qP-Gum4 and qP-Har5 that were significant both years in Bt×Ak. None 

of the QTLs detected had a large increase in LOD and R
2
 when compared to the results obtained with the 

parental maps, whereas such an increase would be expected for QTLs heterozygous in both parents. 

Consistent QTLs localized in a few positions for each parental map, usually coinciding with the location 

of the QTL(s) for MD (Table 2, Table 5S, Figure1-3). In the ‘Big Top’ maps all QTLs located at the same 

region of G5, and similar patterns occurred in ‘Armking’, with two MD QTLs located on G4 and G6, like 

all remaining QTLs. This was also the case for ‘Nectaross’, where a major QTL for MD explaining much 

of the phenotypic variance (R
2
=60-87%) was on G4, and all other QTLs found in this population for other 

characters mapped to this position. A few exceptions were identified with the integrated maps (Table 4S), 

such as three QTLs for Resilience (qP-Res3), Gumminess (qP-Gum1) and Cohesiveness (qP-Coh1) in 

Bt×Ak and one for FL5d (qP-FL5d1) in Bt×Nr that mapped to other linkage groups, but they were 

detected in only one year. 

The MD QTLs had different effects depending on the alleles carried by the parents of the two crosses 

studied. One allele of ‘Armking’ for qP-MD4 when homozygous reduced the maturity date by 11.5-15.5 

days compared with the heterozygote for the other allele, whereas for the same QTL, one allele of 

‘Nectaross’ extended the maturity date from 21.0-32.0 days (Table 2). MD was also strongly associated 

with the FL character, often resulting in QTLs for FL3d, FL5d or both being at the same position as those 

found for MD. The effects of qP-MD4 and qP-MD5 were to increase firmness loss in the early maturing 

genotypes and to decrease firmness loss, i.e. producing a SMF effect, in the late maturing genotypes. 

Nevertheless, this did not occur in qP-MD6, where the QTL was not associated with the firmness loss 

character. 

When looking for QTLs for the textural parameters obtained with TPA we found that these traits are 

mainly governed by the same loci as for firmness loss or maturity date QTLs. The majority of these QTLs 

were found in the maps of each parent in only one of the two years studied (Table 2) with the exception of 

a QTL in G4 for Hardness (qP-Har4) coinciding with the position of other QTLs for MD and FL.   

The search for genes similar to the protein sequence to the NAC transcription factor candidate gene for 

MD (Pirona et al. 2013) allowed the identification of 61 genes with high similarity (p-value<10
-24

) 

distributed along the whole peach genome. Only one of them (Prupe.5G006200) fell in the region of 3.3 

Mb defined by the markers SNP_IGA543179 and SNP_IGA_557566 encompassing qP-MD5, and none 

were found on the qP-MD6 region of 2.3 Mb defined by markers snp_6_5294415 and SNP_IGA_611891 

(Table 6S).  
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Discussion 

We studied the variability for SMF with different measurements, mainly the loss of firmness during the 

postharvest process, and a set of fruit texture parameters measured with the texturometer at the time of 

harvest. The parents and progeny of two populations were measured: crosses between ‘Big Top’, a model 

variety for SMF, and the two cultivars ‘Armking’ and ‘Nectaross’, having very distant maturity dates but 

both with typical melting (MF) behavior. For the inheritance analysis we developed linkage maps of these 

two populations. As in other peach maps with similar marker densities (Eduardo et al. 2013; Martínez-

García et al. 2013; Donoso et al. 2015), the maps of the parents (Bt, Ak and Nr) had extensive fragments 

without segregating markers, suggesting the presence of ample genomic regions identical by descent. 

These regions can be estimated as 100 minus the coverage of the genome (see Table 1) and accounted for 

35-49% of the total physical distance depending on the map. Concentration of 1:2:1 segregating markers 

at specific genomic regions also indicates the regions where both parents were heterozygous, which 

ranged between 8% and 16% of the genome of the two populations used. Genes/QTLs located at these 

regions may also be heterozygous in both parents, which has to be taken into account for the genetic 

analysis. A Bt map has recently been obtained by Zeballos et al. (2016) using also the IPGI 9k Illumina 

SNP chip. This map was very similar to the one we produced with the exception that we could use almost 

four times more markers (1,596 vs. 405) for its construction. One of the main reasons for this 

improvement is that we followed a mapping approach that allowed integration of the markers segregating 

1:2:1 and those with skewed segregation ratios, which improved the marker density, mapping accuracy, 

and also made it possible to identify additional map regions, resulting in a better physical coverage (65% 

vs. 40%).  

Of the parameters used to measure the SMF character, the percentage of firmness loss (FL) seems the 

most efficient. It is noteworthy to mention, however, that fruit firmness is not equivalent to fruit texture 

but rather is a classical feature of it, with several studies in peaches and apples showing that this 

parameter is very well correlated to texture as perceived by consumers (Harker et al., 2002; Harker et al., 

2006; Giné-Bordonaba et al., 2016). FL measures the character according to SMF definition (a slower 

process of fruit softening after the field maturity stage than the MF types), as exemplified by the 

evolution of the FL parameter in the parents used, with a steady decay in the typically MF ‘Armking’ and 

‘Nectaross’, and a delayed firmness loss in ‘Big Top’ (Figure 4). In contrast with these results, the SMF 

signature was not detected when analyzing the FL evolution between ‘Nectaross’ and ‘Big Top’, among 

other cultivars, by Reig et al. (2017). These authors measured FL under different conditions than those of 

our study since they assessed on-tree firmness loss over sequential harvests as well as in fruit cold stored 

at 10 C. Discrepancies between this and the above-mentioned study are likely related to these different 

measurements; for example, an altered ripening pattern due to an atypical loss of firmness occurs when 

peaches are cold stored (Giné-Bordonaba et al. 2016).      

FL measurements detected QTLs that each explained a substantial part of the variability (20-35%), 

although they were not as reproducible as those found with the MD character. Part of this may have been 

caused by the small size of the populations used, particularly of Bt×Nr, so larger populations are needed 

for accurate measurement of the character. In addition, the spring-summer climatic conditions of 2013 
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and 2014 were extremely different in the region of Lleida. In 2013 temperatures were atypical, with 

strong oscillations, being on average the lowest since 1997 and with unusually high rainfall in July, 

whereas 2014 was closer to average. As a consequence, maturity times were substantially different, much 

later in 2013 than in 2014: 14 days later in Bt×Ak and 13 in Bt×Nr on average. This is one possible 

explanation for the low correlations found in some of the firmness and texture-related traits between years 

and the heterogeneity in the estimation of certain characters for some years leading to a less accurate QTL 

analysis. The fact that MD shows a very high correlation between years (0.78-0.89) indicates that the 

criteria employed for harvest date determination were adequate. The other characters measured with the 

texturometer were less reliable. QTLs were not consistent across years and, when detected, they generally 

fell within the same regions as the FL and MD characters, overall providing little information.  

Our results detected essentially three regions of the genome on G4, G5 and G6, where genes involved in 

maturity time and flesh firmness consistently mapped. All had a QTL explaining much of the variability 

for the maturity date character and all had been reported previously for peach and other Prunus. The 

major QTL in the central part of G4 (qP-MD4) that we identified has been repeatedly reported by other 

authors in peach (Eduardo et al. 2011; Pirona et al. 2013; Verde et al. 2002) and in other Prunus such as 

almond, cherry and apricot (Dirlewanger et al. 2012; Sánchez-Pérez et al. 2007; Donoso et al. 2016). In 

certain crosses (Eduardo et al. 2011; Pirona et al. 2013) it has been mapped as a single major gene 

(MD/md) on G4. This same region contains the slow ripening (Sr/sr) gene, and it has been hypothesized 

that the sr allele determining the SR character is one allele of MD (Eduardo et al. 2015; Núñez-Lillo et al 

2015). The QTL on G6 (qP-MD6) has also been identified by Dirlewanger et al. (2012) in a peach F2 

population (‘Jalousia’ × ‘Fantasia’; J×F) explaining a large proportion (15.7-30.2%) of the phenotypic 

variability for this character. Finally, a QTL on a similar region of G5 to where we mapped qP-MD5 was 

also found by Dirlewanger et al. (2012) on J×F, and by Zeballos et al. (2015) although, in the former, it 

was not consistent over the years.  

All QTLs for the firmness loss measurements fell within the same chromosomal regions as qP-MD4 and 

qP-MD5 and were detected on the maps of the parents that segregated for these QTLs (‘Armking’ and 

‘Nectaross’ for qP-MD4 and ‘Big Top’ for qP-MD5), although they were identified with lower LOD 

scores than MD QTLs and in certain cases (in 2013 for FL3d5 and FL5d5 in Bt(Ak) and the same year for 

FL3d4 in Ak) were not consistent between the two years studied. The direction of the effects of these two 

characters was that late maturing fruit had slower firmness loss and vice-versa, which may be related to 

the observation of Giné-Bordonaba et al. (2016) on the lower capacity of late harvest peach fruit to 

produce ethylene. Similar results were obtained for qP-MD4 in relation to FL by Salgado et al. (2014). 

However, no QTLs for FL were associated with qP-MD6 in ‘Armking’. 

Two possible factors may explain the observed correlation between MD and SMF. One is that the 

environment determines that fruit of a tree that matures several weeks after another (with a longer period 

of attachment to the tree, and hence of exposure to its surrounding environment) may be at a different 

physiological maturity stage therefore determining a slower postharvest softening process. The second is 

that there is a common inheritance for these two characters where the same genes, or genes that are in the 

same region as those that determine maturity date in qP-MD4 and qP-MD5, are also involved in the 
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postharvest ripening/softening process. Both factors may also act together and they are difficult to 

separate, but although the former may have an effect on the final result, this seems to be of minor 

importance considering that cultivars that are in the extremes of the production season of peach often 

have very similar postharvest behavior. This is the case for ‘Armking’ and ‘Nectaross’, maturing with 

about 40 days difference and having similar FL parameters, or for ‘Big Top’, that, being the model for 

SMF, has a relatively early maturity time (first part of July under Lleida conditions). For the inheritance 

side, Eduardo et al. (2011) attributed the accumulation of QTLs for various fruit characters (fruit weight, 

skin color, soluble solids content, acidity) on the central part of G4 to a pleiotropic effect of the MD gene. 

In addition, Eduardo et al. (2015) identified the position of the Sr gene, that determines fruits that never 

ripen or soften, at the same place as MD, and Núñez-Lillo et al. (2015) found that the sr allele that 

determines this character co-maps with a large deletion at the position of the Prupe.4G186800 NAC 

transcription factor gene that Pirona et al. (2013) identified as a possible candidate for MD. These 

observations are compatible with MD having different alleles that determine the speed of the maturation 

process, or even its arrest as in the case of Sr, a process that determines the maturity stage in the field, 

with the “slow” alleles or allele combinations maturing later than the “fast” ones. This same process may 

continue after harvest and determine the speed of the softening process, where again the slow or fast 

alleles would determine a longer or shorter shelf-life of the fruit. 

While we noted the association between MD and FL on G4 in the progenies analyzed, it is clear that 

slight differences in softening rates may not be perceptible in practice and that a certain threshold has to 

be reached to be identified as having an impact on shelf-life, as with ‘Big Top’. The difference between 

‘Big Top’ and the other MF cultivars may be due to the presence of the large QTL on G5 for MD and FL. 

This QTL has not been found in other peach progenies with the already mentioned exception of ‘Jalousia’ 

× ‘Fantasia’ cross (Dirlewanger et al. 2012), where the QTL had a smaller effect compared with ours and 

had a non-consistent behavior pattern. A QTL on G5  reported by Zeballos et al. (2016) for flesh firmness 

in the Bt map of a ‘Big Top’ × ‘Venus’ cross, seems to co-map with the one we detected, although these 

authors did not provide information on maturity date. Overall these data confirm the presence of a QTL 

for MD and FL on the G5 genomic region, with some inconsistencies in our case that we attribute to the 

small size of Bt × Nr and the contrasting climate conditions in 2013 and 2014. The allele combination of 

qP-MD5 in ‘Big Top’ or the interaction between the alleles of qP-MD4 and qP-MD5 may be responsible 

for the SMF phenotype of this cultivar. In fact, the individuals with the most favorable genotype for the 

SMF trait, based on the closest markers to the qP-FL and qP-MD loci (SNP_IGA_551853 in qP-MD5 and 

SNP_IGA_409351 in qP-MD4), had an average FL3d=24.9 and FL5d=48.5, whereas the rest of the 

population had averages of FL3d=41.5 and FL5d=62.4, both significantly higher (t test with p<0.01).  

A consequence of the suggested model of action would be that the SMF phenotype could only be found in 

late maturing individuals. This contradicts the relatively early-mid season maturity time of ‘Big Top’, 

about two weeks later than ‘Armking’ and one month before ‘Nectaross’. A possible explanation could be 

the presence of other genes that affect maturity time but not the maturation or softening processes 

themselves. An example would be the qP-MD6, explaining approximately 30% of the variability of this 

character in ‘Armking’ with no apparent effect on FL. Selection for early alleles of this QTL may produce 
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varieties that mature early and have the SMF trait. There are some examples of this in the Bt×Ak 

population, where plants  #18, 68, 70 and 78, bearing the optimal marker genotypes for the SMF character 

(qP-MD4 and qP-MD5) and the early maturing genotype for the closest marker to qP-MD6 (homozygous 

for SNP_IGA_605027), also had a similar maturity time to ‘Big Top’ both seasons and comparable, in 

some cases with even slower, FL than ‘Big Top’ in both years (see Table 7S). A possible explanation for 

these results is that the genes responsible for qP-MD4 and qP-MD5 have similar functions, differing from 

the gene(s) in qP-MD6. Previous evidence of a NAC transcription factor as a strong candidate gene for 

qP-MD4 (Pirona et al. 2013), along with our observation that the genomic region of qP-MD5 and not that 

of qP-MD6 contains NAC transcription factors (Table 6S), indicates these factors may be potentially 

involved in the determination of qP-MD4 and qP-MD5 but not in qP-MD6. Further studies are required to 

evaluate the possible implication of the NAC genes identified in the genomic region of qP-MD5 

in the expression of MD and FL.  

The region of qP-MD5 overlaps the position of the gene responsible for the acid vs. subacid fruit (D/d) 

character (Lambert et al. 2016). ‘Big Top’ is heterozygous (Dd) and we placed this gene at its expected 

map position (data not shown) in the proximal end of G5 (between markers SNP_IGA_544961 and 

SNP_IGA_545261). The D allele, responsible for the subacid trait, was in coupling with the allele of qP-

MD5 that enhances the SMF character, resulting in a high proportion of plants being SMF and subacid, 

i.e., 16 (67%) of the 24 that had the optimal marker genotypes for SMF at qP-MD4 and qP-MD5 (see 

Table 7S) were subacid. This suggests that the use of ‘Big Top’ to transfer both characters to its progeny 

would be a good breeding strategy. Conversely, using parents with recombinant gametes may result in a 

small number of progeny having both characters at the same time.    

Given that the combination of the different genes involved, including inter and intralocus interactions, 

determines the final phenotype, knowledge of the more precise locations of these QTLs is needed. This 

means analysing adequate segregating populations, where tightly-linked markers diagnostic to the 

important QTLs can be identified and validated. At the moment, there is information on the high 

heritability of the MD character (de Souza et al. 1998; Fresnedo-Ramírez et al. 2016) and the detailed 

position of the qP-MD4, with a marker based on the candidate gene (Meneses et al. 2016). Additionally, 

in this paper we have identified the qP-MD5 QTL as a key factor for SMF, the qP-MD6 that may 

modulate the maturity date, and we also provide a reasonable measurement of the SMF character based 

on the evolution of firmness loss (FL) during postharvest storage. Overall, this information is 

indispensable to fully understand the genetics of postharvest behavior and establish a marker-informed 

breeding procedure for improvement of this crucial character in peach.         

 

Data archiving statement  

Genetic linkage maps and phenotypic data will be submitted to the Genome Database for Rosaceae 

(www.rosaceae.org).      
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Table 1. Distribution of markers in the linkage groups (G1-G8) of the maps of ‘Big Top’ (joint data from 

the Bt×Ak and Bt×Nr populations), ‘Armking’ and ‘Nectaross’  for total markers, number of bins, 

distance in centimorgans and physical coverage 

    G1 G2 G3 G4 G5 G6 G7 G8 Total 

‘Bigtop’  

Mapped 

markers 
284 274 282 194 109 169 147 137 1596 

Bins 40 15 42 25 26 21 19 22 210 

cM 90.3 25.9 60.0 49.1 49.3 71.0 45.2 56.2 447.0 

Coverage
a
 81 59 96 53 77 50 56 48 65 

‘Armking’ 

Mapped 

markers 
65 230 92 207 23 144 194 114 1069 

Bins 17 16 9 16 5 21 26 16 126 

cM 
 111.2 

(72.2+39.0) 
78.7 37.9 36.6 9.4 82.9 64.2 29.1 450.0 

Coverage
a
 57 68 60 39 6 40 88 49 51 

‘Nectaross’ 

Mapped 

markers 
158 219 213 261 75 243 60 163 1392 

Bins 12 12 15 15 9 12 4 15 94 

cM 58.4 32.2 50.5 46.3 24.2 52.9 11.7 44.2 320.4 

Coverage
a
 70 37 80 47 28 71 22 90 56 

 

aCoverage: percentage of the total physical distance of each linkage group covered by the markers in its extremes. 

Large regions (>5 Mb) without any marker were considered as identical by descent and were taken as regions not 

covered.  
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Table 2. QTLs identified in the maps of the parents ‘Big Top’ (Bt), ‘Armking’ (Ak) and ‘Nectaross’ (Nr). 

Consistent QTLs are marked with an asterisk. 

Trait Parent QTL Year LOD Nearest marker 
Position 

(cM) 
R2a ab 

Maturity date Bt(Ak) qP-MD5c 
2013 4.95 SNP_IGA_588670 30.7 27.1 -11.3 

2014 6.34 SNP_IGA_550504 9.2 32.3 -8.6 

% firmness loss (day 3) Bt(Ak) qP-pFL3d5 2014 4.58 SNP_IGA_553456 13.1 24.5 26.9 

% firmness loss (day 5) Bt(Ak) qP-pFL5d5 2014 3.49 SNP_IGA_572589 20.7 19.3 18.4 

Hardness Bt(Ak) qP-Har5 2013 5.26 SNP_IGA_552927 11.8 28.6 -4.7 

Gumminess Bt(Ak) qP-Gum5 2013 3.79 SNP_IGA_552927 11.8 21.5 -1.7 

Chewiness Bt(Ak) qP-Che5 2013 3.07 SNP_IGA_552927 11.8 17.8 -2.2 

% firmness loss (day 3) Bt(Nr) qP-FL3d5c 
2013 3.61 SNP_IGA_571548 18.7 30.9 26.2 

2014 3.43 SNP_IGA_545261 3.1 29.1 35.7 

% firmness loss (day 5) Bt(Nr) qP-FL5d5c 
2013 2.41 SNP_IGA_571548 19.7 21.8 17.2 

2014 4.63 SNP_IGA_559057 10.4 37.1 24.4 

Maturity date 
Bt(Ak+

Nr) 
qP-MD5c 

2013 2.73 SNP_IGA_551853 7.2 10.2 -12.4 

2014 4.00 SNP_IGA_551853 7.2 14.1 -14.8 

% firmness loss (day 3) 
Bt(Ak+

Nr) 
qP-FL3d5c 

2013 2.96 SNP_IGA_572589 17.7 11 15.5 

2014 8.57 SNP_IGA_553456 8.8 27.8 31.3 

% firmness loss (day 5) 
Bt(Ak+

Nr) 
qP-FL5d5 2014 7.38 SNP_IGA_572589 19.7 24.5 20.6 

Maturity date Ak 

qP-MD4* 
2013 10.94 SNP_IGA_409351 36.6 50.3 15.5 

2014 13.98 SNP_IGA_409351 36.6 57.6 11.5 

qP-MD6c 
2013 3.59 SNP_IGA_605027 4.0 20.5 -9.7 

2014 5.21 SNP_IGA_605027 4.0 27.4 -7.8 

% firmness loss (day 3) Ak qP-FL3d4 2014 6.16 SNP_IGA_409351 36.5 31.5 -30.4 

% firmness loss (day 5) Ak qP-FL5d4c 
2013 2.36 SNP_IGA_401886 25.2 14 -15.1 

2014 4.84 SNP_IGA_409351 36.5 25.7 -20.9 

Hardness Ak qP-Har4c  
2013 4.69 SNP_IGA_409351 36.5 25.9 4.5 

2014 6.30 SNP_IGA_404165 33.2 32.1 8.3 

Gumminess Ak qP-Gum4 2014 4.58 SNP_IGA_404570 34.2 24.5 3.6 

Maturity date Nr qP-MD4c 
2013 8.95 SNP_IGA_409274 24.3 60.0 -21.0 

2014 20.05 SNP_IGA_409274 24.3 86.6 -32.0 

% firmness loss (day 3) Nr qP-FL3d4 2013 4.45 SNP_IGA_409274 24.3 36.6 28.0 

% firmness loss (day 5) Nr qP-FL5d4 2013 3.76 SNP_IGA_409274 24.4 31.9 20.4 

Bt(Ak): map of Bt obtained with the BtxAk cross; Bt(Nr): map of Bt obtained with the BtxAk cross; 

Bt(Ak+Nr): map of Bt obtained with the data from BtxAk and Btx Nr 
a
 R

2
: percentage of the total phenotypic variance for this trait explained by the QTL 

b
 Additive effects: a = H - B, where H is the heterozygote and B the homozygote 

c
 Consistent QTLs 
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Figure captions 

Fig. 4 Fruit firmness evolution for the parental lines ‘Big Top’ (Bt). ‘Armking’ (Ak) and ‘Nectaross’ (Nr) 

during a five-day period. A different behavior can be observed between ‘Big Top’ and the other two 

cultivars caused by the SMF trait. Firmness values were recorded in Newtons (N). 
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Fig. 1 ‘Big Top’ linkage map obtained with all data available from the Bt×Ak and Bt×Nr populations and 

the positions of the QTLs mapped in this work. Genetic distances in centimorgans are shown on the left 

and marker names on the right for each linkage group. Marker names have been abbreviated 

(SA=SNP_IGA_). Each marker corresponds to a bin (i.e. a group of markers with a same genotype for all 

individuals analyzed). For QTLs bars in red represent QTLs for maturity date and in green for firmness 

loss. Solid bars are consistent QTLs and empty bars with diagonal lines represent QTLs detected only one 

year. 
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Fig. 2 ‘Armking’ linkage map obtained with positions of the QTLs mapped in this work. Genetic 

distances in centimorgans are shown on the left and marker names on the right for each linkage group. 

Marker names have been abbreviated (SA=SNP_IGA_). Each marker corresponds to a bin (i.e. a group of 

markers with a same genotype for all individuals analyzed). For QTLs bars in red represent QTLs for 

maturity date, in green for firmness loss and in blue for TPA parameters. Solid bars are consistent QTLs 

and empty bars with diagonal lines represent QTLs detected only one year 

 

 

 

. 
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Fig. 3 ‘Nectaross’ linkage map obtained with positions of the QTLs mapped in this work. Genetic 

distances in centimorgans are shown on the left and marker names on the right for each linkage group. 

Marker names have been abbreviated (SA=SNP_IGA_). Each marker corresponds to a bin (i.e. a group of 

markers with a same genotype for all individuals analyzed). For QTLs bars in red represent QTLs for 

maturity date and in green for firmness loss. Solid bars are consistent QTLs and empty bars with diagonal 

lines represent QTLs detected only one year. 
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Fig. 4: Changes in fruit firmness during storage at 20C immediately after harvest in the 

parental lines ‘Big Top’ (Bt), ‘Armking’ (AK) and ‘Nectaross’ (Nr) during a five-day period at 

20C. A different behaviour can be observed between ‘Big Top’ and the other cultivars caused 

by the SMF trait. Firmness values are presented in Newtons (N; mean ± standard deviation for 

n=10).   
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Table 1S. Characteristics of the 24 microsatellites used to construct the maps of Bt, Ak and Nr. Details of 

the map and physical position and origin of the microsatellite can be found in Donoso et al. (2015). 

 

 
Mapped in 

Marker 
Linkage 

group 
Bt Ak Nr 

M16a 1 X     

EPPCU5331 1 X     

EPPCU1945 1 X     

CPPCT026 1     X 

BPPCT020 1 X   X 

CPPCT042 1   X   

CPPCT029 1 X   X 

PceGA34 2   X   

BPPCT007 3 X   X 

BPPCT039 3 X     

EPDCU3083 3 X     

UDP96-008 3 X     

UDP96-003 4 X   X 

M12a 4 X   X 

CPP15636 4 X   X 

EPPCU1775 4 X   X 

Pacita021 5 X   X 

EPDCU5183 5 X   X 

CPSCT012 6     X 

MA040a 6 X   X 

CPPCT022 7 X     

CPPCT033 7   X   

EPPCU5176 7 X   X 

CPPCT058 8 X     
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Table 2S – Summary of the phenotypic data of 2013 and 2014 for the parents and the mean, minimum, maximum and standard deviation values for the Bt×Ak and Bt×Nr 

progenies.  

2013 Parental lines Bt×Ak Bt×Nr 

Trait ‘Bigtop' ‘Armking' ‘Nectaross' mean min max sd SW test
a
  mean min max sd SW test

a
  

MD 189 178 217 183.99 169 206 10.7 *** 216 192 238 13.10 *** 

FLd3 15.57 62.53 65.00 43.62 -11.11 78.89 23.94 ** 40.25 -4.94 78.96 22.37 ns 

FLd5 7.08 75.70 87.61 59.01 0.6 87.03 20.05 *** 58.82 13.95 85.83 17.45 ns 

Springiness  1.23 2.09 1.23 1.01 0.62 2.63 0.26 ns 1.16 0.77 1.44 0.12 ** 

Hardness 8.71 8.75 17.05 11.62 3.9 21.83 4.34 * 15.54 1.98 33.47 6.69 * 

Gumminess 4.31 3.70 7.87 5.18 1.78 10.16 1.83 ns 8.55 1.44 27.01 6.42 ns 

Resilience 0.72 1.04 0.84 0.81 0.16 1.48 0.26 ns 0.79 0.14 1.98 0.35 ns 

Chewiness 5.29 7.71 9.70 5.25 1.1 20.12 2.59 ns 10.21 1.2 33.58 8.17 ns 

Cohesiviness 0.50 0.42 0.46 0.47 0.23 0.82 0.12 * 0.5 0.2 0.96 0.19 * 

              
2014 Parental lines Bt×Ak Bt×Nr 

Trait ‘Bigtop' ‘Armking' ‘Nectaross' mean min max sd SW test
a
  mean min max sd SW test

a
  

MD 174 163 202 170 161 184 7.52 *** 202 177 226 16.77 *** 

FLd3 2.22 75.26 64.25 35.86 -34.56 83.18 27.09 ns 24.47 -61.23 74.68 31.78 ns 

FLd5 35.11 71.78 80.28 58.58 -2.31 90.01 20.56 *** 56.62 19.80 86.38 18.73 ns 

Springiness  0.49 0.48 0.46 0.43 0.01 1.35 0.19 ns 0.46 0.37 0.62 0.06 ns 

Hardness 30.39 6.42 14.05 16.51 1.98 29.02 7.19 * 13.21 6.54 32.28 4.31 ns 

Gumminess 15.01 1.12 3.97 6.48 0.53 16.40 3.53 ns 3.71 1.27 14.03 2.25 ns 

Resilience 0.46 0.08 0.15 0.27 -0.29 0.68 0.15 ns 0.17 -0.01 0.53 0.10 *** 

Chewiness 7.38 0.54 1.82 3.21 0.02 21.54 3.01 *** 1.76 0.49 8.66 1.33 ns  

Cohesiviness 0.53 0.15 0.26 0.42 0.13 1.14 0.18 *** 0.29 0.14 1.06 0.15 ns 
a
p-value of the Shapiro-Wilk test for adjustment to a normal distribution: *p≤0.05; **p≤0.01;***p≤0.001; ns. non-significant 
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Table 3S. Spearman’s Rank correlations for Bt×Ak and Bt×Nr progenies. Diagonal values shaded in grey represent correlations for the same trait between years. Values 

below diagonal line represent correlations between traits for 2013 and above the diagonal line are the correlations for 2014. Asterisks represent the significance of the 

correlation (** p-value<0.01; *** p-value<0.001) 

 

Bt×Ak MD FL3d FL5d Springiness Hardness Gumminess Resilience Chewiness Cohesiviness 

MD 0.89*** -0.64*** -0.49*** 0.4*** 0.5*** 0.39*** -0.02 0.47*** -0.17 

FL3d -0.07 0.34** 0.79*** -0.29 -0.65*** -0.51*** -0.2 -50*** 0.08 

FL5d -0.14 0.75*** 0.31** -0.31** -0.59*** -0.49*** -0.16 -50*** 0.05 

Springiness -0.02 0.25 0.21 -0.18 0.55*** 0.47*** -0.33** 0.74*** -0.29 

Hardness 0.53*** -0.22 -0.16 -0.07 0.37* 0.77*** 0.17 0.81*** -0.1 

Gumminess 0.37** -0.18 -0.07 0.05 0.78*** 0.11 0.47*** 0.91*** 0.42*** 

Resilience 0.38*** -0.3* -0.27 -0.32** 0.37** 0.12 0.04 0.19 0.7*** 

Chewiness 0.29 -0.06 0.01 0.4*** 0.66*** 0.9*** 0.03 -0.02 0.01 

Cohesiviness -0.38*** 0.13 0.21 0.11 -0.45*** 0.14 -0.45*** 0.17 -0.03 

Bt×Nr MD FL3d FL5d springiness Hardness Gumminess Resilience Chewiness Cohesiviness 

MD 0.78*** -0.37 -0.41** -0.11 -0.23 -0.39* -0.2 -0.39*** -0.4** 

FL3d -0.65*** 0.43** 0.8*** 0.23 -0.01 0.12 -0.04 0.14 0.06 

FL5d -0.69*** 0.68*** 0.26 0.12 0.08 0.24 0.04 0.25 0.24 

Springiness -0.02 0.22 0.07 0.14 0.48*** 0.23 -0.24 0.42 -0.11 

Hardness 0.31 -0.22 -0.23 0.24 -0.08 0.84*** 0.27 0.90*** 0.52*** 

Gumminess 0.22 -0.13 -0.19 0.35 0.95*** -0.1 0.58*** 0.97*** 0.84*** 

Resilience -0.34 0.05 0.35 -0.32 -0.55*** -0.67*** 0.22 0.49*** 0.71*** 

Chewiness 0.22 -0.1 -0.18 0.43** 0.94*** 0.99*** -0.66*** -0.11 0.77*** 

Cohesiviness 0.19 0 -0.2 0.54*** 0.67*** 0.81*** -0.84*** 0.74*** -0.07 
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Table 4S. QTLs identified in the Bt×Ak and Bt×Nr crosses obtained with genotype datasets integrating 

all markers (1:1 and 1:2:1). Consistent QTLs are marked with an asterisk 

Trait Cross QTL Year LOD Nearest marker 
Position 

(cM) 
R

2
 

Maturity date Bt×Ak 

qP-MD4* 
2013 9.93 SNP_IGA_402256 42.9 47.0 

2014 9.46 SNP_IGA_401829 39.8 44.1 

qP-MD5* 
2013 6.22 SNP_IGA_585500 30.8 32.8 

2014 6.62 SNP_IGA_552927 11.8 33.4 

qP-MD6* 
2013 4.21 SNP_IGA_604703 12.6 23.6 

2014 5.68 SNP_IGA_605027 15.5 29.5 

% firmness loss 

 (day 3) 
Bt×Ak 

qP-FL3d4* 
2013 3.02 SNP_IGA_394859 22.8 17.6 

2014 9.56 SNP_IGA_409371 61.1 44.4 

qP-FL3d5 2014 5.64 SNP_IGA_584315 27.7 29.3 

% firmness loss 

 (day 5) 
Bt×Ak 

qP-FL5d4* 
2013 3.25 SNP_IGA_397228 27.5 18.8 

2014 7.25 SNP_IGA_409901 62.4 35.9 

qP-FL5d5 2014 4.66 SNP_IGA_584113 24.4 24.9 

Springiness Bt×Ak 
qP-Spr4 2014 3.8 M12a 53.5 20.8 

qP-Spr5 2013 3.29 SNP_IGA_587708 35.5 19.0 

Hardness Bt×Ak 

qP-Har4* 
2013 5.73 SNP_IGA_409901 62.4 30.7 

2014 9.96 SNP_IGA_407919 52.2 45.7 

qP-Har5* 
2013 5.46 SNP_IGA_552927 12.2 29.5 

2014 2.22 SNP_IGA_595212 53.4 12.7 

qP-Har6 2013 3.33 SNP_IGA_605027 15.5 19.2 

Gumminess Bt×Ak 

qP-Gum1 2014 3.18 SNP_IGA_24703 60.0(G1.1) 17.8 

qP-Gum4* 
2013 2.18 SNP_IGA_409901 62.4 13.0 

2014 6.31 SNP_IGA_409544 61.4 32.1 

qP-Gum5 2013 3.9 SNP_IGA_552927 12.2 22.1 

Resilience Bt×Ak 
qP-Res3 2014 3.32 SNP_IGA_365048 83.5 18.4 

qP-Res4 2013 5.63 SNP_IGA_408505 54.9 30.3 

Chewiness Bt×Ak 
qP-Che5* 2013 3.85 SNP_IGA_552927 12.2 21.8 

qP-Che6 2013 3.01 SNP_IGA_617922 2.3 17.5 

Cohesiviness Bt×Ak 
qP-Coh1 2013 3.28 SNP_IGA_24703 63.0 18.9 

qP-Coh4 2013 4.79 SNP_IGA_408884 55.7 26.4 

Maturity date Bt×Nr qP-MD4* 
2013 9.01 SNP_IGA_410398 25.4 60.2 

2014 9.97 SNP_IGA_403152 20.0 63.1 

% firmness loss  

(day 3) 
Bt×Nr 

qP-FL3d4 2013 4.98 SNP_IGA_409274 26.5 39.9 

qP-FL3d5* 
2013 4.03 SNP_IGA_571548 19.3 33.8 

2014 3.91 SNP_IGA_557489 5.3 32.4 

% firmness loss  

(day 5) 
Bt×Nr 

qP-FL5d1 2014 3.44 SNP_IGA_109648 25.5 29.2 

qP-FL5d4 2013 4.34 CPP15636 27.6 35.9 

qP-FL5d5* 
2013 3.71 SNP_IGA_595648 51.1 31.6 

2014 5.17 SNP_IGA_571548 11.6 40.4 

qP-FL5d6 2013 3.34 SNP_IGA_695629 79.5 29.0 

Cohesiviness Bt×Nr qP-Res4 2013 5.15 CPP15636 28.6 41.0 

Cohesiviness Bt×Nr qP-Coh4 2014 3.91 SNP_IGA_402793 14.7 33.6 

Table 5S. Physical positions in bp (peach sequence v2.a1) of the markers in the boundaries of the 

consistent QTLs with the ±1 LOD criterion in the ‘Big Top’, ‘Armking’ and ‘Nectaross’ maps. 

 QTL Year Flanking markers Boundaries 

‘Big Top’ 

qP-MD5 

 

2013 
SNP_IGA_543179 246971 

SNP_IGA_592011 11278685 

2014 
SNP_IGA_543179 246971 

SNP_IGA_559057 3731800 
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qP-FL3d5 

 

2013 
SNP_IGA_543179 246971 

SNP_IGA_591896 11258683 

2014 
SNP_IGA_543786 467068 

SNP_IGA_585500 9252718 

qP-FL5d5 2014 

SNP_IGA_556288 3251268 

SNP_IGA_589371 10557562 

‘Armking’ 

qP-MD4 

 

2013 
SNP_IGA_403152 8977975 

SNP_IGA_409351 10387393 

2014 
SNP_IGA_404165 9250943 

SNP_IGA_409351 10387393 

qP-FL3d4 2013 
SNP_IGA_390941 6124843 

SNP_IGA_409351 10387393 

qP-FL5d4 

2013 
SNP_IGA_368627 117381 

SNP_IGA_409351 10387393 

2014 
SNP_IGA_401886 8233517 

SNP_IGA_409351 10387393 

qP-Har4 

2013 
SNP_IGA_397323 6582903 

SNP_IGA_409351 10387393 

2014 
SNP_IGA_401886 8233517 

SNP_IGA_409351 10387393 

qP-Gum4 2014 
SNP_IGA_397323 6582903 

SNP_IGA_409351 10387393 

qP-Che4 2014 
SNP_IGA_401886 8233517 

SNP_IGA_409351 10387393 

qP-MD6 

2013 
snp_6_5294415 5308481 

SNP_IGA_618376 893708 

2014 
snp_6_5294415 5308481 

SNP_IGA_609485 3540424 

‘Nectaross’ 

qP-MD4 

2013 
SNP_IGA_407115 9947470 

SNP_IGA_440110 16076720 

2014 
SNP_IGA_408981 10280095 

SNP_IGA_437516 15182577 

qP-FL3d 2013 
SNP_IGA_403152 8977975 

SNP_IGA_449118 17994567 

qP-FL5d 2013 
SNP_IGA_401886 8233517 

SNP_IGA_449118 17994567 

 

Table 6S. Gene sequences of peach chromosomes 5 and 6 producing a significant alignment with the 

NAC transcription factor gene Prupe.4G186800, candidate for the maturity date (MD) trait in 

chromosome 4, and their position on the peach genome sequence v2.0. The gene falling within the 

boundaries of the QTLs that we have estimated for QTLs qP-MD5 is presented with a green background 

  

Genome position 
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  Gene E-value chromosome Position (bp) 

Prupe.5G006200 9,00E-044 5 707.797 

Prupe.5G040400 2,00E-045 5 4.430.568 

Prupe.5G076100 3,00E-042 5 9011205 

Prupe.5G131900 4,00E-043 5 12690115 

Prupe.5G135400 1,00E-039 5 12859766 

Prupe.5G146100 3,00E-039 5 13431803 

Prupe.5G196000 5,00E-047 5 15882585 

Prupe.5G221600 1,00E-049 5 17242546 

Prupe.5G241300 4,00E-044 5 18167430 

Prupe.6G098600 3,00E-055 6 6857507 

Prupe.6G134400 1,00E-032 6 10621079 

Prupe.6G138100 1,00E-036 6 11223633 

Prupe.6G238600 3,00E-054 6 23830614 
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Table 7S. Phenotypes for maturity date (MD), firmness loss (FL3d and FL5d) and acidity (D/d) of peach 

fruit for the parents and progeny (nb 1-85) of ‘Big Top’ x ‘Armking’ and genotypes for closest markers to 

qP-MD5 in ‘Big Top’ (M1=SNP_IGA_589219), qP-MD4 in ‘Armking’ (M2=SNP_IGA_409351) and 

qP-MD6 in ‘Armking’ (M3=SNP_IGA_605368). Plants with the most favorable HAA genotype (#18, 68, 

70 and 78)  have phenotypes comparable to‘Big Top’ for the MD and FL traits. 

 
2013 2014 

   
 

Plant nb. MD pFLd3 pFLd5 MD pFLd3 pFLd5 M1
 

M2
 a
 M3 D/d

b 

‘Big Top' 189 15.6 7.1 174 2.2 35.1 H H - SA 

‘Armking' 178 62.5 87.6 163 75.3 71.8 - H H AC 

18 185 8.7 30.6 167 22.7 15.7 H A A SA 

68 189 25.3 60.2 170 5.9 14.4 H A A SA 

70 192 24.6 27.0 170 30.5 59.6 H A A AC 

78 185 19.0 40.9 170 6.4 15.4 H A A SA 

7 196 29.7 64.8 181 9.3 57.1 H A H SA 

8 189 41.9 50.6 174 27.5 72.0 H A H AC 

13 199 67.7 70.1 181 2.9 22.2 H A H SA 

25 199 61.3 72.2 181 8.9 40.7 H A H SA 

26 192 -3.3 57.9 174 21.0 58.6 H A H SA 

27 199 69.8 79.4 184 -34.6 29.1 H A H SA 

30 185 32.8 19.9 177 29.4 53.1 H A H AC 

35 189 20.6 17.4 174 14.6 66.1 H A H AC 

39 192 28.1 61.0 174 24.9 25.1 H A H AC 

44 199 57.4 72.1 184 -27.2 -2.3 H A H SA 

45 199 51.5 68.6 181 12.4 48.4 H A H SA 

46 176 0.5 23.7 167 38.0 47.4 H A H SA 

48 199 75.7 80.5 181 6.0 63.2 H A H SA 

52 199 65.6 72.1 177 21.9 45.6 H A H AC 

58 199 77.9 70.1 181 4.5 48.3 H A H SA 

59 192 66.1 70.8 174 43.4 64.8 H A H AC 

63 192 -3.6 45.1 174 11.9 42.4 H A H SA 

66 192 11.1 27.8 174 33.7 41.3 H A H AC 

76 203 64.1 64.8 181 15.4 61.0 H A H SA 

83 189 25.4 50.4 181 35.6 82.6 H A H SA 

1 185 47.0 79.2 170 41.8 67.7 A A A AC 

4 192 47.0 54.3 174 22.9 50.0 A A A SA 

5 178 -11.1 47.7 163 14.6 21.3 A A A AC 

9 185 31.0 77.7 167 2.7 33.8 A A A AC 

17 176 26.1 7.8 163 19.5 65.7 A A A AC 

29 178 23.5 66.5 167 37.4 57.6 A A A AC 

32 172 46.1 48.1 161 54.0 65.2 A A A AC 

53 192 54.8 63.0 174 22.1 69.7 A A A AC 

57 192 9.3 48.4 174 34.4 44.3 A A A AC 

64 192 25.5 47.5 170 20.2 55.5 A A A AC 
a
 SNP_IGA_409351 segregates 1:2:1 in BtxAk. Missing data have been imputed in M2 based on the close 

marker SNP_IGA_404570 that segregates 1:1 

b
Acid (AC) vs. Subacid (SA) fruit taste 
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Table 7S. (Continued) 

 
2013 2014 

   
 

nr MD pFLd3 pFLd5 MD pFLd3 pFLd5 M1 M2
 a
 M3 D/d

b 

11 196 51,1 76,6 174 14,0 60,4 A A H SA 

21 189 43,6 35,9 174 35,2 63,9 A A H AC 

24 189 18,0 47,1 181 40,6 82,7 A A H SA 

43 192 42,0 65,6 174 38,7 62,7 A A H AC 

54 192 57,8 70,7 174 62,9 76,4 A A H AC 

55 189 43,1 43,7 170 57,9 68,2 A A H AC 

56 192 51,8 69,6 174 20,8 51,8 A A H AC 

61 192 44,5 62,0 181 58,6 81,3 A A H SA 

72 192 34,8 50,2 174 18,7 12,3 A A H AC 

67 - - - 181 0,6 44,0 - A H SA 

3 172 4,2 0,6 161 31,2 72,7 H H A SA 

34 169 36,6 73,0 161 73,5 77,0 H H A AC 

51 172 49,4 71,2 161 37,2 61,8 H H A AC 

50 206 63,3 60,2 163 50,4 68,1 H H H AC 

85 182 76,6 85,1 170 65,0 76,3 H H H SA 

6 169 40,0 75,7 161 54,4 62,0 A H A AC 

12 169 76,5 87,0 161 70,2 70,6 A H A AC 

16 178 2,7 30,4 167 -7,6 31,7 A H A AC 

19 178 25,7 55,7 167 -0,2 46,8 A H A AC 

33 172 31,7 46,8 161 39,6 67,8 A H A SA 

36 172 68,3 79,2 163 62,9 74,2 A H A AC 

40 169 67,5 78,8 161 83,2 79,7 A H A AC 

47 169 63,8 75,2 163 71,6 69,9 A H A AC 

49 172 54,8 65,1 163 71,1 80,1 A H A - 

69 169 78,5 84,8 161 81,3 88,1 A H A AC 

73 169 63,4 83,7 161 69,4 80,6 A H A AC 

79 169 78,9 82,5 161 68,1 80,5 A H A AC 

80 172 61,2 80,8 161 79,9 90,0 A H A AC 

81 172 62,9 70,6 161 47,4 81,1 A H A SA 

15 178 63,3 76,1 167 8,5 62,5 A H H SA 

22 172 63,5 61,4 161 48,3 69,1 A H H AC 

23 178 56,6 72,0 163 53,5 70,2 A H H SA 

37 172 39,2 60,0 163 57,9 74,6 A H H AC 

38 172 59,8 76,7 163 66,4 75,0 A H H SA 

60 176 62,8 59,3 163 69,6 67,4 A H H AC 

62 176 62,8 37,9 163 68,1 72,2 A H H SA 

75 176 69,7 75,4 163 69,4 69,1 A H H AC 

77 176 62,3 64,4 163 74,7 68,6 A H H AC 

82 176 -9,3 19,9 163 29,8 55,9 A H H SA 

14 - - - 161 67,5 84,0 - H A AC 

31 - - - 161 32,3 74,2 - H A AC 
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Figure 1S – Distribution of the traits analyzed in this work for Bt×Ak population in 2013 and 2014. 

Distribution curves are displayed above histograms. Green curves are for normally distributed data 

according to a Shapiro-Wilk normality test, red curves are not normal.  
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Figure 2S – Distribution of the traits analyzed in this work for Bt×Nr population in 2013 and 2014. 

Distribution curves are displayed above histograms. Green curves are for normally distributed data 

according to a Shapiro-Wilk normality test, red curves are not normal.  

 

 

 




