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Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the
causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic
latent infections that promote its global spread, hindering disease control. A potato
breeding program is conducted in Uruguay based on the introgression of resistance
from the wild native species S. commersonii Dun. Currently, several backcrosses
were generated exploiting the high genetic variability of this wild species resulting in
advanced interspecific breeding lines with different levels of bacterial wilt resistance.
The overall aim of this work was to characterize the interaction of the improved
potato germplasm with R. solanacearum. Potato clones with different responses to
R. solanacearum were selected, and colonization, dissemination and multiplication
patterns after infection were evaluated. A R. solanacearum strain belonging to the
phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified
to constitutively generate fluorescence and luminescence from either the green
fluorescence protein gene or lux operon. These reporter strains were used to allow
a direct and precise visualization of fluorescent and luminescent cells in plant tissues
by confocal microscopy and luminometry. Based on wilting scoring and detection
of latent infections, the selected clones were classified as susceptible or tolerant,
while no immune-like resistance response was identified. Typical wilting symptoms in
susceptible plants were correlated with high concentrations of bacteria in roots and
along the stems. Tolerant clones showed a colonization pattern restricted to roots and a
limited number of xylem vessels only in the stem base. Results indicate that resistance
in potato is achieved through restriction of bacterial invasion and multiplication
inside plant tissues, particularly in stems. Tolerant plants were also characterized by
induction of anatomical and biochemical changes after R. solanacearum infection,
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including hyperplasic activity of conductor tissue, tylose production, callose and lignin
deposition, and accumulation of reactive oxygen species. This study highlights the
potential of the identified tolerant interspecific potato clones as valuable genetic
resources for potato-breeding programs and leads to a better understanding of
resistance against R. solanacearum in potato.

Keywords: bacterial wilt, Ralstonia solanacearum, potato, Solanum commersonii, plant breeding, disease
resistance, latent infections

INTRODUCTION

Potato (Solanum tuberosum L.) is the third most important food
crop after rice and wheat. Potato is a staple food for more than a
billion people worldwide, and the global production of this crop is
more than 300 million metric tons (FAOSTAT, 2014). The origin
of commercial potato cultivars is limited to a restricted number
of potato clones introduced from South America into Europe in
the 16th century, leading to a narrow genetic base and a limited
resistance to pathogens (Hooker, 1981).

Among the bacterial potato diseases, bacterial wilt caused by
Ralstonia solanacearum ranks the first. The disease affects more
than 1.5 million hectares of potato crops worldwide having a
significant economic impact estimated atin $ 950 million per
annum (Elphinstone, 2005). R. solanacearum is within the top
10 plant pathogenic bacteria because of its lethality, persistence
in the environment, wide host range and broad geographic
distribution (Elphinstone, 2005; Mansfield et al., 2012). This
soil-borne vascular pathogen affects more than 250 monocot
and dicot species in tropical, subtropical and temperate regions
(Peeters et al., 2013). The bacterium infects the roots of host
plants, rapidly colonizes the vascular system and releases large
amounts of exopolysaccharide that prevent water flow within
xylem vessels, causing wilting symptoms and subsequent plant
death (Genin and Denny, 2012). R. solanacearum can persist,
spread, and survive in different natural habitats including
soil, water, and plant tissues. These outstanding multifaceted
characteristics mirror the extraordinary genetic and phenotypic
diversity of this xylem-invader, making difficult to achieve a
sustainable disease control (Lebeau et al., 2011).

Ralstonia solanacearum is a species complex composed by a
diverse group of strains classified in four phylotypes based on
their phylogeography. Each phylotype is further subdivided in
sequevars defined as groups of isolates with highly conserved
DNA sequences (Fegan and Prior, 2005). A recent taxonomic
revision has led to the distinction of three separate species
within the species complex (Safni et al., 2014). In this new
classification, the species R. solanacearum includes only strains
from phylotype II with origin in South America. The novel
species R. pseudosolanacearum was defined to include strains
from phylotypes I and III, and strains from phylotype IV were
assigned to the species R. syzygii (Safni et al., 2014). In Uruguay,
as well as in other cold and temperate regions of the world, potato
crops are mainly affected by R. solanacearum strains from the
phylotype IIB, sequevar 1 (Siri et al., 2011).

The most economical, environmentally friendly, and effective
way to control bacterial wilt in various crops relies in the use

of cultivars with resistance (Boshou, 2005; Huet, 2014). Wild
Solanum species and primitive forms of cultivated potato are
considered an invaluable and diverse source of genetic variation
for potato breeding for resistance to different pests and diseases
(Machida-Hirano, 2015). Potato stands out among all other
crops considering the genetic diversity and potential of available
germplasm for breeding purposes. Bacterial wilt resistance
sources have been identified in several tuber-bearing cultivated
and wild Solanum species including S. phureja, S. stenotomum,
S. acaule, S. bulbocastanum, S. clarum, S. chacoense, and
S. commersonii (Machida-Hirano, 2015). However, the resistance
from these sources was variable depending on pathogen strain
and environmental conditions, making breeding potato for
bacterial wilt resistance challenging (Patil et al., 2012). Although
some potato varieties with moderate to highly levels of bacterial
wilt resistance were released, dragging undesirable agronomic
traits together with the occurrence of latent infections in tubers
are still major problems (Huet, 2014). Progress obtained so far
shows that bacterial wilt resistance available in Solanum wild
species has not been fully exploited, suggesting that diversifying
the genetic basis for both disease resistance and agronomical
traits is a challenge for potato breeding programs.

Solanum commersonii Dun is a tuber-bearing wild species
with high potential as bacterial wilt resistance source for
potato breeding. This species is widely distributed and adapted
to our environmental conditions and harbors many desirable
traits, including cold tolerance, and resistance to several
diseases including bacterial wilt (Laferriere et al., 1999; Carputo
et al., 2009; Siri et al., 2009). Introgression of resistance
through the potato breeding program in Uruguay makes use
of the high genetic diversity available in this wild species
(Pianzzola et al., 2005; Siri et al., 2009). The breeding
scheme involves conventional interspecific crosses exploiting
the occurrence of non-reduced gametes and using S. phureja
as a bridge species, to overcome crossing barriers between
S. commersonii and the cultivated potato. Selected F1 hybrids
from S. commersonii × S. phureja progenies were backcrossed
with the cultivated potato to obtain the so-called BC1 and
recurrent backcross generations were obtained after crossing
BC1 plants with S. tuberosum genotypes (Gaiero et al., 2017).
These backcrosses have resulted in advanced interspecific clones
with high bacterial wilt resistance and low frequency of latent
infections (unpublished data).

Knowledge on pathogen distribution and multiplication in
plant tissues is critical to fully exploit potential of sources of
bacterial wilt resistance through breeding programs. Bacterial
wilt disease progress was previously described in susceptible
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and resistant tomato genotypes suggesting that resistance in this
crop is related with limitation of bacterial spread in the stems
(Grimault and Prior, 1993; Grimault et al., 1994a; Nakaho et al.,
2004). Physical barriers including tyloses production and cell
wall reinforcement were found to play important functions in
preventing R. solanacearum dissemination in vascular tissues
(Grimault et al., 1994b; Nakaho et al., 2000). In a recent study,
bacterial wilt resistance in tomato plants was not attributed to a
limited bacterial movement in the stems but to restriction of root
colonization by the pathogen (Caldwell et al., 2017). In resistant
tomato cultivars, a delay in colonization of the root vascular
cylinder was found, and once bacteria enter the root vascular
tissue, colonization in the vasculature was spatially restricted
(Caldwell et al., 2017).

In contrast, little knowledge is available regarding defense
responses in potato, and the infection process in resistant
sources is not well understood. Recently, transcriptomics studies
have been conducted in resistant S. commersonii genotypes,
allowing the identification of hundreds of candidate genes
proposed to be involved in resistance to bacterial wilt in
this wild species (Narancio et al., 2013; Zuluaga et al., 2015).
Previously we developed a new screening approach to follow
pathogen colonization in potato germplasm by live imaging
using a luminescent R. solanacearum reporter strain (Cruz
et al., 2014). This method allows the detection of latent
infections in roots and stems tissues of asymptomatic tolerant
plants and was proposed as an efficient tool for resistance
screenings in potato breeding programs (Cruz et al., 2014).
Here, we extend this approach to evaluate in detail the
R. solanacearum colonization, dissemination and multiplication
pattern in selected potato clones with contrasting levels of
bacterial wilt resistance. In addition, we used an additional
reporter strain that generate fluorescence from a synthetic green
fluorescence protein (GFP) gene integrated in the bacterial
chromosome. Both reporter strains were used for direct and
precise visualization of fluorescent and luminescent cells in
plant tissues by confocal microscopy and luminometry. To
gain a better understanding of this host–pathogen interaction,
induced plant defenses responses were also evaluated, including
callose and lignin deposition and reactive oxygen species
production.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Ralstonia solanacearum reporter strains UY031 Pps-lux and
UY031 Pps-GFP were constructed and validated previously by
our group (Cruz et al., 2014). The reporter systems (LuxCDABE
operon and GFP) were introduced in a neutral genome region
of R. solanacearum UY031, a phylotype IIB- sequevar 1 strain
isolated from potato crops in Uruguay, that shows high levels
of aggressiveness (Siri et al., 2011; Guarischi-Sousa et al., 2016).
Reporter strains and UY031 were grown on triphenyltetrazolium
chloride medium (Kelman, 1954) and incubated at 28◦C for
48–72 h. Gentamicin was used for selection of reporter strains
(5 and 75 µg·ml−1 in liquid and solid cultures, respectively).

Optical density was measured spectrophotometrically at 600 nm
to adjust bacterial suspensions for inoculation (OD600 of 0.1
corresponds to 108 cfu·ml−1).

Plant Materials and Growth Conditions
Four interspecific potato clones (13001.79, 13001.107, 11201.27,
and 09509.6) derived from different breeding lines were selected
from the National Institute for Agricultural Research (INIA,
Uruguay) germplasm collection. Introgression of resistance to
R. solanacearum from diverse wild S. commersonii accessions
was achieved using S. phureja as a bridge species followed by
successive backcrosses to S. tuberosum (Gaiero et al., 2017).
The potato cultivar S. tuberosum cv. Chieftain was used as a
susceptible control. Plants were micro-propagated in vitro from a
node in Murashige and Skoog (MS) medium with sucrose 30 g/l
and kept at 22◦C with cycles of 16 h light/8 h darkness. After
3 weeks plants were sown in plastic boxes with soil mix (Tref
Substrates BV, Moerdijk, Netherlands) and grown for 1 week in
a greenhouse under natural light. Then, plants were placed in
a growth chamber at 24◦C and 65% relative humidity with a
photoperiod of 16 h light/8 h darkness for one additional week
prior to inoculation assays.

Plant Inoculation
Bacterial suspensions were prepared from overnight liquid
cultures of R. solanacearum wild type UY031 and reporter strains
incubated at 28◦C, and spectrophotometrically adjusted to a
concentration of 107 cfu·ml−1.

For bacterial wilt resistance evaluation, potato clones grown
in 88-well seedbeds were soil inoculated using 1 ml of bacterial
suspension of strain UY031 to reach a final density of 106 cfu·g−1

(Siri et al., 2011). Plants inoculated with saline solution were
considered as the negative control treatment. Two replicate trays
containing eight plants each were inoculated for each clone
using a completely randomized design and the experiment was
performed twice. Disease progression was registered regularly
until 28 days after inoculation using a scale ranging from 0
(asymptomatic plant) to 4 (all leaves wilted). The resistance level
was calculated by the area under disease progress curve (AUDPC)
based on the average wilt scoring for each clone. To determine
the occurrence of latent infections 2-cm stem sections from
asymptomatic plants were ground, streaked onto mSMSA plates
(Elphinstone et al., 1996) and incubated at 28◦C for 5–7 days.
Asymptomatic plants were recorded as latently infected when
typical R. solanacearum colonies were detected on the mSMSA
plates.

To follow infection process, potato clones were inoculated
with R. solanacearum reporter strains UY031 Pps-lux or UY031
Pps-GFP. Plants grown in individual pots were soil inoculated
by drenching 40 ml of the bacterial suspensions into each pot to
reach a final density of 106 cfu·g−1. Roots were wounded before
inoculation as described by Cruz et al. (2014).

For evaluation of histological effects caused by
R. solanacearum infection, the susceptible potato cultivar
Chieftain and the tolerant clone 09509.6 were soil or stem
inoculated using wild type strain UY031. For stem inoculation
assays, a drop (10 µl) of the bacterial suspension (107 cfu·ml−1)
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was placed at the petiole of the third expanded leaf counting
from the top of the plant, and then wounded with a needle
to favor bacterial penetration. Soil inoculation was performed
as described above using plants grown in individual pots. All
experiments were performed using three to five replicate plants
for each genotype.

All inoculation assays were performed in a growth chamber at
28◦C with 65% relative humidity and a photoperiod of 16 h light:
8 h darkness.

Bacterial Visualization and Quantification
In Planta
For luminescence detection, plants from clones 13001.79,
13001.107, 11201.27 and Chieftain were soil inoculated using
strain UY031 Pps-lux as described above. Two independent
experiments were performed using six replicate plants of
each clone arranged in a complete randomized design. After
inoculation, bacterial cells were detected daily in plant tissues
for 6 days after inoculation using the Fuji Film LAS4000 light
imager system, using the same setting conditions as described
by Cruz et al. (2014). In addition, luminescence was quantified
in a luminometer (Berthold FB 12) from roots and 2-cm stem
segments from the basal and the aerial part of the plants.
Luminescence readings were expressed as RLU per milligram of
fresh tissue (Cruz et al., 2014).

For fluorescence detection, plants from clones 13001.79,
13001.107, 11201.27, 09509.6 and Chieftain were soil inoculated
with the reporter strain UY031 Pps-GFP and bacteria was
detected in root and stems tissues 2 and 7 days post inoculation.
Several experiments with different combinations of clones
were performed using three to five replicate plants for each
combination of clone/time arranged in a complete randomized
design. Each clone was assessed in at least two independent
experiments. Stems and roots were weighed and washed with
tap water, disinfected with sodium hypochlorite 1% for 1 min,
washed again and dried with sterile absorbent paper. Using a
previously disinfected scalpel, 2-cm stem segments were cut
from 1 cm above ground. Six to 10 cross-sections were made
by hand on the end of each stem segment and the remaining
sample was ground and used for bacteria quantification by
plate counting on triphenyltetrazolium chloride agar medium
(Kelman, 1954) supplemented with gentamicin. Whole root
systems were observed using an epifluorescence microscope
with GFP filter (Nikon, Eclipse 80i) to locate the areas where
the bacterium was present. Colonized roots were selected to
be observed by confocal microscopy. Stem cross-sections and
selected roots from each plant were placed on a glass slide,
surrounded with solid vaseline and covered with agarose 1% used
as immersion medium. Samples were observed using a confocal
microscope (Leica, TCS SP5).

Differential Staining of Stems
Cross-Sections
Safranin-Fast Green Stain
Anatomical features of control and infected seedlings from
the tolerant clone 09509.6 and the susceptible potato cultivar

Chieftain were investigated by means of differential stains
and analysis under a light microscope. Fresh plant material
was fixed in FAA solution (50% ethanol, 5% glacial acetic
acid, 30% formaldehyde and 15% water), dehydrated in an
increasing ethanol and ethanol/xylene concentrations solutions
and embedded in paraffin (Johansen, 1940). Cross sections of
10 µm were obtained with a Minot microtome. Sections were
stained with safranin-fast green (Strittmatter, 1979), mounted in
Canada Balsam Natural (Biopack) and observed using a light
microscope (Axiolab, Zeiss MC 80).

Callose Detection
The detection of callose deposits was made harvesting plants
48 h after stem inoculation and cleaned during a whole night
in 96% ethanol in Petri dishes. Once the stems were completely
distained, they were cut manually and were incubated first in
sodium phosphate buffer (0.07 M, pH 9) for 30 min, and then
in aniline blue solution (0.05%) for 60 min (Daurelio et al., 2009).
Finally, the samples were mounted in glycerol-water mix (50%)
and observed immediately using an UV-fluorescence microscope
(MIKOBA F320 with mercury lamp power box).

ROS Detection
Stem inoculation assays using UY031 strain were performed on
the tolerant clone 09509.6 and susceptible cultivar Chieftain.
Three clonal replications of each genotype were inoculated
with the bacterial suspension, and negative plant controls were
inoculated using sterile saline solution. Stems were harvested 24 h
after inoculation and stained with DAB-HCl for 18 h in darkness.
Then stems were placed in 96% ethanol to distain (Daurelio et al.,
2009). Once the stems were completely distained, they were cut in
cross sections. Reactive oxygen species (ROS) were detected using
a light microscope (Zeiss MC 80, Axiolab).

Data Analysis
Analysis of variance (ANOVA) and the Tukey’s multiple
comparison test were applied with a 95% confidence level to
analyze AUDPC, luminescence and plate counts values. Model
residuals were used to check for the assumptions of normality
and homogeneity of variances. Data from replicate trials of
experiments were combined when there were no significant
effects among trials. All statistical analyses were done using
Infostat (Di Rienzo et al., 2009).

RESULTS

Selected Potato Clones Were Classified
As Susceptible or Tolerant Based on
Wilting Scoring and Occurrence of
Latent Infections
Experimental conditions used for resistance evaluation were
favorable for distinguishing different levels of bacterial wilt
resistance among the selected interspecific clones (Table 1).
As expected, the potato cultivar Chieftain showed a highly
susceptible response, with first symptoms appearing 5–7 days
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TABLE 1 | Bacterial wilt responses of selected potato genotypes expressed as the
area under disease progress curve (AUDPC) and pathogen detection in stem
tissues of asymptomatic plants 28 days post inoculation.

Genotype Descriptiona AUDPCb Stem
latent

infectionc

Plant
reaction

cv. Chieftain tbr 62,6 A − Susceptible

13001.79 (cmm × cmm) 48,5 A − Susceptible

13001.107 (cmm × cmm) 17,1 B + Tolerant

11.201.27 (cmm × phu) × tbr 23,9 B + Tolerant

09.509.6 [(cmm× phu)× tbr]
× tbr

15,8 B + Tolerant

aPedigree of each potato genotype. cmm: Solanum commersonii, phu: Solanum
phureja, tbr: Solanum tuberosum.
bAUDPC values are means of two repeated experiments with two replicate trays
containing eight plants of each genotype. Data were pooled across experiments
since no significant effects involving trials were found in the analyses of variance
(ANOVAs). Values followed by the same letter in the same column are not
significantly different (Tukey’s multiple comparison test, P = 0.05).
cStem latent infection was evaluated in asymptomatic plants 28 days after
inoculation with Ralstonia solanacearum. (+): growth of typical Ralstonia
solanacearum colonies in mSMSA plates. (−): no evidence of Ralstonia
solanacearum growth in mSMSA plates.

after inoculation and all plants completely wilted at the end of the
experiment (data not shown). Based on comparison of AUDPC
data, the clone 13001.79 was classified as susceptible, as only a low
proportion (5–20%) of plants remained asymptomatic 28 days
after inoculation in the repeated experiments. The other selected
clones (13001.107, 11201.27, and 09509.6) showed significant
differences in symptom progression compared to the susceptible
control. For these genotypes asymptomatic plants predominated
(>70%), and the pathogen was detected at the basal part of the
stems revealing the occurrence of latent infections. Consequently,
these clones were classified as tolerant.

Tolerant Clones Showed a Restricted
Colonization Pattern in Roots and Stem
Base
Plants of Chieftain and 13001.79 showed wilting symptoms
6 days after inoculation and the pathogen could be detected in
planta as dark zones along the stem (Figures 1A,B). In contrast,
plants of tolerant clones remained asymptomatic and bacterial
colonization was observed only in the lower stem (collar) from
day fourth after inoculation (Figures 1C,D). Luminescence
emitted by UY031 Pps-lux strain 6 days after inoculation in
infected plant tissues is shown as relative luminescence units
(RLU) per milligram in Figure 2.

The tolerant clone 09509.6 displayed higher luminescence
values in roots than the cultivar Chieftain (P = 0.0277), and
clones 13001.79 and 13001.107 showed an intermediate response.
In the lower stem (collar) both susceptible genotypes (13001.79
and Chieftain) showed higher bacterial loads than tolerant clones
(13001.107 and 11201.27) (P = 0.0014). Luminescence was also
measured in upper stems where the susceptible cultivar Chieftain
showed the highest colonization level, while the other genotypes
displayed luminescence values just above the background level.

Ralstonia solanacearum Multiplied in a
Limited Number of Xylem Vessels and
Reached Low Population Densities in
Stems of Tolerant Plants
Two days after inoculation with the UY031 Pps-GFP reporter
strain all plants remained asymptomatic (Figure 3), and the
pathogen was not observed by microscopic evaluation neither
in stems nor in roots. Five days later, wilting symptoms were
evident only in susceptible plants (Chieftain and 13001.79)
(Figure 3). At this time point bacterial colonization was verified
in roots systems of all plants compared with mock inoculated
roots of each variant. Representative images showed the same
distribution pattern in roots of susceptible and tolerant clones
(Supplementary Figure 1). A high frequency of wounded
roots was observed highlighting the severity of the inoculation
procedure.

On the contrary, differences in colonization patterns were
observed among stems of susceptible and tolerant plants. In
mock inoculated plants, stem sections were typically observed
as few autofluorescent patches and representative xylem vessels
identified by their roughly octagon shaped lignified cell walls
(Figure 4A). Microscopic evaluation of susceptible plants
with visible wilting symptoms showed a heavy colonization
7 days post inoculation. Bacteria was found in the vascular
and parenchymatic tissues and distributed throughout the
apoplast (Figures 4B,C). In contrast, representative images of
asymptomatic plants from the tolerant clone 11201.27, showed
bacterial cells occluding a limited number of xylem vessels within
only one of the vascular bundles (Figure 4D). This restricted
distribution may be associated with a reduced interference
of water transport explaining the typical absence of wilting
symptoms in this clone. For other tolerant clones (13001.107 and
09509.6) all plants remained asymptomatic and no bacterial cells
were observed in the transverse sections of stems by confocal
microscopy (data not shown).

Microscopy provides valuable qualitative observations but is
not sensitive enough and does not allow quantification. Hence,
the same roots and stems samples were also used for quantitative
analysis of pathogen colonization by plate counting. Two days
after inoculation roots from all clones were already colonized
by the pathogen, although microscopic evaluations failed to
detect R. solanacearum cells in plant tissues (Figure 5). No
significant differences were observed among pathogen densities
in roots of all tested clones 2 and 7 days post inoculation.
However, susceptible plants showed higher bacterial loads in
stems compared to plants from the tolerant clones. In plants
from the susceptible cultivar Chieftain and clone 13001.79,
R. solanacearum multiplied extensively in the stems, and quickly
increased to 106 cfu·g−1 2 days after inoculation and reached
more than 109 cfu·g−1 7 days after inoculation. In tolerant
clones (13001.107, 11201.27, and 09509.6), there was no apparent
increase in R. solanacearum population in stems from 2 to 7 days
after inoculation. This is consistent with the fact that that no
wilting symptoms were observed in these plants throughout the
study. In these clones, bacterial titers in stems tissues reached
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FIGURE 1 | Bioluminescence imaging of Ralstonia solanacearum strain UY031 Pps-lux colonization pattern in different potato genotypes. (A) Susceptible potato
cultivar Solanum tuberosum cv. Chieftain. (B) Susceptible potato clone 13001.79. (C) Tolerant potato clone 13001.107. (D) Tolerant potato clone 11201.27. Images
were acquired 3, 4, 5, and 6 days post inoculation (dpi) using an in vivo imaging system. Light gray indicates background luminescence due to chlorophyll and black
regions are tissue areas colonized by light-emitting bacteria.

an average of 104 cfu·g−1, which is probably below the required
levels for disease development.

Histological Effects of R. solanacearum
Infection in Susceptible and Tolerant
Potato Plants
Cell division with the generation of increased quantity of
conductor tissue (xylem and phloem) was observed strongly in
infected plants of the tolerant clone 09509.6 (Figure 6D). The
susceptible cultivar Chieftain also showed hyperplasic activity
after R. solanacearum infection but to a lesser extent (Figure 6C).
Mock inoculated controls are shown in Figures 6A,B. In
addition, stems from clone 09509.6 presented the highest level
of lignification, with an increased thickening of xylem vessels
compared to the susceptible cultivar Chieftain. This was revealed
by staining with safranin which dyes secondary cell walls red
(Figures 6E,F). Representative images of thin sections of infected
stems from clone 09509.6 also revealed the existence of vessels
plugged by tyloses with a globular shape (Figure 6F). This result

suggests that infected xylem vessels could induce these structures
to occlude the vascular system in tolerant plants limiting bacterial
flow to upper tissues. In mock inoculated or susceptible plants no
tylose production was observed.

Callose was localized using aniline blue solution leading to
yellow fluorescence (Figure 7). In infected plants from the
susceptible cultivar Chieftain pads of callose were observed
filling the sieve tubes in phloem tissue and in areas of
cellular communication between cortical parenchyma cells
(Figures 7A,C,E). Callose deposits were not observed in mock
inoculated plants (data not shown). In the tolerant clone 09509.6
callose was abundant in both healthy and infected plants,
and was located filling the sieve tubes in the phloem tissue
(Figures 7B,D,F). In infected plants of this clone the increased
quantity of conductor tissue due to induced hyperplasic activity
was revealed as strong autofluorescence of the lignified tissue
(Figure 7D).

Diamino benzidine (DAB) formed a brown precipitate with
hydrogen peroxide that was correlated with production of ROS
(Figure 8). In susceptible cultivar Chieftain no differences were

Frontiers in Plant Science | www.frontiersin.org 6 August 2017 | Volume 8 | Article 1424

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01424 August 16, 2017 Time: 12:35 # 7

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Ferreira et al. Bacterial Wilt Resistance in Potato

FIGURE 2 | Bioluminescence quantification in roots and stems sections of
potato plants 6 days after soil inoculation with R. solanacearum strain UY031
Pps-lux. Light emission is presented as relative luminescence units per
milligram of plant fresh tissue (RLU·mg−1). Each column represents the mean
luminescence (n = 6) detected in roots and stems sections of the susceptible
potato cultivar S.tuberosum cv. Chieftain and interspecific potato breeding
lines with different levels of bacterial wilt resistance including susceptible
(13001.79) and tolerant (13001.107 and 11201.27) clones. Columns with the
same letter within each sample type (roots, lower stem, upper stem) are not
significantly different according the Tukey’s multiple comparison test
(P = 0.05). Vertical bars represent standard errors of the means.

observed between healthy and infected plants (Figures 8A,C).
The tolerant clone showed a stronger and more extended ROS
production after pathogen infection compared to the mock
inoculated plants (Figures 8B,D). In infected plants of this
clone the brown precipitate revealing ROS production was
mainly observed around the conductor tissue and throughout the
apoplast (Figure 8D).

DISCUSSION

Breeding programs focused on the development of bacterial
wilt resistant potato varieties are hampered by the scarcity
of stable resistance sources against R. solanacearum. In this
study we present the evaluation of selected interspecific clones
from the potato breeding program developed in Uruguay, based
on the introgression of resistance from S. commersonii. This
wild species was previously reported to carry resistance against
R. solanacearum (Laferriere et al., 1999; Carputo et al., 2009),
however, these studies were limited to only one or few accessions,
and the resistance sources were not further improved considering
required agronomic and commercial traits. In contrast, our
national potato breeding program makes use of the high genetic
diversity available in this species which is widely distributed and
adapted to our environmental conditions (Pianzzola et al., 2005;
Siri et al., 2009, 2011; Gaiero et al., 2017).

The challenge of advanced pre-breeding materials belonging
to different backcross populations showed consistent results in

FIGURE 3 | Symptom evaluation of bacterial wilt on potato plants soil
inoculated with R. solanacearum strain UY031 Pps-GFP. Light pictures of
plants from susceptible potato cultivar S. tuberosum cv. Chieftain, the
susceptible clone 13001.79 and the tolerant clone 11201.27 were taken 2
and 7 days post inoculation (dpi). Control: mock inoculated plants of each
genotype.

repeated experiments, attesting to the reliability of the wounded-
roots soil inoculation procedure and the contrasting responses
against R. solanacearum infection. Based on wilting scoring and
detection of latent infections, the evaluated clones were classified
as susceptible (similar disease progression than a susceptible
potato cultivar) or tolerant (when most plants replicates remain
asymptomatic 28 days post inoculation and the pathogen is
present in stems). Interestingly, some breeding lines even after
one or two backcrosses with susceptible S. tuberosum germplasm
presented low level of bacterial wilt incidence and therefore
maintained the resistance from the wild species.

Asymptomatic latent infections caused by R. solanacearum
should be considered in potato breeding programs to avoid the
selection of tolerant varieties which would promote pathogen
dissemination under favorable environmental conditions (Priou
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FIGURE 4 | Representative confocal fluorescence micrographs of stem cross-sections of potato plants soil inoculated with R. solanacearum strain UY031 Pps-GFP.
Bacterial colonization was evaluated 7 days after inoculation, in the susceptible potato cultivar S. tuberosum cv. Chieftain and interspecific potato breeding lines with
different levels of bacterial wilt resistance including susceptible (13001.79) and tolerant (11201.27) clones. (A) Mock inoculated Chieftain plant. (B) Chieftain plant
inoculated with R. solanacearum. (C) 13001.79 plant inoculated with R. solanacearum. (D) 11201.27 plant inoculated with R. solanacearum. Dark arrows show
bacterial colonization and white arrow shows autofluorescence of xylem vessels.

et al., 2005). This problem is not exclusive for potato and was
observed in previous studies for other hosts of R. solanacearum
including pepper, tomato, eggplant, and geranium (Swanson
et al., 2005; Lebeau et al., 2011; Heshan et al., 2017). By assessing
phenotypes based on wilting symptoms and pathogen detection
in plant tissues, it is possible to differentiate two mechanisms
of defense: plant resistance based on limitation of pathogen
access to the vascular system (immunity) and resistance based
on plant survival harboring the bacteria within xylem vessels
(latent infection or tolerance) (Lebeau et al., 2011). Resistance
screening of potato germplasm derived from the wild species
S. commersonii did not reveal immunity to R. solanacearum.
However, it is important to consider that the assay used in

this study for resistance evaluation is more severe than usual
field conditions, as the plantlets have thinner stems and limited
rooting systems, the pathogen is present at high concentration
in soil (106 cfu·g−1), the roots are artificially damaged and the
incubation conditions are optimal for disease development.

The occurrence of asymptomatic infections in susceptible
potato cultivars may be a way of pathogen dissemination,
particularly in temperate growing regions with slower disease
progress. Introducing the evaluation of latency in our breeding
program aimed to avoid a selection only based on wilting
symptoms. In addition, pollen fertility, tuber quality and other
agronomic traits are also being considered when selecting the
best parental material for future crosses. Although no truly
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FIGURE 5 | Bacterial populations in roots and stems of susceptible and
tolerant potato genotypes 2 (A) and 7 (B) days post inoculation (dpi) with
R. solanacearum strain UY031 Pps-GFP. Each column represents the mean
bacterial load (n = 6) determined by plate counting in roots and stems
samples of the susceptible potato cultivar S. tuberosum cv. Chieftain and
interspecific potato breeding lines with different levels of bacterial wilt
resistance including susceptible (13001.79) and tolerant (13001.107,
11201.27, and 09509.6) clones. Columns with the same letter within each
sample type (roots, stems) are not significantly different according the Tukey’s
multiple comparison test (P = 0.05). Vertical bars represent standard errors of
the means.

resistant genotypes were found in this study, partial resistant or
highly tolerant clones showing a low proportion of wilted plants
and restricted pathogen colonization should be considered as a
valuable genetic resource for breeding. The usefulness of these
clones would be appreciated in severely infected tropical lands,
where acceptable potato yields would only be achieved with them.
This extent and the use of the harvested tubers as potato seeds
should be further studied.

Methods allowing localization and visualization of microbes
have account for a substantial progress in the understanding
of the interactions between pathogen and its host plants. The
ability of R. solanacearum reporter strain UY031 Pps-lux to
emit bioluminescence in planta reported by Cruz et al. (2014),
was here extended with the implementation of a fluorescent
GFP-tagged R. solanacearum strain (UY031 Pps-GFP) as an

additional tool for pathogen localization within infected tissues.
To achieve strong and stable expression of the reporter systems,
gfp and lux genes were integrated in a neutral position of the
R. solanacearum genome under the control of a constitutive
plastid promotor (psbA) (Wang et al., 2007; Monteiro et al.,
2012). GFP-labeled reporter strains have distinct advantages,
including the ability to detect bacteria at the single-cell level
when are used in combination with microscopic observations
(Kohlmeier et al., 2007). On the other hand, luminescent
reporters are more sensitive, allows for a non-destructive in vivo
imaging, and quantification of the emitted luminescence could
be correlated with bacterial loads in infected tissues (Cruz et al.,
2014).

Both reporter strains were readily detected in potato plants
with visible wilting symptoms. In susceptible clones the
transition into a symptomatic stage relied on extensive pathogen
multiplication both in lower and upper stem segments, reaching a
high population density soon after inoculation. This situation was
correlated with the observation of dense bacterial cells aggregates
in stem parenchymatic tissues and filling a large proportion of
xylem vessels causing a progressively lower water conduction
ability. In our previous study using the UY031 Pps-lux reporter
strain, tolerant S. commersonii plants remained asymptomatic
after inoculation and showed high bacterial colonization in
root systems but not in the stems (Cruz et al., 2014). In the
present study, using the same reporter strain and inoculation
procedures, luminescence was detected not only in the root
systems but also in the stem base of asymptomatic plants.
Since tolerant clones currently evaluated were obtained from
backcross populations with the susceptible parent S. tuberosum,
this extended pathogen distribution may be attributed to the
differential genetic background compared to the S. commersonii
accessions previously evaluated.

Results obtained in this study suggest that resistance in
potato is clearly related with the host capability to restrict
bacterial colonization and multiplication, particularly limiting
dissemination along the stem. This is in agreement with
previous observations in tomato resistant and tolerant genotypes
(Grimault et al., 1994a; Nakaho et al., 2000, 2004). However,
in these latently infected tomato plants, pathogen densities in
stems were higher (105–108 cfu·g−1) (Grimault et al., 1994a),
compared to bacterial loads reached in tolerant potato plants
(103–104 cfu·g−1). It is probably that pathogen translocation
from root to stem tissues and/or pathogen multiplication in stems
are prevented in a more efficiently way in potato genotypes,
leading to higher levels of resistance to bacterial wilt. Another
difference between bacterial wilt resistance mechanisms in both
crops refers to root colonization. It was recently reported that
resistance in tomato is partly due to the ability of tolerant
plants to restrict bacterial root colonization in space and time
(Caldwell et al., 2017). However, results obtained in this study
consistently showed no differences regarding the colonization
and distribution pattern in root systems of susceptible and
tolerant clones. This finding was obtained by luminescence
quantification, confocal microscopy observations and plate
counting, strongly suggesting that at least in these potato clones,
limitation of pathogen infection occurs later on.
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FIGURE 6 | Representative light micrographs of safranin-fast green stained stem cross-sections of plants from the susceptible potato cultivar S. tuberosum cv.
Chieftain and the tolerant clone 09509.6. Xylem vessels architecture was evaluated 5 days after soil inoculation with R. solanacearum UY031 strain and compared to
mock inoculated plants. Safranin dyes secondary cell walls red and fast green dyes cellulose light blue. (A) Mock inoculated Chieftain plant. (B) Mock inoculated
09509.6 plant. (C,E) Chieftain plant inoculated with R. solanacearum. (D,F) 09509.6 plant inoculated with R. solanacearum. Dark arrows show hyperplasic activity
and lignin deposition (C–E), or xylem vessels occluded by tyloses with globular shape (F).

Frontiers in Plant Science | www.frontiersin.org 10 August 2017 | Volume 8 | Article 1424

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01424 August 16, 2017 Time: 12:35 # 11

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Ferreira et al. Bacterial Wilt Resistance in Potato

FIGURE 7 | Representative fluorescense (GFP) micrographs of aniline blue stained stem cross-sections of plants from the susceptible potato cultivar S. tuberosum
cv. Chieftain and the tolerant clone 09509.6. Callose deposition was detected as yellow fluorescence zones (white arrows) 2 days after stem inoculation with
R. solanacearum UY031 strain and compared to mock inoculated plants. (A) Chieftain plant inoculated with R. solanacearum. (B) Mock inoculated 09509.6 plant.
(C) Xylem vessels of Chieftain plant inoculated with R. solanacearum. (D) 09509.6 plant inoculated with R. solanacearum. (E) Cortical parenchyma of Chieftain plant
inoculated with R. solanacearum. (F) Internal phloem tissue of tolerant potato genotype 09509.6 inoculated with R. solanacearum.

FIGURE 8 | Representative light micrographs of diamino benzidine (DAB) stained stem cross-sections of plants from the susceptible potato cultivar S. tuberosum cv.
Chieftain and the tolerant clone 09509.6. Reactive oxygen species (ROS) production was evaluated 24 h after stem inoculation with R. solanacearum UY031 strain
and compared to mock inoculated plants. DAB forms a brown precipitate in presence of hydrogen peroxide, indicating ROS production. (A) Mock inoculated
Chieftain plant. (B) Mock inoculated 09509.6 plant. (C) Chieftain plant inoculated with R. solanacearum. (D) 09509.6 plant inoculated with R. solanacearum.

Plant resistance to pathogens is the consequence of
interconnected constitutive and inducible defense responses.
The possible infection paths and the molecular mechanisms
underlying plant defenses have been recently reviewed for several

xylem-colonizing pathogens, including R. solanacearum (Yadeta
and Thomma, 2013; Bae et al., 2015). Plant cell wall is one
of the first structural barriers that pathogens have to cross to
successfully infect plant tissues (Miedes et al., 2014). Pathogens
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also need to breakdown cell walls as a source of nutrients for
their growth once inside the host. Plants have evolved specialized
mechanisms for detecting intruders and sensing the cell wall
integrity. Pathogen recognition induces the cell wall remodeling
to restrict pathogen colonization and spreading needed for
disease control (Bellincampi et al., 2014). This process involves
structural and chemical changes, including lignification, callose
deposition, cell wall protein cross-linking, production of reactive
oxygen species and antimicrobial compounds.

In tomato cultivars with resistance to bacterial wilt, physical
barriers are involved in limitation of pathogen spread. In the
resistant cultivar Caraıbo, many tyloses were found occluding
pathogen-colonized and contiguous xylem vessels (Grimault
et al., 1994b). On the other hand, tylose formation was not
induced in infected tomato plants other resistant cultivar (L S-89)
(Nakaho, 1997). In this cultivar, prevention of pathogen spread in
plant tissues was related with the reinforcement of cell walls and
the pit membranes, and also with the accumulation of electron-
dense materials in vessels and around parenchyma cells (Nakaho
et al., 2000).

Herein, the tolerant potato clone displayed significant
structural responses after soil inoculation with R. solanacearum.
Cell division with the generation of increased quantity of
conductor tissue, lignin deposition and thickening of xylem
vessels were clearly observed. In addition, in infected plants
of this clone several vessels plugged by tyloses with globular
shape were observed. This type of tyloses results from
expansion of parenchyma cells associated to xylem vessels,
probably preventing pathogen transportation within xylem
vessels (Kpémoua et al., 1996).

Callose deposition and ROS production are additional first
line responses in plant defense (Stone and Clarke, 1992;
Lamb and Dixon, 1997). Callose is an amorphous polymer
where antimicrobial compounds are depositated, leading to
delivery of chemical defenses in specific points of attack
(Luna et al., 2011). Although callose deposition contributes
to plant immunity against many plant pathogens, it was
reported that these structures were also found in sites of
pathogen entry (Aist, 1976; Voigt, 2014). In this study, no
differences were found between healthy and infected plants
of the tolerant genotype, and callose was abundant even in
mock inoculated plants. This finding suggests that constitutive
callose deposition in these tolerant plants could contribute to
reinforce the strength of plant cell walls preventing pathogen
spreading.

Reactive oxygen species production is induced after several
forms of biotic and abiotic stress. It has been suggested to prevent
disease progress, either by directly causing pathogen death, or
by promotion of a reinforcement of the cell wall through cross-
linking of proteins and phenolics (Thordal-Christensen et al.,
1997; Brown et al., 1998). In tomato, increased level of ROS
production and lignin deposition in cell wall could promote
bacterial wilt resistance in tomato (Mandal et al., 2011). Our
results showed an induced ROS production after R. solanacearum
infection in tolerant plants. However, quantitative evaluation of

ROS production over time including additional potato genotypes
is needed to further determine the implications of this plant
defense response.

This study proved that tolerant potato clones may show none
or few symptoms while being partially to highly colonized by
R. solanacearum in roots and stems. Our results suggest that the
restricted pathogen multiplication in stems of tolerant genotypes
is a consequence of constitutive or induced structural and
biochemical plant defense responses. However, several aspects of
this plant-pathogen interaction, and the consequences of latent
infection in potato resistance should be further investigated. This
study highlights the potential of the selected tolerant potato
interspecific clones as valuable genetic resources for potato-
breeding programs and leads to a better understanding of
resistance against R. solanacearum in potato.
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