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Abstract 57 

Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are 58 

currently at risk due to air pollution and climate change, yet only a limited number of isolated and 59 

geographically-restricted studies have addressed this topic, often with contrasting results. 60 

Particularities of air pollution in this region include high O3 levels due to high air temperatures and 61 

solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. 62 

Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan 63 

dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales 64 

make it difficult to understand, and thus predict, the consequences of human activities that cause 65 

air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement 66 

coordinated research and experimental platforms along with wider environmental monitoring 67 

networks in the region. In particular, a robust deposition monitoring network in conjunction with 68 

modelling estimates is crucial, possibly including a set of common biomonitors (ideally 69 

cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant 70 

deposition maps. Additionally, increased attention must be paid to functional diversity measures in 71 

future air pollution and climate change studies to stablish the necessary link between biodiversity 72 

and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated 73 

effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a 74 

greater understanding of the mechanisms underlying the combined effects of air pollution and 75 

climate change in the Mediterranean Basin.  76 
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Introduction 77 

Human activities and natural processes have shaped each other over ca. eight millennia within 78 

Mediterranean Basin ecosystems (Blondel, 2006). This coevolution, together with the 79 

heterogeneous orography and geology, the large seasonal and inter-annual climatic variability, the 80 

refuge effect during the last glaciations, and the crossroad location between European temperate 81 

ecosystems and North African and Asian drylands, has resulted in the high diversification of the 82 

flora and fauna that we observe today, making Mediterranean ecosystems a hotspot of biodiversity, 83 

but also of vulnerability (Schröter et al. 2005; Blondel 2006; Phoenix et al. 2006). Moreover, the 84 

Mediterranean Basin is one of the world’s largest biodiversity hotspots and the only one within 85 

Europe, otherwise dominated by temperate natural and semi-natural grasslands, temperate 86 

deciduous forests and boreal conifer forests (Myers et al., 2000). Species-rich ecosystems exclusive 87 

to the Mediterranean Basin include Spanish matorrales and garrigas, Portuguese matos, Italian 88 

macchias, Greek phryganas, and agrosilvopastoral ecosystems of high natural and economic value 89 

such as Spanish dehesas and Portuguese montados (Cowling et al., 1996; Blondel, 2006). However, 90 

the biodiversity and other ecosystem services of this region are currently at risk due to human 91 

pressures such as climate change, land degradation and air pollution (Schröter et al., 2005; 92 

Scarascia-Mugnozza & Matteucci, 2012). Air pollution in the Mediterranean Basin is primarily in 93 

the form of particulate matter, nitrogen (N) deposition and tropospheric ozone (O3) (Paoletti, 2006; 94 

Ferretti et al., 2014; García-Gómez et al., 2014). Production of pollutants is mainly associated with 95 

industrial activities, construction, vehicle emissions and agricultural practices and, within the 96 

European context, is characteristically exacerbated by more frequent droughts and the typical 97 

stability of air masses in the region, with important consequences for ecosystem and human health 98 

(Millán et al., 2002; Vestreng et al., 2008; Izquieta-Rojano et al., 2016a). This also has important 99 
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social consequences for the Mediterranean region, where approximately 480 million people live, 100 

and where more frequent droughts, extreme climatic events and wildfires will only reinforce the 101 

current migrant and humanitarian crisis (Werz & Hoffman, 2016). 102 

Environmental pollution interacts synergistically with climate change (Alonso et al., 2001, 103 

2014; Bytnerowicz et al., 2007; Sardans & Peñuelas, 2013). This is particularly true for seasonally 104 

dry regions like the Mediterranean Basin (Baron et al., 2014), but the effects of this interaction on 105 

the structure and function of Mediterranean ecosystems are not adequately quantified and, 106 

therefore, the consequences are poorly understood (Bobbink et al., 2010; Ochoa-Hueso et al., 107 

2011). Projections for 2100 suggest that mean air temperatures in the Mediterranean Basin region 108 

will rise from 2.2°C to 5.1°C above 1990 levels and that precipitation will decrease between –4 109 

and –27% (Christensen et al., 2007 and Figure 1). The sea level is also projected to rise, and a 110 

greater frequency and intensity of extreme weather events (e.g., drought, heat waves and floods) 111 

are expected (EEA, 2005). These changes will exacerbate the already acute water shortage problem 112 

in the region, particularly in drylands (Terray & Boé, 2013; Sicard & Dalstein-Richier, 2015), 113 

impairing their functionality and ability to deliver the ecosystem services on which society and 114 

economy depend (Bakkenes et al., 2002; Lloret et al., 2004). Functions that will be synergistically 115 

impaired by air pollution and climate change include reductions in crop yield and carbon 116 

sequestration (Maracchi et al., 2005; Mills & Harmens, 2011; Shindell et al., 2012; Ferretti et al., 117 

2014). In addition, a higher fire risk is attributed to higher temperatures and more frequent droughts 118 

coupled with an N-driven increase of grass-derived highly-flammable fine fuel (Pausas & 119 

Fernández-Muñoz 2012).  120 

In the last decades, atmospheric concentrations of major anthropogenic air pollutants such 121 

as particulate matter and sulphur dioxide (SO2) have decreased in Southern Europe due to emission 122 
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control policies and greener technologies (Querol et al., 2014; Barros et al., 2015; Aguillaume et 123 

al., 2016; Àvila & Aguillaume, 2017). However, mitigation strategies have not been equally 124 

effective with other compounds such as reactive N and tropospheric O3 (Figure. 2; Paoletti, 2006; 125 

García-Gómez et al., 2014; Sicard et al., 2016). For example, recent increases in N deposition, 126 

particularly dry deposition of NO3, have been detected in North-eastern Spain, where N deposition 127 

is estimated in the range of 15-30 kg N ha-1 yr-1 (Avila & Rodà, 2012; Camarero & Catalan, 2012; 128 

Aguillaume et al., 2016). This has been attributed to increased nitrogen oxide (NOx) and ammonia 129 

(NH3) emissions and changes in precipitation patterns (Aguillaume et al., 2016). Background O3 130 

pollution is typically high in Mediterranean climates due to the meteorological conditions of the 131 

area (Paoletti, 2006) and recent reviews have demonstrated that while O3 in cities has generally 132 

increased, no clear trend, or only a slight decrease, has been detected in rural areas (Sicard et al., 133 

2013; Querol et al., 2014); the annual average at rural western Mediterranean sites over the period 134 

2000-2010 was 33 ppb, with a modest trend of -0.22% year-1 (Sicard et al., 2013). The 135 

Mediterranean Basin is also exposed to frequent African dust intrusions, which can naturally 136 

increase the level of suspended particulate matter and nutrient deposition, changing the chemical 137 

composition of the atmosphere (Escudero et al., 2005; Marticorena & Formenti, 2013; Àvila & 138 

Aguillaume, 2017). This has profound impacts on the biogeochemical cycles of both aquatic and 139 

terrestrial ecosystems (Mona et al., 2006), further exacerbating the negative consequences of air 140 

pollution and climate change on ecosystem and human health. 141 

 In this review, originated as a result of the 1st CAPERmed (Committee on Air Pollution 142 

Effects Research on Mediterranean Ecosystems; http://capermed.weebly.com/) Conference in 143 

Lisbon, Portugal, we (i) summarize the current knowledge about atmospheric pollution trends and 144 

effects, and their interactions with climate change, in terrestrial ecosystems of the Mediterranean 145 

http://capermed.weebly.com/
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Basin, (ii) identify research gaps that need to be urgently filled, and (iii) recommend future steps. 146 

Due to lack of information for other regions within the Mediterranean Basin, we mainly focused 147 

our review on studies carried out in south-western European countries (France, Italy, Portugal and 148 

Spain). In contrast, we discuss information generated through a variety of experimental approaches 149 

(field manipulation experiments, greenhouse studies, open top chambers [OTCs], observational 150 

studies, modelling, etc.) from studies carried out in a wide range of representative natural (e.g., 151 

shrublands, grasslands, woodlands and forests) and semi-natural (e.g., montados or dehesas) 152 

ecosystems.  153 

 154 

Measurement and modelling of atmospheric pollution and deposition 155 

Estimating pollutant deposition loadings, particularly dry deposition, still presents important 156 

uncertainties and challenges, both in terms of modelling and measurements (Simpson et al., 2014). 157 

This is particularly true in studies at small regional scales and in regions with complex topography 158 

or under the influence of local emission sources (García-Gómez et al., 2014), which is very often 159 

the case in the Mediterranean Basin. Dry deposition in Mediterranean ecosystems can represent 160 

the main input of atmospheric N, contributing up to 65-95% of the total deposition (Figure 2b; 161 

Sanz et al., 2002; Avila & Rodà, 2012). For example, wet N deposition at the Levantine border of 162 

the Iberian Peninsula can be considered low to moderate (2 - 7.7 kg N ha-1 yr-1), but total N 163 

deposition loads are comparable to more polluted areas in central and northern Europe (10 - 24 kg 164 

N ha-1 yr-1) when dry deposition is included (Avila & Rodà, 2012). Given that dry deposition is 165 

important in the Mediterranean Basin but is also difficult to measure, we should ideally combine 166 

modelled dry deposition with wet deposition measures from representative monitoring stations. A 167 

recent modelling analysis has also highlighted that mountain ecosystems in Spain, where 168 
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monitoring stations are even scarcer, are frequently exposed to exceedances of empirical critical N 169 

loads (García-Gómez et al., 2014, 2017). Moreover, mountain areas of the Mediterranean Basin 170 

also frequently register very high O3 concentrations that are not recorded in air quality monitoring 171 

networks (Díaz-de-Quijano et al., 2009; Cristofanelli et al., 2015; Elvira et al., under review). This 172 

observation should encourage the inclusion of monitoring stations in mountain areas in air quality 173 

networks in the Mediterranean Basin to protect these highly valuable and vulnerable ecosystems 174 

(García-Gómez et al., 2017). Another important aspect to be considered in both deposition 175 

monitoring networks and model-based estimates is the quantification and characterization of 176 

ammonium (NH4
+) and the organic N fraction (Jickells et al., 2013; Fowler et al., 2015). Dissolved 177 

organic N (DON) can represent a significant component of wet and dry deposition fluxes but it is 178 

often overlooked and not routinely assessed (Mace, 2003; Violaki et al., 2010; Im et al., 2013; 179 

Izquieta-Riojano & Elustondo, 2017). However, DON fluxes may have significant implications in 180 

terms of critical loads, reaching up to 34-56% of the total N deposition (12 kg DON ha-1 yr-1) in 181 

Mediterranean agricultural areas (Izquieta-Rojano et al., 2016a). The quantification of temporal 182 

trends in air pollution is equally important for evaluating the impact of changing precursor 183 

emissions and informing local and regional air quality strategies.  184 

 185 

Impacts of atmospheric pollution and climate change on natural and semi-natural terrestrial 186 

ecosystems  187 

The ecological impacts of air pollution (particularly for N deposition and O3) on natural and semi-188 

natural ecosystems have been primarily studied in the temperate and boreal regions of Europe and 189 

North America and, more recently, in steppe and subtropical areas of China (Paoletti, 2006; Xia & 190 

Wan, 2008; Bobbink et al., 2010; Ochoa-Hueso, 2017). In contrast, much less is known for 191 
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Mediterranean Basin ecosystems, which differ from these better-studied ecosystems in critical 192 

aspects that justify their separate consideration, such as their much-higher levels of biodiversity 193 

(particularly for plants) and their higher-than-average levels of biologically-relevant spatial and 194 

temporal environmental heterogeneity, including the characteristic summer drought period 195 

(Cowling et al., 1996; Myers et al., 2000). Most studies on the impacts of atmospheric pollution in 196 

terrestrial ecosystems from the Mediterranean Basin have been carried out in just a small part of 197 

the geographic area (i.e. certain localities in Italy, Portugal and Spain) and have used different 198 

experimental design and methodologies (Fig. 1 and Supplementary Table 1). Similarly, instead of 199 

taking advantage of the development of statistical methods to integrate responses at the ecosystem 200 

level (e.g., structural equation modelling; Eisenhauer et al., 2015), studies have typically focused 201 

solely and independently on plants (community or, more frequently, individual species), lichens 202 

(community or, again more frequently, individual species) and soil properties (soil 203 

biogeochemistry, structure and functioning; Supplementary Table 1). One notable exception to this 204 

is NitroMed, a unique network of three comparable N addition experimental sites (Capo Caccia [0 205 

and 30 kg N ha-1 yr-1], Alambre [0, 40 and 80 kg N ha-1 yr-1], and El Regajal [0, 10, 20 and 50 kg 206 

N ha-1 yr-1]; see Figure 3b, f and h) that is currently using common experimental methodology and 207 

structural equation modelling to understand the cause-effect mechanisms that determine changes 208 

in gas (CO2) exchange and litter decomposition and stabilization rates in response to N deposition 209 

in semiarid Mediterranean ecosystems (see Ochoa-Hueso and Manrique 2011 and Dias et al. 2014 210 

for further details on experimental methodologies). Preliminary results suggest that N deposition 211 

increases soil N availability and reduces soil pH which, in turn, has an effect on microbial 212 

community structure (lower fungi to bacteria ratio) and overall enzymatic activity, direct 213 

responsible for reduced litter decomposition and higher stabilization rates (Lo Cascio et al., 2016). 214 
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Similarly, a new coordinated project is looking at the effects of N addition at realistic doses (20 215 

and 50 kg N ha-1 yr-1), in conjunction with P, on alpine ecosystems from five National Parks in 216 

Spain. Moreover, most of these studies addressed the impact of one global change driver alone 217 

(often increased N availability, mostly the N load, or O3) and so comprehensive studies on the 218 

interaction between global change drivers (e.g., air pollution and climate change) are few. However, 219 

recent studies have described a heterogeneous response of annual pasture species to O3 and N 220 

enrichment, with legumes being highly sensitive to ozone but not N, while grasses and herbs were 221 

more tolerant to O3 and more responsive to N (Calvete-Sogo et al., 2016). Thus the interactive 222 

effects of O3 and N can alter the structure and species composition of Mediterranean annual 223 

pastures via changes in the competitive relationships among species (González-Fernández et al., 224 

2013 and references therein; Calvete-Sogo et al., 2014, 2016). Similarly, only a few studies have 225 

addressed the impacts on edaphic fauna and above- and below-ground biotic interactions such as 226 

mycorrhiza, biological N fixation, herbivory or pollination in ecosystems from the Mediterranean 227 

Basin (Supplementary Table 1 and references therein), despite the relevance of ecological 228 

interactions to healthy, functional ecosystems (Tylianakis et al., 2008). For example, Ochoa-Hueso 229 

et al. (2014a) found that edaphic faunal abundance, particularly collembolans, increased in 230 

response to up to 20 kg N ha-1 yr-1 and then decreased with 50 kg N ha-1 yr-1, whereas 10 kg N ha-231 

1 yr-1 were enough to completely supress soil microbial N fixation (Ochoa-Hueso et al., 2013a). 232 

Another notable exception is Ochoa-Hueso (2016), who showed how even low-N addition levels 233 

(10 kg N ha-1 yr-1) can completely disrupt the tight coupling of the network of ecological 234 

interactions in a semiarid ecosystem from central Spain, despite the lack of evident response of 235 

most of the individual abiotic and biotic ecosystem constituents evaluated (i.e., soils, microbes, 236 

plants and edaphic fauna). Ozone and N soil availability can also alter volatile organic compound 237 
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(VOC) emissions, and thus biosphere-atmosphere interactions, of some Mediterranean tree and 238 

annual pasture species. The consequences of these interactions need to be further studied (Peñuelas 239 

et al., 1999; Llusià et al., 2002; Llusia et al., 2014). Therefore, a more comprehensive and 240 

integrative experimental approach is urgently needed to fully capture the real consequences of air 241 

pollution in the Mediterranean region. 242 

 243 

Sensitivity of Mediterranean forests to air pollution and climate change  244 

Mediterranean forest ecosystems have naturally evolved cross-tolerance to deal with harsh 245 

environmental conditions (Paoletti, 2006; Matesanz & Valladares, 2014). However, climate 246 

change, N deposition and O3 are currently threatening Mediterranean forests in unprecedented and 247 

complex manners, with consistent stoichiometric responses to increased N deposition (higher leaf 248 

N:P ratios; Sardans et al. 2016), but with physiological and growth-related consequences forecasted 249 

to vary among the three main tree functional types (i.e., conifers, evergreen broadleaf trees, and 250 

deciduous broadleaf trees). As deposition increases, photosynthesis, water use efficiency, and thus 251 

growth, often increase in conifers (Leonardi et al., 2012), although under chronic N deposition, 252 

other nutrients such as P can become more limiting, counteracting the initial benefits of more N 253 

availability (Blanes et al., 2013). Nitrogen deposition could also increase pine mortality rates in 254 

response to drought due to a decline of ectomycorrhizal colonization rates, a phenomenon of 255 

widespread occurrence in US dryland woodlands (Allen et al., 2010). On the other hand, their low 256 

stomatal conductance and their high stomatal sensitivity to vapour pressure deficit and water 257 

availability might limit the diffusion of O3 to the mesophyll (Flexas et al., 2014). Similarly, 258 

conservative strategies of water and nutrient-use may also play a key role in allowing conifers to 259 

keep a positive balance between assimilation and respiration in response to climate change (Way 260 



14 

& Oren, 2010). However, O3 exposure might be impairing their ability to withstand other 261 

environmental stresses such as those triggered by drought, high temperature and solar radiation 262 

(Barnes et al., 2000; Alonso et al., 2001). 263 

In contrast, evergreen broadleaf species inhabiting resource-poor ecosystems might be 264 

jeopardized by N deposition by shifting biomass partitioning (Cambui et al., 2011) and altering 265 

allometric ratios (e.g., leaf area/sap wood or root/leaf biomass), which may have consequences for 266 

their ability to deal with water stress, particularly in the context of the characteristic summer 267 

drought period and climate change (Martinez-Vilalta et al., 2003; Mereu et al., 2009). 268 

Ecophysiological responses to O3 vary from down-regulation of photosystems (Mereu et al., 2009) 269 

to reduced stomatal aperture and increased stomatal density (Fusaro et al., 2016) and sluggishness 270 

(Paoletti & Grulke, 2005, 2010). However, Mediterranean vegetation usually has efficient 271 

antioxidant defences (Nali et al., 2004), which are key factors in O3 tolerance (Calatayud et al., 272 

2011; Mereu et al., 2011), and is usually known to be more O3-tolerant than mesophilic broadleaf 273 

trees (Paoletti, 2006). Nevertheless, biomass losses and allocation shifts cannot be excluded, 274 

especially as a consequence of synergistic effects of N deposition and drought, although local 275 

differentiation may result in significant intraspecific tolerance differences (Alonso et al., 2014; 276 

Gerosa et al., 2015).  277 

Responses of deciduous broadleaf species to N deposition may be modulated by water and 278 

background nutrient availability (mainly P) but, in general terms, growth is favoured over storage 279 

(Ferretti et al., 2014). In contrast, broadleaf tree species are highly sensitive to climate change, 280 

particularly to the combination of drought and increased temperature (Lopez-Iglesias et al., 2014), 281 

which also suggests relevant interactions between air pollution and climate change. In this 282 

direction, De Marco et al. (2014) predicted that crown defoliation will increase in Mediterranean 283 
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environments due to drought events and higher temperatures by 2030, a phenomenon that could be 284 

exacerbated by excessive N. Deciduous broadleaf species also have lower capacity to tolerate 285 

oxidative stress than evergreen broadleaf species due to traits such as thinner leaves and higher 286 

stomatal conductance (Calatayud et al., 2010). Gas exchange and antioxidant capacity in deciduous 287 

broadleaves are, therefore, generally more affected by high O3 concentrations than in evergreen 288 

broadleaves (Bussotti et al., 2014). Based on their levels of visible foliar injury and expert 289 

judgement, deciduous broadleaf species range from highly to moderately sensitive species such as 290 

Fagus sylvatica and Fraxinus excelsior, respectively (Baumgarten et al., 2000; Tegischer et al., 291 

2002; Gerosa et al., 2003; Deckmyn et al., 2007; Paoletti et al., 2007; Sicard et al., 2016), to O3-292 

tolerant species like some Quercus species (Q. cerris, Q. ilex and Q. petraea; Gerosa et al. 2009; 293 

Calatayud et al. 2011; Sicard et al. 2016).   294 

Relatively little is known about the effects of O3 on annual, perennial and woody understory 295 

vegetation of Mediterranean forest ecosystems. Under experimental conditions, some species 296 

characteristic of the annual grasslands associated with Q. ilex dehesas have high O3 sensitivity. 297 

Interestingly, N fixing legumes, of higher nutritional value, are more O3 sensitive than grasses 298 

(Bermejo et al., 2004; Gimeno et al., 2004), particularly in terms of flower and seed production 299 

(Sanz et al., 2007), which could affect their competitive fitness and, ultimately, reduce the 300 

economic value of the pasture. Nitrogen availability can partially counterbalance O3 effects on 301 

aboveground biomass when the levels of O3 are moderate, but O3 exposure reduces the fertilization 302 

effect of higher N availability (Calvete-Sogo et al., 2014). Anyhow, given that O3 levels are higher 303 

in summer, when herbaceous species are dormant, Mediterranean species that are summer-active 304 

such as pines and oaks are more likely to be directly affected by O3 than forbs and grasses. This 305 

suggests that the seasonality of O3 concentrations as well as plant phenology and functional type 306 
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must be considered if we are to fully understand the consequences of air pollution on the highly 307 

diverse Mediterranean plant communities. A unique ozone FACE (free air controlled experiment) 308 

is now available in the Mediterranean Basin (Figure 3) to help fill this gap (Paoletti et al., in 309 

preparation). 310 

 311 

Role of environmental context in the response of biodiversity and C sequestration 312 

The local abiotic (e.g., climate, soil properties) and biotic (e.g., vegetation type, community 313 

attributes, etc.) contexts are known to modulate ecosystem responses to environmental drivers at 314 

different temporal and spatial scales (Bardgett et al., 2013). Given that plant biodiversity at the 315 

regional (10-106 km2) and local (< 0.1 ha) scales in Mediterranean ecosystems ranks among the 316 

highest in the world (Cowling et al., 1996), this is a particularly relevant aspect for the region. 317 

Various studies in Mediterranean ecosystems have shown that increased N availability may have a 318 

positive (Pinho et al., 2012; Dias et al., 2014), negative (Bonanomi et al., 2006; Bobbink et al., 319 

2010) or even no effect (Dias et al., 2014) on plant species richness, which is probably due to 320 

cumulative effects and modulating factors such as the ecosystem type, the initial N status of the 321 

system, the dominant form of mineral N in the soil (NH4
+, NO3

-), and/or the N form added. Positive 322 

effects on species richness, however, have only been observed in areas characterized by strong 323 

environmental stress and low nutrient availability (e.g., open arid and semiarid Mediterranean 324 

ecosystems) and are often associated with an increase in nitrophytic and weedy species (Bobbink 325 

et al., 2010; Pinho et al., 2011; Dias et al., 2014). The presence and density of shrubs, as well as 326 

the availability of inorganic phosphorus (P) and other macro and micronutrients, can also modulate 327 

the response of the herbaceous vegetation to N addition and plant invasion in semiarid 328 

Mediterranean areas (Ochoa-Hueso et al., 2013b; Ochoa-Hueso & Stevens, 2015). For example, 329 
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Ochoa-Hueso & Manrique (2014) found that N addition increased the nitrophytic element, 330 

particularly native crucifers, only when these species were present in the seed bank in relevant 331 

densities and there was sufficient P, whereas a closed scrub vegetation is known to be less 332 

susceptible to invasion by N-loving species than open shrublands, woodlands and grasslands (Dias 333 

et al., 2014). The role of soil nutrient availability, typically lower than in other Mediterranean-type 334 

ecosystems such as those from Chile (Cowling et al., 1996), in the ecosystem response to extra N 335 

can also be linked to induced nutrient imbalances, particularly N in relation to P, and therefore to 336 

an alteration of ecosystem stoichiometry (Ochoa-Hueso et al., 2014b; Sardans et al., 2016).  337 

The behaviour of terrestrial ecosystems as a global C sink or source under increased N 338 

deposition or O3 pollution scenarios is currently a research hot-topic and is of paramount 339 

importance for the mitigation of climate change (Felzer et al., 2004; Reich et al., 2006; Pereira et 340 

al., 2007). Recent studies have suggested that seasonally water-limited ecosystems, such as those 341 

typically found in the Mediterranean Basin, may have a disproportionately big role in the inter-342 

annual C sink-source dynamics at the global scale due to higher C turnover rates (Poulter et al., 343 

2014); this is attributed to their large inter-annual climatic variability, with unusually wet years 344 

contributing to strengthen the terrestrial C sink but where multiple processes like fire or rapid 345 

decomposition could result in a rapid loss of most of the accumulated C. These aspects are, 346 

however, still poorly understood in Mediterranean ecosystems, where different studies have 347 

reported contrasting results (Ochoa-Hueso et al., 2013a, 2013c; Ferretti et al., 2014). In 348 

Mediterranean ecosystems, ecosystem C storage should, therefore, be evaluated in terms of altered 349 

abundance and patterns of rainfall (both within and between years) (Pereira et al., 2007), in relation 350 

to the levels of N saturation (NO3
-) and toxicity (NH4

+) in soil (Dias et al., 2014), as well as other 351 

site-dependent characteristics such as dominant vegetation, soil type (texture and pH), and stand 352 
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history and age (Ferretti et al., 2014). Experimental and observational field studies suggest that, at 353 

least in the short-term, seasonal and inter-annual dynamics may override any potential effect of 354 

atmospheric N pollution, despite potential cumulative negative impacts in the long-term due to an 355 

overall decline in ecosystem health (Ochoa-Hueso et al., 2013c; Ferretti et al., 2014).  356 

 Although within the Mediterranean Basin there is still a large gap in the knowledge of the 357 

impacts of atmospheric pollution and climate change on natural and semi-natural ecosystems, taken 358 

together, all the scattered information available suggests the particularly key role of spatial and 359 

temporal environmental heterogeneity, biotic interactions, and ecosystem stoichiometry in 360 

mediating the ecosystem response to air pollution.   361 

 362 

Critical loads and levels 363 

The concepts of critical loads and critical levels were developed within the United Nation 364 

Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air 365 

Pollution (CLRTAP) for assessing the risk of air pollution impacts to ecosystems and defining 366 

emission reductions. This tool is commonly used to anticipate negative effects of air pollution and, 367 

therefore, to protect ecosystems before the changes become irreversible. The derivation of 368 

empirical critical loads for nutrient N is based on experimental activities performed on different 369 

vegetation types and they are assigned to habitat classes, while the derivation of NH3 and NOx 370 

critical levels is based on the responses of broad vegetation types such as higher plants or lichens 371 

and bryophytes. The pan-European critical level for atmospheric NH3 is currently set at an annual 372 

mean of 1g m-3 for lichens and bryophytes and 3g m-3 for higher plants, while the NOx critical 373 

level for all vegetation types is an annual mean of 30 g m-3 (CLRTAP, 2011). Although some 374 
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modelling approaches exist to define N critical loads, the identification of empirical critical loads 375 

is recommended for Mediterranean ecosystems due to its particularities such as co-occurrence with 376 

other pressures and high seasonality (de Vries et al., 2007; Fenn et al., 2011). Empirical critical 377 

loads of N for European-Mediterranean habitats have only been proposed for four ecosystems: (1) 378 

Mediterranean xeric grasslands (EUNIS [European Nature Information System] E 1.3), 15-25 kg 379 

N ha-1 yr-1; (2) Mediterranean maquis (F5), 20-30 kg N ha-1 yr-1; (3) Mediterranean evergreen 380 

(Quercus) woodlands (G 2.1), 10-20 kg N ha-1 yr-1, and (4) Mediterranean Pinus woodlands (G 381 

3.7), 3-15 kg N ha-1 yr-1 (Bobbink & Hettelingh, 2011). However, these critical loads are based on 382 

very little information and are thus classified as expert judgement. Similarly, NH3 critical levels 383 

have only been set for Mediterranean evergreen woodlands and dense holm oak forests. Critical 384 

levels of atmospheric NH3 of < 1.9 and 2.6 μg m-3 have been estimated for evergreen woodlands 385 

surrounded by intensive agricultural landscapes  (Pinho et al., 2012; Aguillaume, 2015), while for 386 

evergreen woodlands under little agricultural influence but strong oceanic influence, the critical 387 

level was estimated to be 0.69 g m-3 (Pinho et al., 2014). Nevertheless, the N critical loads and 388 

NH3 critical levels for many European-Mediterranean ecosystems remain unstudied, despite their 389 

relevance for protecting relatively undisturbed and oligotrophic ecosystems. Therefore, long-term 390 

manipulation experiments across a range of typical Mediterranean terrestrial ecosystems are 391 

desperately needed to obtain a more complete set of reliable empirical critical N loads and levels 392 

for the Mediterranean Basin (Bobbink et al., 2010; Bobbink & Hettelingh, 2011). Ozone critical 393 

levels have also been proposed for the protection of natural vegetation at European level for two 394 

vegetation types, forests and semi-natural vegetation (CLRTAP, 2011). The new flux-based O3 395 

critical levels allow species-specific physiological conditions and O3 uptake mechanisms to be 396 
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included considering the particularities of Mediterranean species. Interestingly, multiple studies 397 

performed with Mediterranean tree species recommend higher O3 critical levels for the protection 398 

of Mediterranean forests than the values currently accepted (Calatayud et al., 2011; Alonso et al., 399 

2014; Gerosa et al., 2015). The possible definition of different O3 critical levels for different 400 

biogeographical regions or vegetation types is currently under analysis within the Convention 401 

(CLRTAP, 2011).  402 

 403 

Cryptogams as indicators of the impact of air pollution and climate change 404 

Lichens and bryophytes (i.e., cryptogams), very often used in the definition of critical loads and 405 

levels, are important components of the vegetation in Mediterranean ecosystems. These organisms 406 

are key drivers of ecosystem properties (soil aggregation and stability) and processes (C and N 407 

fixation and nutrient cycling), particularly in the case of biological soil crusts (hereafter biocrusts), 408 

a functionally-integrated association of cyanobacteria, protists, fungi, mosses and lichens 409 

inhabiting the first millimetres of soil (Cornelissen et al., 2007; Maestre et al., 2011). Cryptogams 410 

are usually extremely sensitive to environmental changes and so they often provide early-warning 411 

indicators of impacts before any other constituent of the ecosystem, particularly in the case of N 412 

(Pardo et al., 2011; Munzi et al., 2012). For example, mosses have been used in N deposition 413 

surveys under the ICP-Vegetation framework (Harmens et al., 2014). The results showed that N 414 

concentration in mosses can potentially be used as an indicator of total atmospheric N deposition. 415 

Similarly, Root et al. (2013) showed that lichens can be a suitable tool for estimating throughfall 416 

N deposition in forests. However, the relationship between N deposition and tissue N concentration 417 

can also be affected by environmental factors such as local climate and the form of N deposition.  418 
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Mosses and lichens have been instrumental to the evaluation of the impacts of global change 419 

drivers on temperate and boreal ecosystems (e.g., Arróniz-Crespo et al. 2008), though the number 420 

of studies carried out in Mediterranean ecosystems is very limited. Recent studies have, however, 421 

reported significant impacts of increased N deposition on Mediterranean biocrust and epiphytic 422 

communities. For example, two studies carried out in the Iberian peninsula found higher tissue N 423 

content and a shift from N to P limitation in the terricolous moss Tortella squarrosa (=Pleurochaete 424 

squarrosa; Ochoa-Hueso & Manrique 2013; Ochoa-Hueso et al. 2014a). Similarly, an alteration of 425 

physiological and chemical responses in lichen transplants (Branquinho et al., 2010; Paoli et al., 426 

2010, 2015) and a shift in epiphytic lichen communities from oligotrophic-dominated to 427 

nitrophytic-dominated species  have also been reported in Portugal (Pinho et al., 2008, 2009) and 428 

Spain (Aguillaume, 2016). Recent studies have also observed a change in the isotopic N 429 

composition of mosses due to the impact of N from fuel combustion sources (shift to more positive 430 

δ15N signature) and agricultural activities (shift to more negative δ15N signature; Delgado et al., 431 

2013; Varela et al., 2013; Izquieta-Rojano et al., 2016b). Cryptogam traits (e.g., morphology, 432 

anatomy, life form) are also strongly connected to water availability. For example, mosses from 433 

dry habitats are organized in dense cushions, naturally retaining water by capillarity and 434 

dehydrating slowly, whereas mosses from moist habitats have a less dense morphology and require 435 

the activation of specific mechanisms to survive during dry periods (Arróniz-Crespo et al., 2011; 436 

Cruz de Carvalho et al., 2011, 2012, 2014). Similarly, lichen growth form and photobiont type have 437 

been shown to be relevant traits in the response to water availability in Mediterranean areas 438 

(Concostrina-Zubiri et al., 2014; Matos et al., 2015). Cryptogam traits related to water availability 439 

could, therefore, be equally effective biomarkers to detect climate-induced hydrological changes 440 

in Mediterranean ecosystems but the application of biomonitoring techniques using cryptogams in 441 
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the Mediterranean region may be complicated by the fact that cryptogam species are 442 

simultaneously exposed to both severe water restriction and pollution, and some biomarkers (e.g., 443 

ecophysiological responses) are similarly affected by both stress factors (Pirintsos et al., 2011). 444 

Thus, we need to disentangle the multiple environmental drivers (Munzi et al., 2014a), possibly by 445 

integrating physiological and ecological data to understand the specific response mechanisms to 446 

different ecological parameters and environmental changes (Munzi et al., 2014b).  447 

 448 

Anticipating global tipping points using ecological indicators  449 

The fact that ecosystem responses to air pollution and climate change are very often non-linear 450 

may complicate the use of bioindicators in the Mediterranean Basin. Non-linear dynamics often 451 

manifest in the form of tipping points, defined as ecosystem thresholds above which a larger-than-452 

expected change happens, shifting ecosystems from one stable state to another stable state (Scheffer 453 

& Carpenter, 2003). Due to its climatic peculiarities, tipping points may be particularly relevant 454 

for the Mediterranean Basin. One example is the ability of soils to store extra mineral N. Above a 455 

certain N deposition value, N-saturated soils will start leaching N down into the soil profile. This 456 

excessive N can also accumulate as inorganic N in seasonally dry soils and be leached by surface 457 

flows that, as in the case before, will eventually reach and, therefore, pollute aquifers and 458 

watercourses (Fenn et al., 2008). Another relevant example is related to increased fire risk due the 459 

accumulation of highly flammable leaf litter, particularly from exotic grasses, as a consequence of 460 

N deposition; above a certain N deposition threshold the probability of a fire to occur increases 461 

exponentially, priming the ecosystem for a state change (Rao et al., 2010).    462 

Despite the potential prevalence of tipping point-like dynamics in Mediterranean 463 

ecosystems in response to air pollution and climate change, we are not aware of any vegetation-464 
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based tools available to predict ecosystem thresholds in the Mediterranean Basin context. A notable 465 

exception is the work by Berdugo et al. (2017), who suggested that changes in the spatial 466 

configuration of drylands may be an early-warning indicator of desertification. However, we 467 

suggest that if we are to aim for universal indicators of environmental change (i.e., at wide 468 

geographical ranges) and to account for the role of the environmental context as a driver (i.e., across 469 

ecosystem types), functional trait-based approaches (e.g., functional diversity and community 470 

weighted mean trait values [CWM]) should be preferred over other widely used indicators, 471 

including species richness (Jovan & McCune, 2005; Valencia et al., 2015). Functional diversity 472 

and CWM are independent of species identity and may be functionally linked to the environmental 473 

variable of interest (e.g., oligotrophic species, nitrophytic species, or subordinate species 474 

responding to eutrophication, species-specific leaf litter traits, etc.). More research is, however, 475 

needed to integrate these concepts (ecological indicators, ecological thresholds and functional 476 

diversity) in a meaningful way.   477 

 478 

Linking functional diversity to the provision of ecosystem services  479 

The universal applicability and ecological relevance of the functional trait diversity concept makes 480 

it equally valuable to establish possible connections between global environmental change and the 481 

loss of ecosystem services. Ecosystem services that may be impaired by air pollution and climate 482 

change and that may be particularly associated with changes in functional diversity include C 483 

sequestration, soil fertility and nutrient cycling and pollination, among many others. However, 484 

research on the link between functional diversity and ecosystem services is lagging behind in the 485 

Mediterranean region where only a few controlled experiments exist (Hector et al., 1999; Pérez-486 

Camacho et al., 2012; Tobner et al., 2014; Verheyen et al., 2016), species trait databases are still 487 
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incomplete (Gachet et al., 2005; Paula et al., 2009), and field surveys along climatic and air 488 

pollution gradients are only recently starting to emerge (De Marco et al., 2015; Sicard et al., 2016).  489 

The few studies available within the Mediterranean Basin context have shown that N 490 

deposition has already induced changes in functional diversity of epiphytic lichens along a NH3 491 

deposition gradient in Mediterranean woodlands, with a drastic increase and decrease of nitrophytic 492 

and oligotrophic species, respectively, (Pinho et al., 2011). Similarly, a continuous increase of 493 

nitrophytic species (plants, lichens, mosses) has been detected in the Iberian Peninsula for the 494 

period 1900-2008 using the Global Biodiversity Information Facility (GBIF) database (Ariño et 495 

al., 2011). Increased N availability in nutrient-poor ecosystems like Mediterranean maquis can also 496 

alter plant functional composition (e.g., higher proportion of short-lived species in relation to 497 

summer semi-deciduous and evergreen sclerophylls), leading to changes in litter amount and 498 

quality (e.g. higher proportion of evergreen sclerophyll litter from affected shrubs and a general 499 

increase in lignin and N content in litter and a decrease in lignin/N ratio) and microbial community 500 

(e.g., reduction in biomass and activity), thus affecting nutrient cycling (an ecosystem function) 501 

and, therefore, soil fertility (including soil C accumulation, an ecosystem service) (Dias et al., 2010, 502 

2013, 2014). In another study, Concostrina-Zubiri et al. (2016) showed that livestock grazing 503 

greatly affected the abundance and functional composition of moss–lichen biocrusts in a 504 

Mediterranean agro-silvo-pastoral system, with direct negative consequences on microclimate 505 

regulation and other ecosystem processes (CO2 fixation, habitat provision and soil protection). This 506 

also affected the cork-oak regeneration processes, one of the traditional and most economically 507 

valuable services in these systems. Given the negative impacts of air pollution on cryptogamic 508 

biocrusts, a similar effect of air pollution on the cork-oak regeneration processes mediated by 509 

biocrusts might be expected.   510 
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 511 

Common experimental design, data sharing and global networks  512 

The understanding of the ecological impacts of pollution and climate change across the 513 

Mediterranean region would improve through co-ordinated efforts and networks, which could take 514 

several forms. One possible approach is the use of large-scale regional surveys on existing pollution 515 

gradients representative of the current range of pollution loads (e.g., from big cities and/or 516 

extensive agricultural areas to their periphery). This approach was successfully used to survey 153 517 

acid grasslands in ten countries across the Atlantic biogeographic zone of Europe (significantly less 518 

biodiverse than their Mediterranean counterparts) (Stevens et al., 2010), where each partner 519 

surveyed sites in their local area according to an agreed protocol. Other networks have been 520 

successful using experimental approaches. For example, the Nutrient Network (NutNet) is a global 521 

network of over 90 sites following a common experimental protocol for nutrient addition and 522 

grazing (Borer et al., 2014). Similarly, the previously presented NitroMed network, originated 523 

within the CAPERmed platform, aims at using the same experimental protocols to integrate results 524 

from three comparable experiments in semiarid Mediterranean ecosystems. Other experimental 525 

networks have not used common experimental protocols, but through coordinated analyses have 526 

added value to individual experiments (Phoenix et al., 2012). Co-ordinated experimental networks 527 

(e.g., low-cost N addition experiments) bring many advantages such as the ability to assess the 528 

general applicability of results, additional statistical power resulting from well-established and 529 

robust statistical methods (e.g., linear mixed effects models, hierarchical Bayesian models, 530 

structural equation modelling), and opportunities to explore interactions with other natural and 531 

human-caused gradients such as climate, ecosystem and soil type, land use, atmospheric pollution 532 

(including O3 gradients), etc. They can also provide support and collaboration for individual 533 
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scientists. An inventory of the existing sites with manipulation experiments in the Mediterranean 534 

Basin would provide added value to the individual sites through the implementation of common 535 

protocols and experiments.  536 

In the Mediterranean region, another path to follow may be to build upon existing research 537 

and to participate more in already existing large-scale initiatives, in which the Mediterranean 538 

research community is not particularly well-represented. For example, interacting with the 539 

International Long Term Ecological Research (ILTER) network or with the International 540 

Cooperative Programme (ICP), established under the United Nation Economic Commission for 541 

Europe (UNECE) “Convention on Long-Range Transboundary Air Pollution” (CLRTAP) that 542 

includes several initiatives such as ICP Forest, ICP-Vegetation, and ICP-IM, would facilitate the 543 

collection of large-scale spatial and temporal data series. Cooperation with other more specific 544 

networks like NitroMed (N deposition), ICOS (C cycle), and GLORIA (Alpine environments) 545 

would also help to establish a wider and more collaborative research community focused on air 546 

pollution impacts in Mediterranean terrestrial ecosystems. 547 

The need of more coordination and investment to better understand the Mediterranean 548 

responses to climate change and air pollution has already been acknowledged by several groups of 549 

scientists both at the European (e.g. CAPERmed) and global scales (e.g. MEDECOS). These 550 

groups not only represent suitable arenas to discuss scientific results, but can also provide leading 551 

members able to manage the above-mentioned research and networking activities. However, all the 552 

above mentioned presented approaches require considerable funding and determined political 553 

support to foster the exchange of information and best practices across the entire Mediterranean 554 

region and, thus, to promote the development of concrete projects and initiatives. In this context, 555 

the European Commission, through funding programs like Horizon 2020, could and should have, 556 
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in our opinion, a pivotal role in supporting research projects (as it happened with the CIRCE 557 

project) and to provide the logistic means for transferring the scientific knowledge to the society.  558 

Increasing awareness about the effects of climate change and pollution among stakeholders 559 

and society is encouraging the development of several European and Pan-European Programs (e.g. 560 

UNECE/ICP, Climate-ADAPT). One important step towards the coordinated action of the 561 

Mediterranean-basin countries in relation to Adaptation to climate change was the creation of “The 562 

Union for the Mediterranean Climate Change Expert Group” (UfMCCEG), a partnership 563 

promoting multilateral cooperation between 43 countries (28 EU Member States and 15 564 

Mediterranean countries). These initiatives show that opportunities do exist for countries to make 565 

progress. Due to campaigning, and partially because of the considerable losses from extreme 566 

weather events in recent years, public awareness in Mediterranean countries about risks associated 567 

with climate and air pollution increased. Governments and organisations at the EU level, national 568 

and sub-national level, have developed or are in the process of developing adaptation strategies. 569 

Therefore, there is an opportunity to make progress by actively engaging actors from all sections 570 

of the Mediterranean society. 571 

Conclusions and future directions 572 

The comparatively fewer number of studies on the effects of air pollution and its interactions with 573 

climate change on terrestrial ecosystems from the Mediterranean Basin is particularly noteworthy 574 

considering the high biodiversity, cultural value, and unique characteristics of this region such as 575 

high O3 levels, dominance of dry deposition over wet deposition, and long dry periods. Therefore, 576 

we emphasize the need to urgently implement common and coordinated research and experimental 577 

platforms in the Mediterranean region along with wider and more representative environmental 578 

monitoring networks. In particular, a robust connection between N deposition monitoring networks 579 
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and modelling estimates is crucial. Ideally, monitoring and assessment programs should regularly 580 

include a set of common biomonitors such as local and/or transplanted cryptogams to identify local 581 

pollutant sources and, thus, help refine pollutant deposition maps (physiological indicators) and to 582 

provide early warning indication of potential critical thresholds (community shifts). Only by filling 583 

these gaps can the scientific community reach a full understanding of the mechanisms underlying 584 

the combined effects of air pollution and climate change in the Mediterranean Basin and, 585 

consequently, provide the science-based knowledge necessary for the development of sustainable 586 

environmental policies and management techniques and the implementation of effective mitigation 587 

and adaptation strategies. Finally, CAPERmed, a bottom-up initiative (from the researchers to the 588 

institutions), can be the longed-for catalyst that brings the Mediterranean community together and, 589 

therefore, represents an excellent opportunity to make all this happen.    590 
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Figure 1. Modeled nitrogen deposition for the Mediterranean region based on the European 1065 

Monitoring and Evaluation Programme (EMEP) model at 0.1º-0.1º longitude-latitude resolution 1066 

(EMEP MSC-W chemical transport model [version rv4.7; www.emep.int]). Modelled N deposition 1067 

is based on 2013 emissions data. (a) Total N deposition (oxidized + reduced; dry + wet), (b) 1068 

percentage of dry deposition, (c) percentage of wet deposition, (d) percentage of oxidized 1069 

deposition and (e) percentage of reduced deposition.  1070 

http://www.emep.int/
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Figure 2. (a) Mean annual precipitation (MAP) and (b) temperature (MAT) for the year range between 1960-1990. Projected (c) 1072 

MAP and (d) MAT for the year 2070 based on predictions from the CCSM4 model considering the RCP 8.5 (no mitigation of 1073 

emissions) IPCC5 scenario. Data obtained from http://www.worldclim.org/version1 (Hijmans et al., 2005).  1074 
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Figure 3. Examples of terrestrial ecosystems and experimental facilities set up to investigate the 1078 

effects of air pollution and climate change in the Mediterranean Basin (see Supplementary Table 2 1079 

for details): a) Companhia das Lezírias, Samora Correia, Portugal; b) Alambre, Serra da Arrábida, 1080 

Portugal; c) Herdade da Coitadinha, Barrancos, Portugal; d) Alto de Guarramillas, Madrid, Spain; 1081 

e) La Higueruela, Toledo, Spain; f) El Regajal, Madrid, Spain; g) Tres Cantos, Madrid, Spain; h) 1082 

Capo Caccia, Sardinia, Italy; i) La Castanya, Spain; j) Ozone FACE (Free-Air Controlled 1083 

Exposure) facility, Florence, Italy; k) Fontblanche, Provence, France. 1084 
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Figure 4. The biomonitoring chain: from the source of stress to ecological impacts. Measurements 1087 

closer to the source of stress (e.g. bioaccumulation of pollutants) have a stronger link to source 1088 

attribution, provide an account of exposure, and can be seen as an early warning system for 1089 

potential impacts. On the other hand, biological effects (biomarkers) and species-based 1090 

measurements commonly have a close link to impacts on the ecosystem but can have a weaker link 1091 

to source attribution. Dark frame indicates those levels and measurements most commonly 1092 

considered in biomonitoring studies. 1093 
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