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For several billion years, microorganisms and the genes they carry have primarily been 27 

moved by physical forces such as air and water currents. Three general drivers have 28 

influenced their spread: opportunity for dispersal; stochastics (numbers of foreign cells 29 

arriving at a location); and recruitment (persistence of cells at the new location, often driven 30 

by local selection). These forces have historically generated biogeographic patterns for 31 

microorganisms that are similar to those of animals and plants (1). Humans have significantly 32 

changed these dynamics. We perturb microbial populations by transporting large numbers of 33 

cells to new locations, and by modifying selection pressures at those locations. As a 34 

consequence, we are substantially altering microbial biogeography. 35 

To give a sense of the scale of these effects, we can use one example, the clinical class 1 36 

integron. This DNA element acquires foreign genes from the environment, and has played a 37 

central role in spreading antibiotic resistance between bacterial pathogens. DNA sequencing 38 

data show that it had a single origin, in a single cell, sometime in the early 20th Century (2). 39 

Derivatives of this original element can now be found in diverse bacterial species, resident in 40 

many different vertebrate hosts, and on every continent. Millions to billions of copies of this 41 

element now occur in every gram of feces from humans and domestic animals (Figure 1). 42 

This spectacular increase in abundance and distribution has been driven by antibiotic 43 

selection, increases in population, and dissemination via global transport.  The numbers of 44 

class 1 integrons released in waste streams mean that this DNA element has become a 45 

significant pollutant across wide geographic areas, with up to 1023 copies being shed into the 46 

environment every day (Figure 1) (3, 4). 47 

The increasing abundance and distribution of the class 1 integron is just one example of the 48 

genes and bacterial hosts now being disseminated by human activity. Key drivers for 49 

increased dissemination of microorganisms include waste disposal, global transport and 50 

tourism. Disposal of sewage increases the dissemination of both microorganisms and genes 51 

(Figure 1) (5). Some 35.9 Mha of croplands are dependent on irrigation with urban 52 

wastewater, 80% of which undergoes little, or no treatment (6). Use of wastewater or manure 53 

in agriculture contaminates fruits, vegetables and farm animals, that are then distributed 54 

globally via the food-supply chain (7). 55 



Wastewater carries high densities of microorganisms and their cargo genes. It also contains 56 

significant concentrations of compounds with biological effects, including metals, antibiotics 57 

and disinfectants (8). The simultaneous dispersal of microorganisms and selective agents 58 

increases mutation rates in these microbial populations, enhancing their evolvability. This 59 

allows them to respond dynamically to changing environments by generating de novo 60 

variability, which in turn is likely to confer adaptive advantages on at least a subset of cells 61 

arriving at a new location. Co-selection on different cargo genes amplifies this effect. For 62 

example, diverse genes for resistance to metals and disinfectants are often closely linked to 63 

multiple antibiotic-resistance genes on the same genetic element. Exposure to selective agents 64 

maintains these clusters of resistance determinants (5), greatly increasing the probability of 65 

selection at a destination, and improving the chances of recruitment after dispersal. 66 

Humans and animals now move on an unprecedented scale, and this movement actively 67 

transports and enriches a specific subset of microorganisms. Humans and agricultural animals 68 

now comprise 35-fold more biomass than wild terrestrial mammals (9), so the bacteria shed 69 

in feces mainly represent the gut microbiota of humans, cattle, sheep, goats, pigs, and 70 

chickens. These specific gut microorganisms have vastly increased in both abundance and 71 

distribution, particularly in the last century. Efficiency of dispersal is enhanced by the 1.2 72 

billion international tourist movements per year, evidenced by the rapid spread of bacterial 73 

clones and genes conferring antibiotic resistance between continents (10). 74 

Humans also promote dispersal of microbial cells via mass movement of materials. Ballast 75 

water from commercial shipping moves diverse microorganisms around the globe. An 76 

estimated 100 million tonnes of ballast water is discharged each year into US ports alone, 77 

giving some indication of the volumes involved (11). Human activities now move more soil, 78 

sand and rock than all natural processes combined. Natural fluvial erosion is 21 Gt/y, much 79 

lower than the 75 Gt/y eroded by agriculture (12). This erosion transports vast numbers of 80 

microorganisms, especially in soil. 81 

Understanding how human activities cause systematic changes in ecosystems is increasingly 82 

important, particularly in regard to our effects on biogeochemistry driven by microorganisms 83 

(13). Such studies involve a concerted effort to link the distribution and composition of 84 

biodiversity with biogeochemical processes at landscape scales and with belowground 85 

ecosystem functions (14). 86 



Linking the rapidly expanding databases generated by environmental genomics with the 87 

construction of biogeochemical models is increasingly important. Fusion of genomics and 88 

Earth system science is a first step to understanding how the biochemical functions of 89 

microorganisms could be altered, temporally and spatially, by global change (15). In 90 

particular, fixation of atmospheric nitrogen into biologically available forms, and global 91 

carbon dioxide and methane emissions are strongly affected by human activity. The dynamics 92 

of the microbial nitrogen cycle will be perturbed by industrial nitrogen fixation, while 93 

warming of wetlands and thawing of permafrost will release large quantities of microbially 94 

generated methane. 95 

There are complex feedbacks between microbial activities, dispersal of cells and genes, 96 

natural selection, and the interactions between physical, chemical, geological and human 97 

processes. Understanding these is a grand challenge for this century. Progress can only be 98 

made by forming new, interdisciplinary research teams that can manage and interpret the 99 

enormous data sets required. These data sets can then be applied to the complex, multi-gene 100 

phenotypes that are centrally important to global biogeochemistry and human health. 101 

There is a growing, and recent trend for monitoring the environmental dissemination of 102 

genes, particularly those that confer phenotypes of direct relevance to human and animal 103 

health. Much of this work has focused on the clusters of resistance genes that have been 104 

assembled under the aegis of human selection pressure (5). Realization of the global extent of 105 

pollution with these xenogenetic elements (3), and the organisms that carry them, should now 106 

stimulate much more global questions. Investigations into microbial invasions, microbial 107 

extinctions, and perturbations to microbial ecosystems are now a high priority. In particular, 108 

monitoring and improvements in waste water and  manure treatments are critical. 109 

Microorganisms usually perform their essential ecosystem services invisibly, but we ignore 110 

them at our peril. 111 
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