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Abstract  

Defining sustainable cities is not straightforward. The main issues involved in urban sustainability are 

buildings, energy, food, green areas and landscape, mobility, urban planning, water and waste; and their 

improvement is promoted through different strategies. However, a quantitative method, such as life cycle 

thinking (LCT), is essential to evaluating these strategies. This paper reviews LCT studies related to urban 

issues to identify the main research gaps in the evaluation of these improvement strategies. The review 

identifies the main sustainability strategies associated with each urban issue and compiles articles that deal 

with these strategies through LCT, including environmental life cycle assessment (LCA), life cycle costing 

(LCC), social LCA (S-LCA) and life cycle sustainability assessment (LCSA), as well as integrated analyses 

with combined tools. Water, waste and buildings are the urban issues that accounted for a larger amount of 

studies. In contrast, a limited number of papers assessed urban planning and energy (excluding energy in 

buildings). Strong interrelations among urban issues were identified, most of them including water. In terms 

of methods, 79% of the studies exclusively applied life cycle tools (i.e., LCA, LCC, S-LCA or LCSA). 

Within this group, the environmental dimension was the focus of 84% of the papers. Single environmental 

indicators (e.g., global warming) were common in 20% of the analyses, highlighting the need to integrate 

more impact categories to prevent trade-offs. In the field of social and sustainability assessment, there is a 

need for methodological advances that foster their application in urban areas. Further research should cover 

the thematic and methodological gaps identified in this paper, such as developing models that assess 

complex urban issues, generating comprehensive LCT studies and promoting multi-indicators. Life cycle 

tools might benefit from revising the methodology with stakeholders to optimize the understanding and 

communication of life cycle results for policy- and decision-making processes. 
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1. Introduction 

Sustainability is key to ensuring good living standards in cities without compromising the environment, 

economy and society, especially considering that already 50% of the world’s population lives in urban areas 

(UN, 2012). Cities are the result of combining technical, cultural, institutional, economic and psychological 
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systems (Allenby, 2009) and their integrated management is complex. In terms of environmental 

performance, it is widely recognized that cities are the source of a number of environmental impacts, such 

as climate change (Kennedy et al., 2012), contributing to 70% of the global greenhouse gas emissions 

(GHG) (UN-HABITAT, 2011). However, there are other sectors outside the city boundaries, such as 

agriculture or power generation, that are linked to the growth of cities and also contribute to the global 

environmental performance of citizens (Satterthwaite, 2008). Additionally, urban sustainability also faces 

social justice issues (Harvey, 2009) while promoting the development of local economies. The question is: 

what is a sustainable city and which are the strategies that foster sustainable cities?  

There are many issues involved in the daily metabolism of a city, e.g., food, energy, water, transportation, 

etc. In this paper, we identify the issues included in urban management, which are thus essential to defining 

future sustainable cities. Within these issues, we study the strategies promoted by reference institutions for 

improving their performance. In the framework of life cycle thinking (LCT), we discuss how these 

strategies were covered in the literature to determine their implementation potential at an urban scale. 

1.1. Defining a sustainable city 

A consensual definition of sustainable cities does not exist, although most organizations share the same 

viewpoint. The Institute for Sustainable Communities (2017) published a concise proposal based on the 

Sustainable Communities Task Force Report (President’s Council on Sustainable Development, 1998): “A 

sustainable community is one that is economically, environmentally, and socially healthy and resilient. It 

meets challenges through integrated solutions rather than through fragmented approaches that meet one 

of those goals at the expense of the others”. This definition calls for an integration of the policies and 

strategies aimed at improving the sustainability of key urban issues. However, these are typically dealt with 

independently to solve specific problems, such as the access to public transport or waste management. To 

identify the strategies proposed for each urban issue in the development of sustainable cities, we screened 

a set of fifteen reports and data from international organizations. Subsequently, we identified 28 potential 

improvement strategies (Table 1) that refer to 8 urban issues, namely buildings, energy, food, green spaces 

and landscape, mobility, urban planning, waste and water. In general, most strategies point to an increased 

process efficiency, the implementation of greener materials/designs and the integration of new technologies 

into the existing pool of alternatives. 

<Table 1> 

1.2 Life cycle thinking (LCT) applied at the city scale 

The feasibility of each strategy in environmental, economic and social terms is key to ensuring a 

sustainable urban performance. Quantitative studies can help to conduct this assessment, and LCT might 

be a suitable tool. According to the UNEP/SETAC Life Cycle Initiative (2017) LCT is “about going 

beyond the traditional focus on production site and manufacturing processes to include environmental, 

social and economic impacts of a product over its entire life cycle”. This approach can be applied at 

different scales that range from single products to more complex systems, such as cities. Within this 

framework, four methods were developed to quantify the dimensions of sustainability. Life cycle 



assessment (LCA) (ISO 14040:2006) and life cycle costing (LCC) (ISO 15686-5:2008) quantify the 

environmental and economic impacts of a product system from raw material procurement to end of life, 

respectively. Social LCA (S-LCA) and life cycle sustainability assessment (LSCA) are newer methods 

(UNEP-SETAC, 2011, 2009), but their application is still incipient and needs standardization. LCT  is the 

core of several policy action plans, including ecolabels and eco-innovation strategies (European 

Commission, 2010a). Indeed, as stated in previous literature the development of a comprehensive 

methodology for the implementation of LCSA is still lacking, and issues regarding indicators, weighting 

and trade-offs between validity and applicability must be addressed (Finkbeiner et al., 2010; Guinée et al., 

2011). S-LCA needs further development, facing major challenges with regard to representation of results 

and data quality, among others (Macombe et al., 2013). 

As defined in Section 1.1, strategies implemented to achieve sustainable cities should not work against 

each other. In this sense, LCT can provide integrated results for decision-making. However, LCT has been 

applied differently to the various issues involved in urban metabolism, leading to unbalanced data 

availability for evaluating sustainable strategies. Although the methodological limitations of LCT are 

well-known among practitioners, there is a need to identify the shortcomings of the LCT application to 

sustainability aspects related to cities, including both the topic coverage and methodological 

advancements. 

1.3 Goal of the review 

The goal of this review is to evaluate to what extent LCT research has assessed sustainable cities by 

considering the issues addressed in urban sustainability strategies. The specific objectives of this study are 

(i) to review how the strategies related to buildings, energy, food, green spaces and landscape, mobility, 

urban planning, waste and water were assessed from a life cycle perspective, and (ii) to identify the research 

gaps and methodological shortcomings related to each issue. This contribution also outlines the research 

needs that will support the development of urban sustainability policies from an LCT perspective. 

2. Methods 

We conducted a systematic review of scientific literature. We gathered articles on each urban issue and 

strategy from March 2015 to July 2016 through online catalogues (i.e., ISI Web of Science, Google Scholar 

and Scopus) and cross-citation. We searched common keywords related to urban sustainability and LCT 

(e.g., sustainable cities, social LCA, carbon footprint) and specific keywords for each of the topics under 

assessment (e.g., urban agriculture, green spaces, waste management) (see Table 1).  

The review includes 151 peer-reviewed scientific papers published in indexed journals (Table 2). The 

papers were classified based on the 8 urban issues and 28 strategies identified in Table 1. In the specific 

case of buildings, we found many papers dealing with materials, constructive solutions, construction 

processes, and maintenance of the indoor comfort. 24 papers were selected to represent the on-going 

research on this issue based on journal impact factor, number of citations, completeness and relationship 

with the sustainability strategies. Once the papers were classified, a set of aspects were screened, namely 

study area, scope, sustainability dimension (i.e., LCA, LCC, S-LCA, LCSA), type of study (e.g., life cycle 



tools, integrated schemes), indicators employed and main results (see the Supporting Information). The 

analysis provided an overview of sustainability assessments at different levels, i.e., strategies, urban issues 

and city. Furthermore, we paid attention to the methodological approach based on LCT tools. 

However, city boundaries are difficult to define. In this study, we considered phenomena taking place 

within urban areas for each urban issue, as well as peri-urban processes mainly related to food. Background 

system boundaries involve those upstream and downstream systems exclusively related to the urban 

metabolism (i.e., energy, water, resources, emissions and waste) (Figure 1). In other words: the studies that 

we considered refer to processes that occur within urban areas, but they have intrinsic inputs and outputs 

that come from the outside. For instance, we included energy efficiency strategies that are implemented in 

cities, but this energy comes from power plants located in other areas. However, energy production 

strategies that occur beyond the city boundaries are excluded. 

<Table 2> 

<Figure 1> 

3. LCT research on urban sustainability  

This section presents the results of the review and discusses the state of the art for the following issues: 

buildings, energy, food, green spaces and landscape, mobility, urban planning, waste and water. 

3.1. Buildings 

Specific strategies were proposed for improving the building sector and its contribution to urban 

sustainability. The four main strategies focus on reducing the energy (B1, B2) and resource consumption 

(B3, B4) during the life cycle of buildings and related emissions (Table 1). A detailed literature review is 

available in the Supporting Information 1.1.  

The most evaluated strategy is the efficient use of energy, water and other resources in buildings (B1). 

Based on the nearly zero-energy building (NZEB) concept, LCA methodologies, and more specifically the 

life cycle energy assessment (LCEA), were used to quantify the energy consumption in buildings during 

the operation phase and its related environmental impacts (Blom et al., 2011, 2010a; Johnson, 2011; 

Scheuer et al., 2003). This life cycle quantification was addressed using diverse approaches, e.g., assessing 

the optimal insulation conditions, the management of heating and cooling systems or the influence of human 

behavior (Blom et al., 2011; Çomaklı and Yüksel, 2003; de Meester et al., 2013). These studies noted the 

importance of integrating the energy design of buildings for adapting to the user’s lifestyle and optimizing 

the energy demand. Additionally, LCA and LCCs evaluated the benefits of building materials and 

maintenance activities in terms of improving energy efficiency (Ardente et al., 2008; Blom et al., 2010b; 

de Gracia et al., 2010; Syrrakou et al., 2006) 

The Net-ZEB concept is an extension of the NZEB, which implies that buildings cover their energy demand 

using onsite renewable energy sources (strategy B2). This generated a growing number of studies that 

integrate renewable energy into the total LCEA of buildings. LCEA and LCC are often used to analyze the 



effects of installing such systems. Results vary depending on the climatic conditions, the materials included 

in the energy equipment and the high cost of producing this equipment (Agrawal and Tiwari, 2010; Dodoo 

and Gustavsson, 2013; Elkinton et al., 2009; Koroneos and Tsarouhis, 2012). 

After optimizing the operation phase, using more sustainable construction materials is essential (B3). Many 

studies focused on the embodied energy of building materials, constructive systems and buildings using 

LCA (Monahan and Powell, 2011; Sierra-Pérez et al., 2016b; Thormark, 2002; Zabalza Bribián et al., 

2011). However, renewable insulation materials still need to undergo sufficient development to be 

comprehensively implemented in the building sector. Renewable materials such as kenaf fibers, cotton, 

jute, flax, hemp and cork were included in environmental studies (Sierra-Pérez et al., 2016a), but more 

environmental and economic data on manufacturing is needed.  

To increase the durability of buildings (B4) different alternatives were studied. Refurbishing buildings 

might improve their energy efficiency and increase their lifespan. Often, these improvements consist of 

increasing thermal insulation (Assiego de Larriva et al., 2014; Nicolae and George-Vlad, 2015). Further, 

this strategy was partly applied by incorporating deconstruction materials into buildings (Blengini, 2009; 

Densley Tingley and Davison, 2012), which increases the durability of building materials and facilitates 

future reuse.  

So far, LCA has been widely applied in the building sector from an environmental perspective; in contrast, 

economic assessments are limited. Some specific studies addressed social aspects in buildings (Hosseinijou 

et al., 2013; Onat et al., 2014), but more efforts are needed to understand the social dimension and the 

effects of buildings on users, who play a key role in the implementation of energy efficiency strategies. 

Furthermore, most of the studies included a complete set of environmental indicators, while some others 

focused on the energy performance, such as Berggren et al. (2013). Finally, there is also a need for 

internationally agreed data and methodologies (Menzies et al., 2007) for conducting these analyses at 

different scales. 

3.2. Energy 

Energy issues aim to reduce urban energy consumption and its related impacts. Four strategies were 

identified (Table 1) that mainly focus on the production and consumption of renewable energy (E1, E2) 

and the promotion of energy efficiency in services and residential areas (E3, E4). A detailed literature 

review is available in the Supporting Information 1.2. 

The transition towards renewable energy (E1) was repeatedly reported in sustainability planning. Although 

renewable energy was widely assessed from a life cycle perspective, only a few studies focus on urban 

energy systems. The generation of domestic hot water was studied, concluding that geothermal energy 

generates lower environmental burdens than solar thermal (Chiavetta et al., 2011). Another system are 

micro-wind turbines for electricity generation, whose environmental burdens depend on the geographical 

location and material composition (Allen et al., 2008). Vandevyvere and Stremke (2012) presented practical 

design principles for integrating renewable energy into the built environment. These studies lead to 

implementing self-supplied energy resources in cities (E2). In the framework of urban parks, Oliver-Sola 



et al. (2007) assessed global self-sufficiency by considering factors such as the potential production of 

renewable energy. Both approaches contribute to increasing energy efficiency in cities (E3). At the urban 

level, Tähkämö et al. (2012) studied two types of street lighting using LCC (e.g., high-pressure mercury 

(HPM) and LED). Whereas HPM costs depend on the operation phase, the installation phase is more 

relevant in LED technology. The best option will therefore depend on the cost of energy in a specific urban 

area.  

The assessment of energy issues relates to other urban issues, such as buildings (B), mobility (M) and urban 

planning (UP). In this section, only those studies associated with energy planning and production at the 

district and urban scales were included. Accordingly, more studies are needed to evaluate the performance 

of renewable energy towards urban self-sufficiency from a sustainability standpoint, particularly 

considering the economic and social dimensions. The latter would be beneficial to address the access to 

energy in different types of cities and social strata. Although Ristimäki et al. (2013) applied “LCC 

affordability”, the income of citizens was not addressed to evaluate the access to energy (E4). Regarding 

specific methodological aspects, some studies limited the assessment to the global warming (GW), although 

such practice can lead to trade-offs among impact categories, as energy has a large influence on the GW. 

3.3. Food 

Food issues were addressed in urban policy for ensuring food security and quality to citizens. Literature 

covered two strategies towards urban sustainability, i.e., building up urban agriculture (F1) and promoting 

regional and local food products (F2) (Table 1), as compiled in Supporting Information 1.3. 

Urban agriculture was recently approached through life cycle tools and few articles are available. Although 

studies initiated in 2010, life cycle data was not experimental until recently. Some authors evaluated the 

potential environmental benefits of urban agriculture at the city scale (Astee and Kishnani, 2010; Kulak et 

al., 2013; Sanyé-Mengual et al., 2015a). To do so, they accounted for the environmental savings resulting 

from local food production, which replaces the consumption of conventional food and, thus, avoids the 

environmental burdens associated with their supply-chain. Only a few types of urban agriculture forms 

were assessed in the literature, e.g., urban gardens (Kulak et al., 2013), rooftop greenhouses (Sanyé-

Mengual et al., 2015b) and rooftop community gardens (Sanyé-Mengual et al., 2015c). However, Kulak et 

al. (2013) employed literature data on conventional agriculture as a proxy for evaluating urban agriculture. 

Sanyé-Mengual et al. (2015b, 2015c) combined LCA and LCC to observe the environmental and economic 

performance of rooftop agriculture. The social dimension of urban agriculture is yet to be considered in life 

cycle studies. In general, papers highlighted the benefits of urban agriculture as local production initiatives 

and demonstrated the potential environmental and economic savings from a consumer perspective.  

Although research on local production does not exclusively refer to cities, urban areas are the main food 

consumers. Several LCA studies assessed local supply-chains by accounting for the environmental burdens 

of local and imported products. Most studies considered local production in Europe (e.g., UK) (Jones, 

2002), with apple being the main product of interest. Although local production is commonly associated 

with lower environmental impacts, results depend on the geographical area, cultivation technique and 

production stage (Edwards-Jones et al., 2008). Morgan (2009) emphasized the need for using LCA in the 



evaluation of local food to include all the life cycle stages. The economic and social burdens of local 

production were not evaluated in life cycle studies. 

Regarding the methodological approach to urban food, some limitations exist. Studies on urban agriculture 

mostly focused on the environmental dimension. In particular, attention was paid to the environmental 

savings of local production by calculating the avoided burdens of replacing conventional food with local 

food (e.g., Astee and Kishnani 2010). Further environmental, economic and social benefits should be 

considered in comprehensive life cycle studies. Additionally, some of the existing articles are based on 

literature (e.g., Kulak et al. 2013) rather than experimental data from real urban crops. Furthermore, studies 

must represent the plurality of urban agriculture forms, cultivation techniques and vegetables. In terms of 

geographical representation, most of the papers assessed European case studies, unveiling the need to 

consider other regional areas for increasing the global knowledge. For both F1 and F2 strategies, studies 

focused on two indicators, i.e., GW and energy consumption, due to the importance of transportation in 

these environmental impacts. However, Payen et al. (2015) demonstrated that trade-offs can be produced 

among indicators and, thus, it is recommended to include a set of indicators rather than a single one. Finally, 

the economic and social dimensions of sustainability are commonly avoided in life cycle studies of urban 

food production.  

3.4. Green spaces and landscape 

Green spaces and landscape are essential in cities to guaranteeing the access to natural and leisure areas. 

Literature addressed two strategies that aimed to increase urban green areas (G1) and foster green buildings 

(e.g., green roofs, green façades, and living walls) (G2) (Table 1). A detailed review is provided in 

Supporting Information 1.4. 

Two analyses evaluated the life cycle performance of green areas in cities (G1). Strohbach et al. (2012) 

accounted for the carbon footprint of an existing green space project and determined that the benefits of 

carbon sequestration might be notable, especially when reducing the maintenance intensity and tree 

mortality. From another perspective, Oliver-Sola et al. (2007) highlighted the environmental impacts 

resulting from services provided in urban parks (e.g., museums, sports centers, or recreational areas). In the 

field of urban green areas, many studies focused on the carbon storage and impact offsetting related to trees, 

forests and natural green areas (Baró et al., 2014; Hutyra et al., 2011; Jo, 2002; Nowak, 1994; Zhao et al., 

2010). However, integrating these results into the global environmental performance of green areas is 

needed to identify the balance between the life cycle impacts and benefits. 

Regarding the implementation of green elements in buildings, studies assessed green roofs and green walls 

(G2). In particular, green roofs have multiple functions in cities and, thus, they can also be evaluated as 

insulation systems or water management strategies. In this sense, authors mostly considered collateral 

effects in their life cycle studies, particularly carbon sequestration (Cerón-Palma et al., 2013) and improved 

thermal insulation (Kosareo and Ries, 2007; Saiz et al., 2006). From an economic standpoint, the 

monetization of these benefits highlighted the potential of green roofs compared to conventional façades 

and roofs (Porsche and Köhler, 2003). Regarding the design, using recycled materials might reduce the 

environmental footprint of green roofs (Bianchini and Hewage, 2012) and the maintenance of the system 



was a key contributor to the economic and environmental costs (Peri et al., 2012a, 2012b; Wong et al., 

2003).  

However, most of the studies did not include a comprehensive life cycle approach that considers all of the 

stages (Porsche and Köhler, 2003; Saiz et al., 2006). Peri et al. (2012a; 2012b) covered this methodological 

gap by conducting complete life cycle analyses of green roofs. Nonetheless, as green areas are multi-

functional systems, studies should consider a complete set of impacts and benefits to estimate their real 

contribution to urban sustainability. Regarding the social dimension, Peri et al. (2010) unveiled the need to 

address the social impacts of green roofs and proposed a S-LCA framework, although it only discusses 

potential indicators related to stakeholder evaluation. In terms of indicators, most papers account for various 

impact categories. Evaluating a single environmental benefit of green roofs (e.g., carbon sequestration in 

Cerón-Palma et al. (2013)) might underestimate their role in the design of sustainable cities.  

3.5. Mobility  

Mobility challenges arise from horizontal urban growth. In this sense, five strategies (Table 1) covered 

collective and alternative means of transportation (M1), fuel efficiency (M2, M3), freight transportation 

(M4) and Intelligent Transport Systems (ITS) (M5). A detailed literature review is available in the 

Supporting Information 1.5. 

Some authors assessed the reduction of private car usage by promoting alternative ways of transportation 

(e.g., bicycle, public transport, walking) (M1). From a life cycle perspective, Cherry et al. (2009) and Nahlik 

and Chester (2014) reported positive environmental consequences resulting from the use of bicycles and/or 

public transportation when replacing private cars. A complete sustainability assessment was provided by 

Kennedy (2002) for comparing public and private options, where public transportation scored better in the 

environmental dimension, but needed improvement in social and economic terms. However, this study did 

not consider the life cycle approach.  

The efficiency of private vehicles was covered in strategy M2, which consists of promoting the purchase 

of efficient cars or applying higher taxes to high-polluting vehicles. In this sense, different types of 

technologies were assessed using LCA, such as electric and hydrogen vehicles (Lucas et al., 2013) and 

propulsion technologies (e.g. conventional fuel engines, low sulfur diesel engines, compressed natural gas, 

or electric vehicles) (Lave et al., 2000). Further, Mendoza et al. (2016) studied the environmental 

performance of public charging facilities, which might be combined with solar panels for better results 

(Mendoza et al., 2015). Public transportation is also involved in the use of greener vehicles (M3). Different 

types of fuels were assessed in buses (e.g., diesel, natural gas, or hybrid options) (Ally and Pryor, 2008). In 

this case, the authors could not identify the best solution given tradeoffs among the impact indicators 

considered. However, as detected in other disciplines, an LCA of this type of strategy might identify the 

potential decentralization of pollution, meaning that cities might import or export environmental impacts 

through commuters.  

The logistics sector is also involved in urban mobility. Regarding heavy trucks, the creation of a new 

distribution system that concentrates the delivery of commodities in the outskirts of towns is related to 



strategy M4. To the authors’ knowledge, no studies dealt with this option so far, but they might be necessary 

for determining the balance between the investment in infrastructure and fleet and its environmental 

benefits. Strategy M5 referred to the use of ITS, which provide information to drivers about the best routes, 

for instance. ITS have a great potential to reduce CO2 emissions resulting from private transportation 

according to Pagoni et al. (2012). Nevertheless, this study focused on ITS benefits in roads and not in cities, 

and further research is needed. Additionally, future studies should determine the potential benefits and 

social acceptance of using ITS technologies in cities. 

In the field of urban mobility, studies need to validate the sustainability of each strategy quantitatively. A 

life cycle approach might be useful to track the processes involved in the transportation sector. In addition, 

the elaboration of eco-efficiency (e.g., LCA+LCC) indicators may be interesting to determine the 

relationship between the money invested by public administration and the resulting environmental benefits. 

Existing studies already coupled some economic and environmental indicators (Lave et al., 2000), but the 

environmental dimension should include a wider set of indicators, such as in Mendoza et al. (2015). Finally, 

S-LCA studies are lacking and they are needed to estimate the impacts of transportation on the society. 

Furthermore, future studies may include the influence of social participation on the overall acceptance and 

application of these strategies.  

3.6. Urban planning 

In terms of sustainable urban planning, strategies promoted the integration of land use and transportation 

(UP1), compact urban models (UP2), regional planning (UP3) and sustainable urbanism (UP4) (Table 1), 

as compiled in the Supporting Information 1.6. 

The integration of land use and transportation in decision-making was a priority (UP1). The environmental 

impacts of transportation were evaluated by Li and Wang (2009), where the metabolism of Beijing (China) 

was analyzed through hybrid emergy-LCA, concluding that mitigation measures should focus on buildings. 

Other studies assessed the influence of urban density on the environmental impacts of cities (UP2). Using 

environmental input-output (EIO)-LCA, Norman et al. (2006) found that low density areas were 2 to 2.5 

times more energy intensive than compact areas. However, no clear connection was found between 

environmental impacts and densities in Finland (Heinonen and Junnila, 2011). Further analyses should 

provide more data about the effects of transportation and urban sprawl on the environmental impacts of 

cities, which might be useful for identifying key policies and programs. Similarly, specific aspects of sprawl 

and compact versus fragmented cities should be assessed. 

Studies on the promotion of regional planning (UP3) are scarce. A framework for applying LCA in land 

planning and its bottlenecks were identified by Loiseau et al. (2013), who proposed a set of indicators to be 

used in France. Thus, identifying and quantifying the environmental benefits of regional planning from a 

life cycle perspective is a field to explore. Finally, sustainable urban planning (UP4) generally overlaps 

with the other strategies. Different parameters were considered in this type of assessment, e.g., building age 

(Balocco et al., 2004) or structural solutions (Oliver-Solà et al., 2009).  



Although the studies reviewed consider urban planning in their methodological framework, this issue still 

calls for further assessments from a life cycle standpoint. In addition, to the authors’ knowledge no studies 

considered the economic and social impacts of urban planning. Furthermore, the indicators implemented in 

these analyses are limited. Most of them referred to GW through novel methodologies, such as hybrid 

emergy-LCA, EIO-LCA, exergy and GW-charts. 

3.7. Waste  

Sustainable waste management (WM) might ensure livability and minimize health impacts in urban areas. 

LCA studies have evaluated two strategies. i.e., to improve collection and waste management (WM) 

systems (W1) and to promote waste prevention (W2) (Table 1). A detailed review is provided in Supporting 

Information 1.7. 

Regarding waste collection and management (W1), multiple studies compare the environmental impacts of 

different technologies. Treatment processes (e.g., incineration) have a larger contribution to the 

environmental impacts than collection and transportation (Song et al., 2013). To increase the efficiency of 

waste collection, authors highlighted the relevance of collection routes, location of management facilities 

and transport efficiency (Iriarte et al., 2009; Merrild et al., 2012; Rosenbaum et al., 2008; Zamorano et al., 

2009). An increased WM efficiency and the integration of energy recovery processes were the most 

environmentally friendly options. Integrated WM showed the highest environmental  and economic benefits 

(Buttol et al., 2007; Herva et al., 2014; Song et al., 2013; Thomas and McDougall, 2005). Recycling 

displayed environmental benefits when replacing primary materials (Feo and Malvano, 2009; Koroneos 

and Tsarouhis, 2012; Muñoz et al., 2010) and when compared to incineration (Iriarte et al., 2009; Merrild 

et al., 2012). Incineration was the most preferable disposal option in environmental terms (Morselli et al., 

2008) due to energy recovery (Buttol et al., 2007). GHG accounting in WM strongly depended on the 

efficiency of landfill gas collection,  electricity generation and biogenic carbon modeling (Vergara et al., 

2011)., 

Sevigné Itoiz et al. (2013) set a methodology to calculate the contribution of WM to GW at the national 

scale and showed figures for Spain. This study was framed in the ZEROWASTE project (http://www.med-

zerowaste.eu/) which also quantified the burdens for Italy, Greece and Slovenia. Due to the role of waste 

flows in a circular economy, Sevigné-Itoiz et al. (2014, 2015) proposed an integrated material flow analysis 

(MFA) and LCA to evaluate recycling processes from a consequential perspective that includes market 

data. Such scheme broadened the scope of sustainable WM to the global market, which is essential to 

supporting WM decisions at both strategic and operating levels (Arena et al., 2003). 

Some authors highlighted the positive environmental benefits of waste prevention (W2) (Vergara et al., 

2011), even at the municipal level (Cleary, 2014). In particular, food waste prevention showed a large 

potential in reducing the environmental footprint of waste management (Gentil et al., 2011) due to the 

resources tied to the life cycle of food (e.g., packaging) (Nessi et al. 2012, 2015). However, the benefits of 

waste prevention strategies clearly depend on the context (e.g., WM scenarios) and LCI modeling (e.g., 

recycling vs virgin material) (Gentil et al., 2011; Slagstad and Brattebø, 2012). Furthermore, when waste 



prevention strategies produce economic savings, re-bound effects can result in new consumption patterns 

with different environmental impacts (Martinez-Sanchez et al., 2016). 

Notwithstanding the relevance of WM in health, little attention was paid to social issues from a life cycle 

perspective. To the authors’ knowledge, the only LCSA study of this review was applied to the recycling 

of used cooking oils (Vinyes et al., 2012). Using an economic framework, Martinez-Sanchez et al. (2016) 

applied a complete LCC to food waste management thereby assessing the economic (LCC), environmental 

(ELCC) and social (SLCC) dimensions. As in other issues, some authors limited the assessment to the GW 

category. 

3.8. Water 

Water issues were broadly analyzed to provide water access and security to urban population. Sustainable 

strategies on water services aim to improve water and sewer networks (Wa1), implement retrofit systems 

(Wa2), enhance urban water retention (Wa3) and promote alternative water flows (Wa4, Wa5) (Table 1). 

This life cycle literature is detailed in Supplementary Material 1.8. 

To date, several studies have identified the environmental and economic impacts of potable and wastewater 

treatment plants, e.g., Racoviceanu et al. (2007) or Corominas et al. (2013), given their importance in 

supporting water supply and sanitation. Some studies focused on the implementation of resource and energy 

efficient networks in urban areas (Wa1). Most of them assessed constructive designs (Petit-Boix et al., 

2014; Sanjuan-Delmás et al., 2014; Venkatesh et al., 2009), but there is a lack of LCA and LCC studies 

that integrate structural and local aspects. The configuration of cities can affect the network design and the 

pumping energy (Petit-Boix et al., 2015; Roux et al., 2011; Sanjuan-Delmás et al., 2015), and a combination 

of life cycle tools and GIS might provide further knowledge to evaluate water networks at the city scale.  

An alternative to urban networks are decentralized strategies (Wa2-Wa5). LCA studies covered specific 

retrofit technologies (Wa2) (Raluy et al., 2005; Stokes and Horvath, 2009; Tarnacki et al., 2012). To the 

authors’ knowledge, there is a lack of LCC studies for these technologies, albeit the general costs of water 

were quantified (Karagiannis and Soldatos, 2008). In the context of strategies Wa3, Wa4 and Wa5, more 

studies apply LCA and LCC while integrating other specific tools such as GIS and hydrologic simulations. 

Analyses on natural retention systems offer great detail about avoided burdens related to carbon 

sequestration (De Sousa et al., 2012; Flynn and Traver, 2013; Moore and Hunt, 2013), while providing 

useful comparisons among different types of green and gray infrastructures. This is also relevant in the 

studies related to graywater treatment and wastewater recycling alternatives (Wa5), as they mainly compare 

treatment technologies with rainwater harvesting systems (RWHS) (Anand and Apul, 2011), other green 

infrastructures (Memon et al., 2007), and conventional wastewater treatment (Benetto et al., 2009; Ng et 

al., 2014; Remy and Jekel, 2007). With respect to RWHS, there is a clear evolution of the approaches, 

which began with the integrated impacts of RWHS (Grant and Hallmann, 2003; Roebuck et al., 2010) and 

evolved to determining the most efficient scenarios in different building densities and locations (Angrill et 

al., 2012; Devkota et al., 2015; Morales-Pinzón et al., 2012; Vargas-Parra et al., 2014).  



Regarding water and wastewater management, life cycle studies should aim at determining the avoided 

environmental and economic impacts of their implementation with respect to conventional centralized 

systems, thereby considering a consequential LCA perspective. Furthermore, multi-functionality of the 

systems must be better addressed (e.g., RWHS and flood prevention). In addition, assessments at wider 

scales (i.e., at a neighborhood or watershed level) might enable the comparison of different climatic regions, 

local policies, traditions and water use patterns. Finally, there is a lack of studies dealing with S-LCA. Only 

Mcconville (2006) attempted to analyze the social aspects of water and sanitation development projects. 

Other authors performed multi-criteria assessments (Akhtar et al., 2014; Cruz-Diloné et al., 2014), but the 

social sphere was not considered. In addition, there is no clear pattern in the use of indicators, i.e., while 

some authors combine multiple indicators in the assessment (e.g., whole ReCiPe or CML methods) (Petit-

Boix et al., 2014), others focus on single indicators, particularly GW (Sanjuan-Delmás et al., 2015). 

4. How was urban sustainability evaluated from a life cycle perspective? 

A total of 151 peer-reviewed papers evaluated urban sustainability practices from a life cycle perspective, 

being the period 2011-2013 and the year 2015 the most productive (Supporting Information 2.1). Table 3 

summarizes the number of studies, the coverage of the three sustainability dimensions, type of study and 

use of indicators for each urban issue. 

<Table 3> 

Urban sustainability was partially and unevenly evaluated from a life cycle perspective and further research 

is essential to covering important gaps (Table 2). Water (33%), waste (17%) and buildings (16%) are the 

urban issues that accounted for the largest amount of studies. However, this review considered only the 

most relevant LCAs on buildings, since there is a large literature evaluating building materials. On the 

contrary, a limited number of papers were found for urban planning (4%) and energy (4%) (Supporting 

Information 2.2). However, multiple issues overlap with one another, as relevant interactions occur among 

them (Figure 2). In particular, urban planning related to all of the remaining issues because it constitutes 

the fabric where urban activities are developed. For instance, when planning infrastructures in an urban 

context, the location, design and implementation of urban parks and water networks can affect the 

sustainability of green areas and water systems. Specific interrelations and examples are provided in Figure 

2. 

<Figure 2>  

From a methodological standpoint, most of the studies (80%) were exclusively employing LCT tools (LCA, 

LCC or S-LCA). However, the complexity of urban areas fostered the combination of life cycle tools with 

other schemes, i.e., environmental input-output tables (economy), GIS, exergy and emergy accounting. 

Such approach was particularly applied in urban planning, energy and water, although these tools are of 

interest to all issues. 

Regarding sustainability dimensions, LCT studies largely covered the environmental dimension of 

sustainability through LCA (84% of the studies). The economic dimension was also approached in LCC-



standalone studies or a combination of both LCA and LCC (20%). Only two S-LCA studies were identified 

for green spaces and waste, respectively. Finally, sustainability as a whole was approached by Vinyes et al. 

(2012), who performed a LCSA for waste management options. Kennedy et al. (2002) combined 

environmental and social indicators in a so-called sustainability assessment. Finally, Martinez-Sanchez et 

al. (2016) evaluated the three dimensions of sustainability from an economic perspective. 

These results are also related to the temporal evolution of life cycle tools, as LCA and LCC were developed 

and standardized in 2006 (ISO 14040:2006) and 2008 (ISO 15686-5:2008), respectively (Supporting 

Information 2.3). On the contrary, although some methodological guidelines are available for S-LCA 

(UNEP-SETAC, 2009) and LCSA (UNEP-SETAC, 2011), there is still neither consensus nor 

standardization. In particular, Martínez-Blanco et al. (2015) highlighted the multiple challenges that 

practitioners face in the implementation of S-LCA at the product level, as several indicators of the current 

S-LCA scheme evaluate the organizational and country levels. Thus, there is a need to re-think the current 

S-LCA approach for products and services by developing new indicators related to their functions instead 

of organizations and countries. 

Between 10 and 33% of the studies only evaluated the GW indicator due to the significance of CO2 

emissions not only at the scientific but also at the public spheres (e.g., mass media). On the contrary, the 

use of a more complete set of indicators to minimize trade-offs among impact categories was performed in 

studies regarding green spaces (90%) and mobility (80%). However, the employment of a set of indicators 

limits the prioritization criteria in comparisons and the outreach of the results to the citizens.  

5. Evaluating the city as a unique system 

Notwithstanding the high interdependence between the urban issues and sustainability strategies evaluated 

(Figure 2), cities have not been analyzed comprehensively from a life cycle perspective so far due to its 

complexity. At the city scale, quantitative studies usually assessed the urban metabolism (UM) as a global 

system (Browne et al., 2009; Chen and Chen, 2012; Kennedy and Hoornweg, 2012; Pincetl et al., 2012; 

Sahely et al., 2003), paying particular attention to the consequent urban carbon emissions (Kennedy et al., 

2010, 2009; Sugar et al., 2012). Particularly for GHG, city-scale LCA worked on further developing 

methods that deepen in the sources of such environmental burdens. For instance, Ramaswami et al. (2008) 

elaborated a demand-centered hybrid life-cycle-based methodology. The model differentiates direct (i.e., 

buildings electricity use, buildings natural gas and surface travel) and indirect flows (i.e., airline travel, fuel 

production, cement use, food purchase). For the city of Denver (United States), this method quantified a 

yearly emission of 25 t of CO2 per inhabitant. 

Some authors combined UM with LCA. While UM quantifies the flows within the city limits (i.e., direct 

consumption of resources and production of emissions and waste), LCA evaluates the impacts of urban 

components from cradle to grave, thereby considering their embedded environmental burdens. Chester et 

al. (2012) proposed a method for evaluating the sustainability of cities by merging UM and LCA together 

with socio-demographic data at the neighborhood scale. Goldstein et al. (2013) demonstrated that 

combining UM and LCA leads to larger volumes of mass and energy flows, compared to conventional UM. 



For most of the case studies, the embedded impacts identified with the LCA framework accounted for more 

than 50% of the global results. Values ranged from 10.2 to 18.0 t of CO2 eq. per capita and year. 

Therefore, LCT showed some limitations in approaching the evaluation of cities as a whole unless being 

integrated into other industrial ecology tools. Notwithstanding this constraint, urban policies tend to address 

each issue separately, since each urban problem is treated by different public offices and even at different 

scales (from national to local policies). Hence, issue-specific LCT studies can still provide policy-makers 

with information and data to assess each issue and strategy.  

6. Conclusions and research gaps 

Unlike other systems, the complexity of cities makes them difficult to be analyzed comprehensively. 

Furthermore, the thorough analysis of its subsystems is of interest because they have substantial 

environmental burdens and provides basic services to more than 50% of the world’s population. For this 

reason, a review of what has been done using LCT is of interest to provide an adequate framework and 

detect research gaps that facilitate future research. LCT studies can assist in the definition and prioritization 

of strategies towards urban sustainability, particularly for policy purposes (i.e., from the regional to the 

local level). A life cycle approach is essential to avoiding different types of trade-offs, i.e., (a) spatial (e.g., 

energy consumption affects impacts in energy production sites beyond city boundaries); (b) among life 

cycle stages (e.g., materials extraction for urban elements), and (c) indicators (e.g., GW and local impacts 

on freshwater). In this paper, a literature review on urban sustainability and life cycle studies was performed 

with the aim of illustrating the current situation and identifying research gaps for further research.  

To do so, we identified the strategies towards sustainability defined for each urban issue, which should be 

promoted by decision-makers (e.g., local authorities, urban planners, designers, etc.). In general, these 

strategies lead to a functional mimicry of natural systems in urban spaces through systems that foster 

sustainability. This can be achieved through direct processes, namely including green infrastructure in cities 

that can enhance resource efficiency in multiple urban issues, i.e., water (e.g., stormwater management), 

energy (e.g., thermal insulation), urban planning (e.g., urban lungs), food (e.g., local production) and green 

areas (e.g., urban heat island). On the other hand, indirect processes emulate ecological mechanisms to 

optimize the urban metabolism, such as recycling or renewable energy systems. Therefore, renaturalization 

strategies might be the focus of political agendas towards sustainable cities, as shown in global programs 

(e.g., promotion of circular economy in European policy). 

However, the review highlighted the actions needed for a better assessment of urban sustainability from a 

life cycle perspective. On the one hand, several urban issues (e.g., energy, mobility, urban planning, food) 

are partially evaluated, while some of the strategies were not yet addressed, such as increasing the use of 

ITS or addressing energy affordability. On the other hand, the methodological development of life cycle 

tools calls for particular attention at different levels. First, integrated schemes that combine life cycle tools 

with other methodologies can assist in the evaluation of the urban complexity, particularly for those issues 

that require assessment at a larger scale (e.g., neighborhood, city, economy), such as mobility or water. 

Second, evaluating sustainability may require analyzing its three dimensions in a comprehensive manner, 

i.e., environment, society and economy. For this purpose, current methodologies for S-LCA and LCSA 



should be revised to enhance their implementation in case studies. Finally, although some studies covered 

important research gaps, the authors focused on the indicators of GW or energy consumption thereby 

limiting the understanding of some sustainability strategies. 

Further research might cover the current research gaps in both thematic and methodological terms. Efforts 

might focus on urban issues with a limited availability of life cycle information and data, as well as overlaps 

among different issues. Advances in methods might work on three aspects: (1) identification and 

development of the best integrated schemes to model and assess the complexity of urban issues, (2) progress 

in the implementation of sustainability studies from a comprehensive perspective (i.e., covering the three 

dimensions of sustainability), and (3) promotion of multi-indicators for minimizing the potential trade-offs 

among impact categories. Beyond such aspects, life cycle tools would generally benefit from revising the 

methodology with stakeholders to optimize the understanding and communication of life cycle results for 

policy- and decision-making processes. 
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Tables 

Table 1. Identification of strategies towards urban sustainability 

Issue Strategy ID 
Literature 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Buildings 

Enhance the efficient use of energy, water 

and other resources 
B1 ×  × × × ×  ×   ×   ×  

Support the generation of renewable energy B2        ×   ×     

Promote the use of efficient and sustainable 

materials 
B3    ×    ×   ×   ×  

Enhance reuse and recycling alternative for 

an increased durability 
B4 ×               

Energy 

Support the transition towards the use of 

renewable energy sources 
E1 × ×  × × ×  × ×  ×  ×   

Promote the self-supply of energy E2      ×  ×        

Improve energy efficiency E3 × × × × × ×  × ×  ×  × ×  

Ensure the access to affordable energy 
resources to the population 

E4   ×  × ×  × × ×      

Food 

Build up urban agriculture F1  ×   × ×  ×   ×     

Promote regional and local food products 

(e.g., farmer's markets) 
F2 ×    × ×  ×  × ×     

Green 

spaces and 

landscape 

Increase green areas in cities G1  ×  × × × × × × × ×     

Foster green buildings (e.g., green roofs, 

green façades, living walls) 
G2   ×  × ×  ×  ×      

Mobility 

Reduce private car use and promote 
alternative means of transportation 

M1 × × ×  ×    × × ×    × 

Promote efficient and fossil fuel-free 

private vehicles 
M2 ×  ×  ×     × ×     

Promote efficient and fossil fuel-free 
vehicles for public transportation 

M3 ×  ×  ×     × ×    × 

Reduce and optimize heavy trucks 

circulation in urban areas 
M4 ×  ×        ×     

Increase the use of Intelligent Transport 
Systems (ITS) 

M5   ×       × ×     

Urban 

Planning 

Promote the integration of land use and 

transportation in decision-making 
UP1       ×  ×       

Promote a compact urban model as an 
opposition to sprawl 

UP2    ×     ×       

Promote regional planning UP3       ×  ×       

Promote sustainable urbanism UP4       ×   ×      

Waste 

Improve the efficiency of collection and 
waste management systems 

W1 ×   ×  ×          

Promote waste prevention W2 × ×  ×  ×          

Water 

Promote efficient water and sewer 

networks in urban planning 
Wa1  × ×  × × × × × × × ×   × 

Implement retrofit systems (e.g., 
desalination and water recycling) 

Wa2   ×  × × ×    × ×   × 

Integrate bio-infiltration and natural 

retention processes in urban areas 
Wa3  ×     × × ×  ×     

Implement rainwater harvesting systems 
(RWHS) 

Wa4  ×    ×  × ×  × ×    

Promote efficient waste- and greywater 

treatment and recycling alternatives 
Wa5  × ×  × × × × ×  × ×    

1- (European Commission, 2016a); 2- (UNEP 2011); 3- (UNCSD Secretariat, 2012); 4- (UN 2013); 5- (UNEP 2012); 6- (UNEP 

2009); 7- (Sustainable Cities Institute 2013); 8- (UN-HABITAT, 2010); 9- (European Commission, 2010b); 10- (Nethersole et al., 

2012); 11- (IDAE 2012); 12- (European Commission, 2016b); 13- (EIP-SCC 2016); 14- (UN-HABITAT, 2012); 15- (UN-

HABITAT, 2014) 

  



Table 2. Literature search: Common keywords, specific keywords, number of papers reviewed and 

relevance by issue  

Issue Common keywords Specific keywords # papers Relevance 

Buildings 

Life cycle assessment, 

Life cycle costing, 

Social LCA, 

Sustainability assessment, 

Sustainable cities, 

Urban sustainability, 

Carbon footprint, 

Water footprint, 

Environmental 

performance 

 

Sustainable construction, building energy, 

renewable energy, renewable material, 

insulation materials, embodied energy, 

energy saving, zero energy building, low 

energy building 

24(*) 17% (*) 

Energy 

Energy city, urban energy generation, 

renewable energy, sustainable energy 

technologies 

6 4% 

Food 

Urban agriculture, urban garden, allotment, 

rooftop garden, urban food, local food, 

periurban agriculture, urban farming, urban 

gardening 

15 10% 

Green spaces 

and landscape 

Park, green spaces, green area, urban park, 

urban forestry, urban green, urban 

landscape 

15 10% 

Mobility 

Electric mobility, electric vehicles 

infrastructure, hydrogen vehicles, low 

carbon transport, ITS (Intelligent Transport 

Systems), efficient transport systems, 

sustainable public transport, public 

transport 

9 7% 

Urban planning 

Urban planning, city planning, urban 

design, urban development, environmental 

planning, city development, urban sprawl, 

urban zoning 

6 4% 

Waste 

Waste treatment, municipal solid waste, 

selective collection systems, integrated 

waste management, waste recycling, 

incineration, landfilling, energy recovery 

26 14% 

Water 

Water, wastewater, sanitation, drainage, 

rainwater harvesting, best management 

practices, graywater, wastewater recycling, 

sewer, supply, hydrology, green and gray 

infrastructure, conventional treatment, 

alternative water supply  

50 34% 

(*) In this study, only the most relevant papers were considered due to the large amount of literature on LCA and 

buildings 

 

Table 3. Number of studies, coverage of sustainability dimensions, type of study and indicators use by 

urban issue. Note that the number of studies does not add up to the total in each group because some of 

them combine multiple options 

Issue # 

Type of study Sustainability dimensions LCA indicators used 

Life 

cycle 

tools 

Integrated 

schemes 
LCA LCC S-LCA LCSA 

Only 

GW 

Only 

GW & 

Energy 

Complete 

Buildings 24* 21 3 21 3 0 0 3 3 17 

Energy 6 4 2 4 2 0 0 2 0 2 

Food 15 13 1 15 3 0 0 3 5 7 

Green spaces 15 14 1 9 5 1 0 1 0 8 

Mobility 9 8 1 8 2 0 1 1 3 4 

Urban planning 6 2 4 6 0 0 0 2 1 2 

Waste 26 24 2 24 2 1 1 3 2 21 

Water 50 38 12 42 18** 0 0 8 8 30 

(*) In this study, only the most relevant papers were considered due to the large amount of literature on LCA and 

buildings; (**) Included those EIO-LCA that also accounted for costs 



Figures 

Figure 1. City boundaries considered in the analysis, including urban and periurban areas, and 

background processes. 

 

Figure 2. Interrelations among urban issues towards sustainability and presence in life cycle studies. The 

bubbles depict the overlaps among two or more urban issues and an example for each overlap is 

provided. 

 




