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Mast seeding, the extremely variable and synchronized production of fruits, is a common

reproductive behavior in plants. Weather is centrally involved in driving masting. Yet, it is

often claimed that it cannot be the sole proximate cause of masting because weather is

less variable than fruit production and because the shape of their distributions differ. We

used computer simulations to demonstrate that the assumption that weather cannot be

the main driver of masting was only valid for linear relationships between weather and

fruit production. Non-linear relationships between interannual variability in weather and

crop size, however, can account for the differences in their variability and the shape of

their distributions because of Jensen’s inequality. Exponential relationships with weather

can increase the variability of fruit production, and sigmoidal relationships can produce

bimodal distributions. These results challenge the idea that meteorological variability

cannot be the main proximate driver of mast seeding, returning meteorological variability

to the forefront of masting research.
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INTRODUCTION

Mast seeding, or masting, is a reproductive behavior characterized by an extremely irregular and
synchronized production of fruit taking place at the population, community, or ecosystem level
(Kelly and Sork, 2002). Such an irregular pattern of producing seeds has strong consequences
in ecosystems, leading to cascading effects throughout the food web (Ostfeld and Keesing, 2000;
Bogdziewicz et al., 2016). The mechanisms behind this intriguing behavior have puzzled ecologists
for decades (Norton and Kelly, 1988; Sork et al., 1993; Espelta et al., 2008; Fernández-Martínez
et al., 2012, 2017; Crone and Rapp, 2014; Pearse et al., 2016), leading to the formulation of several
hypotheses about ultimate and proximate causes of this bizarre reproductive behavior.

Hypotheses accounting for ultimate causes (i.e., masting would be a selective trait that increases
fitness) are based on the benefits of economies of scale, i.e., massive but random reproductive
events would be more beneficial than producing regular crops of similar but smaller size (e.g., the
predator-satiation hypothesis, see Curran and Webb, 2000; Espelta et al., 2008, 2017). Hypotheses
accounting for proximate causes, though, are focussed on the mechanisms by which plants produce
fruits (Norton and Kelly, 1988; Kelly and Sork, 2002). These hypotheses are being intensely debated,
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and many studies have investigated the potential causes of
the high interannual variability of fruit production: stored
carbohydrates (Hoch et al., 2013; Ichie et al., 2013), reproductive
costs (Sala et al., 2012), availability of nutrients (Crone et al.,
2009; Fernández-Martínez et al., 2016), pollination efficiency
(Koenig et al., 2015; Bogdziewicz et al., 2017a,b), or weather,
either as a cue prompting reproduction (Kelly et al., 2013; Pearse
et al., 2014; Bogdziewicz et al., 2017b) or by its effect on plant
productivity either by enhancing photosynthesis (Fernández-
Martínez et al., 2015, 2017) or by its interaction with nutrient
availability (Smaill et al., 2011). Amongst proximate causes,
meteorological variability may be an inseparable component of
variable seed production (Pearse et al., 2016), because weather
is the most evident source of interannual variability that can
affect plant productivity. However, it has often been claimed that
factors other than weather have to be involved in driving mast
seeding behavior (Koenig and Knops, 2000; Kelly and Sork, 2002;
Crone and Rapp, 2014; Pearse et al., 2016).

Two main arguments have been used to claim that weather
cannot be the sole proximate cause of masting. First, fruit
production is much more interannually variable (i.e., CV = SD ·

mean−1, at the population level, the standard way to characterize
masting behavior; Herrera et al., 1998) than meteorological
variables such as rainfall or temperature (Koenig and Knops,
2000, 2005; Kelly and Sork, 2002), two of the most commonly
used meteorological variables for predicting crop size. Second,
meteorological variables are rarely bimodally distributed, but
fruit production sometimes is (Norton and Kelly, 1988; Herrera
et al., 1998). These arguments, though, are only correct when
linear relationships between seed production and weather are
assumed, even though a large number of masting studies have
relied on logarithmic transformations for seed production to
normalize model residuals (Sork et al., 1993; Koenig et al.,
1994; Kelly et al., 2013; Pearse et al., 2014). This transformation
linearises the relationship between crop size and weather, but the
true relationship remains unequivocally non-linear and is thus
within the domain of Jensen’s inequality.

Jensen’s inequality (Jensen, 1905; Ruel andAyres, 1999; Denny,
2017) is a mathematical property that applies to non-linear
functions. Understanding this property is useful in order to better
predict and understand the consequences of predictor variability
on the response variables for functions of different shapes. Briefly,
Jensen’s inequality implies that the variance of a predictor variable
will increase the variance of the response variable in accelerating
functions (i.e., convex functions where the slope increases; the
2nd derivative is positive, as in exponential-growth functions).
Conversely, the variance of a predictor variable will decrease the
variance of the response variable in decelerating functions [i.e.,
the slope decreases in concave down functions; the 2nd derivative
is negative, as in logarithmic functions, see Denny (2017) for a
detailed explanation].

Many of the published relationships between fruit production
and weather are subject to Jensen’s inequality because fruit
production is usually log-transformed to fit the models, implying
that meteorological variability can increase or decrease the
variability of fruit production depending on the shape of
the function. Jensen’s inequality also means that response

and predictor variables will likely be distributed differently in
non-linear relationships (Ruel and Ayres, 1999). A Gaussian
distribution for a predictor can easily lead to an exponentially
distributed response variable (e.g., gamma distribution) in
accelerating functions. Similarly, other types of non-linear
relationships, such as sigmoidal functions, can produce a bimodal
response variable, another property sometimes found in fruit-
production data (Herrera et al., 1998).

The aim of this study was thus to demonstrate, using
computer simulations, that common and even expected non-
linear relationships between weather and fruit production could
lead to the differences in distribution and temporal variability
observed in the time series of weather and fruit production.
Positive results would return meteorological variability to the
focus of masting research.

METHODS

We performed five simulations in which fruit production
(response variable) followed a linear, exponential, logarithmic,
sigmoidal, and Gaussian relationship with a meteorological
variable to demonstrate that the extreme variability in fruit
production data can be explained by a normally distributed,
less variable predictor (e.g., weather). We simulated 48
meteorological time series of 100 years following a normal
distribution with a mean of 600 (e.g., proximate annual rainfall
in Barcelona) and an SD ranging from 10 to 200. Hence, the
simulated interannual variability (CV) ranged from 0.017 to
0.33, which are plausible ranges of interannual meteorological
variability of annual temperature (∼5%) and highly variable
annual rainfall in the Mediterranean regions (∼30%). However,
the discussion of our results apply to any meteorological variable
(relative humidity, wind speed, rainy days) that could affect
the biology of a given species that produces fruits (Crone and
Rapp, 2014). For each simulated meteorological time series,
we then simulated fruit production using linear, exponential,
logarithmic, sigmoid, and Gaussian functions with a normally
distributed error for different slopes of the functions (or width
for Gaussian). The SD of the predicted values was 10% of the
average of the predicted values for all simulations (ensuring a
statistically significant relationship between the dependent and
the predictor variables for most of the slopes). We simulated 100
years of fruit production 1,000 times and calculated the average
proportional variability (PV) for each slope and meteorological

time series. PV is calculated as: PV =

∑z D(z)
C , where D (z) =

1 −
min(zi , zj)
max(zi , zj)

is each of the pairwise comparisons of all the

z of values of the variable and C is the number of all possible
pairwise combinations within the set of values (see Heath, 2006
for further calculation details). The PV index is a robust measure
of variability that overcomes some of the mathematical problems
that the CV presents, especially when assessing variability in non-
normally distributed data (Heath, 2006; Fernández-Martínez
et al., 2016). However, because the CV index is still widely used
in ecology, we also calculated it in our simulations and presented
the results in Supplementary Material (Figure S1). All analyses
were performed using R (R Core Team, 2015); the full code
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used to extract the results is available in Supplementary Material,
section 1.

We also searched the literature for exemplar masting studies
that provided relationships between fruit production and
weather to summarize information about fruit production and
interannual meteorological variability (CV and PV) and the
shape (linear or non-linear) of their relationship. The results of
these analyses should help other authors interpret their results
when using non-linear relationships in their studies.

RESULTS AND DISCUSSION

Our simulations indicated that the variability (PV) of the
response variable, in a linear relationship between two variables
(i.e., f

(

fruit production
)

≈ β weather + ε, where β represents
the slope of rainfall and ε is the error term), increased slightly
for a very low slope coefficient (β) at any variability of the
predictor variable (weather) but quickly reached an asymptote
at very similar values of the predictor (Figure 1A). The normal
distribution of the independent variable in this case was also
translated into the response variable, without being affected by
the slope of the relationship (Figures 2A,B). This simulation,
however, produced fruit-production data very different from
those reported in masting studies (Kelly, 1994; Herrera et al.,
1998; Fernández-Martínez et al., 2016). Additionally, linear
relationships, as in this first scenario, have rarely been reported
in masting studies (Table 1), because fruit production is usually
log-transformed before fitting the models to normalize the
residuals. The variability in the meteorological variables in
these cases is always similar in magnitude to the variability
of fruit production, as our simulation also suggested (Table 1).
Our second simulation used log-transformed data for fruit
production (exponential function), the most common analysis
performed in masting studies (e.g., Sork et al., 1993; Koenig et al.,
1994; Kelly et al., 2013; Pearse et al., 2014), in which Jensen’s
inequality already plays a role.

The variability of fruit production increased steeply with β

in an exponential function of the type f
(

fruit production
)

≈

e(β weather)
+ ε, especially at high predictor variability (Figure 1B).

When this kind of relationship between response and predictor
was assumed, the variability of the response variable rapidly
increased above the variability of the predictor, using both PV
and the CV indices (Figure S1). The shape of the distribution of
the response variable varied with β , from a normal distribution
similar to that of the meteorological predictor at β = 0.001,
to a highly left-skewed distribution at β = 0.01 (Figures 2C,D)
similar to those reported for fruit production in masting studies.
Our bibliographical search clearly supported these results.
Fruit production was always more variable than the predictor
meteorological variable in relationships in which fruit production
was log-transformed (Table 1). The change from constant to
highly variable fruit production along with the magnitude of the
slope of the relationship implied that masting behavior may be
a consequence of the hypersensitivity of plants to meteorological
variability [e.g., high exponential slopes (β)], providing the first
mathematical support for previous hypotheses (Kelly, 1994; Kelly

and Sork, 2002). This hypersensitivity to weather cues could be
explained by synergistic effects boosting fruit production because
of favorable weather for photosynthesis and nutrient availability.
For instance, acorn production in Mediterranean oaks has been
reported to be positively associated to spring rainfall which, a
part from drought, ameliorates nutrient limitation by enhancing
nitrogen mineralization (Smaill et al., 2011; Fernández-Martínez
et al., 2015; Bogdziewicz et al., 2017a). Overall, this phenomenon
reflects the high costs of reproduction of some species (Sala et al.,
2012).

The third simulation, using the logarithmic function
f
(

fruit production
)

≈ β Ln
(

weather
)

+ ε, draws the typical
shape of a function describing a process of diminishing returns,
in which the response variable increases steeply at low values
of the predictor but saturates at high values (Figure 1C). In
this case, the behavior of the variability is completely opposite
to the behavior reported in the two previous simulations.
Because of the concave-down shape of the function, variability
of the response was rather insensitive to variability in the
predictor. For high values of variability of the predictor, the
logarithmic function even shrinks variability of the response.
Like in linear functions, the slope of the relationship did not
affect variability of the response. Consequently, the shape of the
distribution of the response variable barely varied β , presenting
right-skewed Gaussian-like distributions for low and high slopes
(Figures 2E,F).

Our fourth simulation used a sigmoidal function of the type

f
(

fruit production
)

≈ a + b−a

1+e−c (weather−d)
+ ε, where a and b are

the minimum and maximum values in the function, respectively,
d is the value of the predictor variable at the inflection point,
and c is the degree of curvature of the function, which is linear
at low values of c and predicts only a + ε and b + ε values
for high values of c. The variability of fruit production rapidly
increased with c until it approached an asymptote near PV = 0.7
(Figure 1D) or CV = 1 (Figure S1). The increase, though, was
even steeper for highly variable weather. This simulation further
indicated that phenomena produced by sigmoidal relationships
could potentially increase the variability of response variables
much more than that of the predictors. Sigmoidal relationships
between weather and fruit production produced a distribution of
fruit production similar to a Gaussian distribution at low values
of c, but the distribution became bimodal at high values of c
(Figures 2G,H). This kind of relationship could account for cases
like the one reported for Chionochloa sp. in which flowering only
occurred when average temperature for January and February
was >10◦C (McKone et al., 1998; Rees et al., 2002). However,
we could not find any sigmoidal relationships in masting studies
(Table 1).

Our last simulation used a Gaussian function of the

type f
(

fruit production
)

≈ ae
−(weather−b)2

2c2 + ε, where a is
maximum y value of the function, b is the value of the
predictor variable at the center of the bell, and c is the
standard deviation (or width) of the bell, determining the
curvature of the function, which defines a flat function at
high values of c and a narrow bell at low values. The
variability of the response variable increased with the variability
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FIGURE 1 | Summary of theoretical responses of an ecosystem, or organism, variable as a function of an environmental predictor. Shown responses are, from narrow

to wide environmental range of the environmental predictor, lineal (A), exponential (B), logarithmic (C), sigmoidal (D), and Gaussian (E). Coloured lines represent the

different types of responses within functions (blue, exponential growth; black, linear; red, logarithmic). Gray horizontal bars show the distribution of the response

variable for each case. Boxes on the right side show the variation of the response variable (e.g., fruit production, color gradient) as a function of the variability of the

predictor (e.g., weather) and the strength of the relationship between both variables for each of the theoretical responses. The variability of the response variable was

estimated using the proportional variability index (PV, see Heath, 2006). Simulations performed with the coefficient of variation are shown in Figure S1. Blue colors

indicate low values of variability (i.e., PV) and red colors indicate high values.
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FIGURE 2 | Histograms of the change in the distribution of fruit production for different slopes and functions [linear (A,B), exponential (C,D), logarithmic (E,F),

sigmoidal (G,H), and Gaussian (I,J)] assuming that fruit production depends on a Gaussian meteorological variable with a mean of 600 and an SD of 150 (CV = 0.25).

Distributions for low slopes—or c parameters for sigmoidal and Gaussian functions—(A,C,E,G,I) and distributions for high slopes (B,D,F,H,J). The code for this

simulation is provided in Supplementary Material, section 1.

Frontiers in Ecology and Evolution | www.frontiersin.org 5 November 2017 | Volume 5 | Article 134

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Fernández-Martínez et al. Weather Alone Can Explain Masting

TABLE 1 | Examples extracted from the literature showing the differences in the CVs and PVs of weather and fruit production for linear and exponential relationships.

Species Fruit CV Fruit PV Meteorological variable Weather CV Weather PV Shape References

Quercus ilex 1.18 Summer water deficit 0.14 EXP 1

Spring torrential rainy days 0.46 EXP

Q. ilex 1.72 0.83 Spring water deficit 0.28 0.28 EXP 2

Q. humilis 1.08 0.64 Spring water deficit 0.28 0.28 EXP 2

Q. kelloggii 0.77 Mean max April T 0.12 EXP 3

Q. canariensis 1.40 Spring water deficit 0.93 EXP 4

Min May T 0.05 LIN

Q. suber 0.42 Spring water deficit 0.93 LIN 4

Q. robur 1.81 0.79 Summer P 0.27 0.26 EXP 5

Autumn T 0.19 0.19 EXP

Winter T 0.35 0.32 EXP

Q. petraea 1.60 0.78 Autumn T 0.18 0.18 EXP 5

Fagus sylvatica 1.78 0.81 Summer P 0.30 0.28 EXP 5

Autumn T 0.23 0.22 EXP

Picea abies 1.18 0.63 Spring P 0.31 0.28 EXP 5

Winter P 0.37 0.33 EXP

Summer T 0.18 0.17 EXP

Pseudotsuga menziesii 1.17 0.70 Spring T 0.11 0.12 EXP 5

Abies alba 0.99 0.64 Winter P 0.36 0.33 EXP 5

All reported relationships were significant at the 0.05 level. Shape indicates the shape of the relationship (LIN, linear; EXP, exponential) and Ref is the reference. Note that the variability

of fruit production was always higher than the variability of the meteorological variables for all exponential relationships. T, temperature; P, precipitation; max, maximum; min, minimum.

The literature search was not exhaustive, because our aim was to present a general overview of the relationship between seed production and weather and not to review all studies.
1Pérez-Ramos et al. (2010), 2Fernández-Martínez et al. (2012), 3Koenig et al. (2016), 4Perez-Ramos et al. (2015), 5Fernández-Martínez et al. (2016).

of the predictor but decreased with increasing c (Figure 1E),
being even lower than that of the predictor for high values
of c. Simulated distributions were Gaussian-like for high
values of c but almost uniform for narrow (low c) Gaussian
relationships, except for a high frequency of low values
(Figures 2I,J).

Overall, our results point out that the claim that weather
cannot be the main proximate driver of fruit production in
mast-seeding species was based on the erroneous assumption
that the relationship between weather and fruit production
must be linear. Most relationships in nature, though, are
theoretically non-linear (Denny, 2017). Operative values for
environmental gradients for life on Earth are optimal, so most
of the relationships between organisms and the environment
should be Gaussian-like or similar (Figure 1E), increasing from
low values of the independent variable until they reach the
optimal value at which the response peaks. The relationship
then becomes negative at high values of the independent
variable. Linear and exponential relationships, such as those
usually reported in masting studies (Table 1), should appear
within the mid-low or the mid-high range of the independent
variable in which the response occurs (Figure 1). To the
best of our knowledge, however, second-order polynomial or
Gaussian-like relationships between any environmental variable
and fruit production have not yet been reported, indicating
that studies with larger ranges of environmental variability
are required to better understand the link between weather
and fruit production. Second-order polynomial or Gaussian-like
relationships are very common in other fields of ecology (e.g.,

species distributions) but are very rare in many others such as
masting.

Observational and experimental studies in ecology are still
very limited in space and time, so determining the complete
range of responses for a dependent variable remains difficult
(see Figure 1). The biosphere has evolved to operate nearest to
its optimal values, which may be another reason for the lack of
more Gaussian-like relationships. In other words, we may not
be able to find Gaussian-like relationships between, for example,
precipitation and fruit production in a focal population,
because when the given species is pushed far away from its
optimum (e.g., by climate), it will be replaced by a different
one that will operate better (or will be more competitive).
This hypothesis could easily be tested experimentally,
but we predict that observational studies will provide little
evidence.

Masting studies should reconsider the role of meteorological
variability as themost likely predictor of ecosystemic functioning,
because weather is the main source of interannual variability to
which plants are subjected. Comprehending the role of weather
as a proximate cause for masting is especially important after
the recent discoveries that resources invested in reproduction are
acquired only during the several months prior to fruit maturation
(Hoch et al., 2013; Ichie et al., 2013; Fernández-Martínez et al.,
2015; Allen et al., 2017). Additionally, multiple meteorological
variables can linearly or non-linearly interact to force trees
to produce or not produce seeds in a given year, because
weather affects both the acquisition of resources by plants,
by conditioning their photosynthetic rates, and pollination
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efficiency (Fernández-Martínez et al., 2012; Koenig et al., 2015;
Pesendorfer et al., 2016; Bogdziewicz et al., 2017a,b). We propose
that rejecting weather as the most parsimonious driver of high
interannual variability of seed production in masting plants was
premature and should be revised. We hypothesize that more
knowledge could be gained from studying plant reproduction if
we combined observational studies with experiments that modify
the amount of interannual meteorological variability to which
plants are subjected, amongst other factors (e.g., pollen dispersal).
These kinds of experiments may more easily identify non-linear
relationships and would certainly provide new insights into the
response of the reproductive behavior of plants to meteorological
variability (Figure 1).
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