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Abstract 

Rationale: We evaluated the applicability of tree ring δ13C and δ18O values in bulk wood – 

instead of the more time and lab-consuming�D-cellulose δ13C and δ18O values, for assessing 

climate and physiological signals across multiple sites and for six tree species along a 

latitudinal gradient (35°97’ N to 45°20’ N) of the northeastern United States. 

Methods: Wood cores (n=4 per tree) were sampled from ten trees per species. Cores were 

cross-dated within and across trees at each site, and for the last 30 years. Seven years, 

including the driest on record, were selected for this study. The δ13C and δ18O values were 

measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between 

materials in δ13C and δ18O values were assessed. Correlation and multiple regression analyses 

were used to evaluate the strength of the climate signal across sites. Finally the relationship 

between δ13C and δ18O values in bulk wood vs α-cellulose was analyzed to assess the 

consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, 

from both materials. 

Results: We found an offset of 1.1‰ and 5.6‰ between bulk and α-cellulose for δ13C and 

δ18O values, respectively, consistent with offset values reported in the literature. Bulk wood 

showed similar or stronger correlations to climate parameters than α-cellulose for the 

investigated sites. In particular, temperature and vapour pressure deficit and SPEI were the 

most visible climate signals recorded in δ13C and δ18O values, respectively. For most of the 

species, there was no relationship between δ13C and δ18O values, regardless of the wood 

material considered.  

Conclusions: α-cellulose extraction was not necessary to detect climate signals in tree rings 

across the four investigated sites. Furthermore, the physiological information inferred from 

the dual isotope approach was similar for most of the species regardless of the material 

considered.  

Key words: tree rings, stable isotopes, bulk wood, cellulose, mesic forests 
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Introduction 

The use of stable carbon (δ13C values) and oxygen (δ18O values) isotope compositions in 

tree rings has increased over the last two decades, contributing substantially to improving our 

understanding of how tree species worldwide are responding to climate changes [1, 2, 3, 4, 5, 6]. 

Yet despite their prevalence as climatic or ecophysiological proxies, considerable uncertainty 

remains regarding which wood component of tree rings is best suited for stable isotope 

analysis [1, 7, 8, 9, 10, 11, 12, 13]. 

Several studies investigated the signal coherence between bulk wood and cellulose δ13C 

and δ18O values and climate parameters, with mixed results. Some studies reported that bulk 

wood yielded similar or stronger relationships with climate than cellulose for δ13C [14, 15, 16, 17] 

and δ18O [18] values, or both [19, 20], while others demonstrated a diluted climate signal in bulk 

wood for both δ13C and δ18O values [21, 22, 23]. Many of these studies are limited in the number 

of samples, species and sites tested, thus restricting the generality of their conclusions. 

Exceptions to this include a global study by Barbour et al[18], which included δ18O values, and 

a multi-species analysis at two sites in Southern Germany by Weigt et a.[20] that considered 

both δ13C and δ18O values. Both studies concluded that cellulose extraction was an 

unnecessary step for detecting climate signals in tree ring-isotope investigations.  

Tree-ring δ13C and δ18O values have been extensively used to assess long-term changes in 

tree water-use efficiency (WUE), i.e., the ratio between CO2 assimilation (A) and stomatal 

conductance (gs), in response to climatic and anthropogenic factors (e.g., elevated CO2, 

nitrogen deposition) [24, 25, 26, 27, 28, 29, 30]. This approach is based on the well-established theory 

for the physiology of C3 photosynthesis, linking bulk leaf C isotope discrimination, Δ13C, and 

the ratio of the CO2 in the intercellular spaces, ci, and that in the atmosphere, ca (i.e., ci/ca) [31]. 

However, many studies used cellulose δ13C values as the basis for their calculations, except 

where efforts have been made to follow the original model [31] by correcting for the offset in 
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isotopic composition between bulk tissue and cellulose [4, 10, 32]. In addition to δ13C values, the 

measure of δ18O values offers insight into the role of gs in the leaf ci/ca ratio and by extension, 

the WUE [33, 34, 35]. The δ18O value in plant organic matter reflects that of the leaf water where 

it was formed [36], which, in turn, is affected by the δ18O value of the source water [37], 

including meteoric, soil and atmospheric water, and isotopic fractionations occurring during 

transpiration, as determined primarily by gs [12, 35, 38, 39, 40, 41, 42]. Since δ13C and δ18O values 

share their dependence on gs, a significant relationship between the two implies that 

variations in the ci/ca ratio and WUE are affected by changes in gs
 [33] (e.g., under a gradient 

of moisture conditions or changes in vapour pressure deficit). In contrast, variations in A are 

only reflected in changes in Δ13C and hence in the δ13C value, which is reflected in the 

absence of a relationship between the C and O isotope ratios. Whether the relationship 

between δ13C and δ18O values is consistent regardless of the plant material considered (i.e., 

bulk wood or cellulose) remains an unresolved question. Answering this question can be 

crucial to optimizing the use of the dual isotope approach [34] for advancing our understanding 

of tree physiological responses to climate variability.  

This study aims to evaluate whether there are differences between bulk wood and α-

cellulose in the climate and physiological information (e.g., changes in A and gs) derived 

from the combination of δ13C and δ18O values across different tree species at four sites along 

a latitudinal gradient in the northeastern USA. Our specific goals were: 1) to document the 

offset between bulk wood and α-cellulose for δ13C and δ18O values across multiple species 

and sites, 2) to evaluate whether both materials reflect similar climate signals. For δ18O 

values, we also tested whether the δ18O value of source water (i.e., soil water) is recorded in 

both bulk wood and α-cellulose, and finally 3) to investigate whether the strength and 

directionality of the relationship between δ13C and δ18O values, which is often used to infer 

changes in A and gs, remained similar between bulk wood and α-cellulose.  
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Materials and Methods 

Study sites and sampling methods 

Four forests were considered in this study, which included some of the important tree 

species in the northeastern USA (Table 1). Sites included mesic mature forests within two 

main climate zones, according to the Koppen-Geiger classification [43]: Cfa - Warm temperate 

climate, fully humid with hot summer (Duke Forest in North Carolina; Silas Little in New 

Jersey) and Dfb - Snow climate, fully humid with warm summer (Harvard Forest in 

Massachusetts; Howland in Maine). Detailed description of the sites can be found in 

Guerrieri et al. [44] Along the latitudinal gradient (35°97’ N to 45°20’ N) and over the study 

years (Figure 1), the mean annual temperature (Ta) ranged from 15 oC to 6 oC, while the mean 

annual precipitation (Pa) showed similar values (Table 1). For each site, ten trees from the 

two-dominant species were selected, and four wood cores were sampled from each tree. The 

tree species included three conifers: hemlock (Tsuga canadensis L. Carr.), red spruce (Picea 

rubens Sarg.), shortleaf pine (Pinus echinata Mill.); two ring-porous broadleaved species: red 

oak (Quercus rubra L.), chestnut oak (Quercus prinus L.); and one semi-ring-porous species: 

hickory (Carya tomentosa L.) species. The Tsuga canadensis was a common species at two 

sites, Harvard Forest and Howland. 

Sample preparation and stable isotope measurements 

The wood cores were dated from the bark to the pith and ring width measurements were 

carried out with a sliding scale micrometer (Velmex, Bloomfield, NY, USA) using 

MeasureJ2X software (VoorTech Consulting, Holderness, NH, USA). Ring width series were 

crossdated first within each tree and then among trees using COFECHA [45]. At each site and 

for each species, the five cross-dated trees with the highest correlations with the master 

chronology were selected for isotopic analyses and two of them were considered for the 
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current study. The average age of the trees was 80-100 years. The years identified for the 

present study are within the last two decades. This prevent noise related to the juvenile effect 

and changes in the lignin:cellulose ratio at the heartwood:sapwood boundary when 

interpreting the isotopic signal. 

Each annual ring was separated and then cut in smaller pieces by using a razor blade. For 

the conifer and semi-ring-porous species, the whole annual ring was separated, while in the 

case of deciduous species we subsampled only the late wood. We selected 7 years (Table 1, 

Figure 1) out of the last 30 years, which included a dry year, as well as years with no 

significant changes in moisture conditions. In particular, for the Harvard Forest and Howland 

sites, target years were identified by examining the difference between each year’s growing 

season Pa and vapour pressure deficit, VPD, and the annual mean, calculated from available 

site-level climate data (1992-2006 for Harvard Forest and 1996-2004 for Howland). The year 

showing the highest difference from the mean VPD and mean Pa and negative values for the 

standard precipitation-evaporation index, SPEI (Figure S1, supporting information) was 

considered the ‘dry year’. For the other two sites (i.e., Duke Forest and Silas Little), the dry 

years were identified based on the site description provided in published papers [46, 47, 48]. For 

each of the selected rings, 30% of the wood material was kept as a bulk, while 70% of it was 

used for α-cellulose extraction, according to the procedure described by [9, 49].  

An amount of 0.3-0.4 mg of bulk wood and α-cellulose samples for each investigated 

year was weighed in tin capsules, and converted to CO2 with an elemental analyzer (ECS 

4010, Costech Analytical, Valencia, CA, USA) coupled to a continuous flow isotope ratio 

mass spectrometer (Delta PlusXP, ThermoFinnigan, Bremen, Germany) to determine δ13C 

and %C values. An additional 0.3 and 0.5 mg of each sample was weighed in silver capsules, 

converted to CO with a pyrolysis elemental analyzer (TC/EA, ThermoFinnigan) and analyzed 

for δ18O values with a continuous flow isotope ratio mass spectrometer (Delta PlusXP, 
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ThermoFinnigan). Carbon and oxygen isotope ratios were expressed in per mil (‰) relative 

to the V-PDB and V-SMOW international standards, respectively. All isotope analyses were 

carried out at the Stable Isotope Core Laboratory (School of Biological Sciences, Washington 

State University, Pullman, WA, USA). The standard deviations for internal standards were 

less than 0.2 ‰ and 0.4 ‰ for δ13C and δ18O values, respectively.  

 
Modelling δ18O values of source water 

We estimated the δ18O values in soil water (δ18Osw), based on direct measurements of the 

δ18Osw values in the first 10-15 cm depth, sampled at monthly resolution in 2005 and 2006 at 

Harvard Forest (Dawson T and Munger W, personal communication), which reflects the 

isotopic signature of precipitation, modified by evaporation processes [18, 50]. For modelling 

δ18Osw values we used a regression analyses with Pa, Ta, and both together as independent 

predictors. This approach is similar to the one reported by Barbour et al [18], which is based 

on results presented by IAEA[51], except that we did not include the elevation (m asl) term in 

the analysis as it does not change across the investigated sites. The latitudinal effect on 

precipitation δ18O values [52], which is then reflected in the δ18Osw values, is partially 

accounted for by Ta in the regression model. Selection of the best model was based on the 

Adjusted R2, but also on the Akaike information criterion, values. The two models 

containing only Ta, and both Pa, and Ta as regressors had similar R2; however, we chose the 

model with Ta only, because it showed lower AIC values (Table S1, supporting information). 

The modelled G18Osw values did not change over time at Harvard and Duke forests, while the 

values significantly increased at Silas Little (slope = 0.03 ‰, R2= 0.19, p<0.05) and 

decreased (slope= -0.04 ‰, R2= 0.18, p<0.05) at Howland (data not shown). 
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Statistical analyses 

The normality and variance heterogeneity of isotopic data were assessed with the Shapiro 

and Levene tests, respectively. An independent sample t-test was performed to detect 

significant differences between bulk and α-cellulose for δ13C and δ18O values across sites and 

tree species. The non-parametric Kruskal-Wallis test was used when data did not conform to 

a normal distribution (i.e., in the case of %C in bulk wood).  

Partial correlation analyses and the Pearson product-moment correlation coefficient were 

used to assess correlations between δ13C and δ18O values in both bulk and α-cellulose vs 

environmental parameters: temperature (T), vapour pressure deficit (VPD), and standardized 

precipitation evaporation index (SPEI) for the month of August with 3 months’ lag. 

Correlations were performed by considering i) mean annual value for T and VPD (Ta, VPDa) 

and ii) growing season mean (grs) from May to August (Tgrs and VPDgrs). SPEI values were 

obtained from the global database available online (http://sac.csic.es/spei/).  

Linear mixed effects models, LME (R package nlme)[53] with the individual trees per 

species as random variable (7 years as replicates each) were applied to assess the relationship 

between bulk wood and α-cellulose for both δ18O and δ13C values, to account for variation 

among species and sites of the model intercept.  We started with the generalized linear model 

(GLM), and then introduced the random factors:  ‘Site’ and ‘Species nested in Site’. The 

model with the minimum AIC values was considered when comparing the GLM and LME 

models, and the LME models, in this latter case by performing an ANOVA test (Table S2, 

supporting information).  For the best model, we also calculated the conditional and marginal 

coefficient of determination (package MuMIn) [54], which indicate the variance explained by 

both fixed and random factors and only the fixed factor, respectively.  

Finally, multiple regression analyses were used to assess which of the climate variables 

accounted for most of the cross-site variation in tree-ring δ13C and δ18O values and to test 

http://sac.csic.es/spei/
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whether bulk wood or α-cellulose showed the strongest correlations with climate. Sites and 

tree id per species were included altogether in the analyses and we ran separate models for 

annual and growing season T and VPD.  The variance inflation factor (VIF) was checked to 

ensure that all the predictors in the model had a VIF less than 4, which indicates a minimal 

multi-collinearity. Because of the collinearity between δ sw values and Ta/Tgrs, we only 

included the isotopic composition of source water (δ sw) in the model for δ

bulk wood and α-cellulose. We used R project statistical computing [55] for all the statistical 

analyses. 

 

Results 

δ13C, δ18O and %C values measured in bulk and α-cellulose 

In the following sections, the δ13C and δ18O values for α-cellulose will have the subscript 

c (δ13Cc and δ18Oc) and the bulk wood will have the subscript b (δ13Cb and δ18Ob). The 

Harvard and Howland forests are referred to as ‘high latitude sites’ and the Silas Little and 

Duke forests as ‘low latitude sites’.  

Differences between bulk and α-cellulose were clearer for δ18O than for δ13C values, 

which showed a higher variability between species and tree ids (Figure 1). Overall, α-

cellulose showed higher δ13C and δ18O values than bulk wood (Table 2), by an average of 

1.1‰ and 5.6‰, respectively. These results were consistent when we stratified by tree 

species, with the exception of Quercus rubra at Harvard Forest, which did not show 

significant differences between bulk and α-cellulose for δ13C values (Table 2). For both 

materials, high latitude sites showed significantly less negative δ13C values (δ13Cb= -23.4‰, 

δ13Cc = -22.7‰) than the lower latitude sites (δ13Cb=   -24.7‰, δ13Cc= -23.2‰) (Figures 2a 

and b). The measured δ18O values for high latitude sites were lower in both bulk (δ18Ob = 
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22.2‰) and α-cellulose (δ18Oc= 28.1‰) than for sites at southernmost latitude (δ18Ob = 

24.8‰, δ18Oc = 30‰) (Figures 2c and d). 

In the case of bulk wood, there was a significant difference in %C between sites at higher 

latitude than those at the lower latitude (Krustal-Wallis χ2 = 43.77, p< 0.001). The difference 

between bulk wood and α-cellulose for %C was higher for species at the northern than the 

southern latitude sites (Figure S2, supporting information), with mean values ranging from 

13.0 ± 6.0 % to 5.4± 1.9 %, respectively.  

We found a significant and positive relationship between bulk and α-cellulose for both 

carbon and oxygen isotope ratios (Figures 3a and b) and for all sites, with a slope of 0.6 and 

0.8 for δ13C and δ18O values, respectively. However, when considering a linear-mixed effect 

model, the relationship between materials for both carbon and oxygen isotope ratios was 

improved and most of the variance was explained by the random factor, i.e., Site and Species 

(Table 3).  

 

Correlations and regressions between δ13C and δ values and site parameters  

The δ13C and δ18O values measured in both bulk wood and α-cellulose showed significant 

correlations with climate variables (Ta, VPDa, Tgrs), with higher correlation coefficients 

obtained for bulk wood (Table 4). For conifer species, correlations with climate variables and 

δ13C values were only significant in the bulk wood, while only α-cellulose showed significant 

correlations in the case of broadleaves (data not shown). Both conifer and broadleaf species 

had significant correlations between climate parameters and δ18O values in both bulk wood 

and α-cellulose (data not shown). Furthermore, both materials showed significant correlations 

between δ18O and δ18Osw values, with slightly higher correlation coefficients in the case of the 

bulk wood. 
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Temperature was the only parameter with a significant and negative relationship with 

δ13C values; this trend was consistent for both bulk wood and α-cellulose (Table 5). By 

contrast, the bulk δ18O values recorded the signal of the oxygen isotopic composition of the 

source water,  δ18Osw, which was lost when we considered the δ18O values in α-cellulose. 

However, we found a significant relationship between VPD and SPEI and δ18O values in both 

materials (Table 5). 

 

Relationship between G13C and G18O values in bulk wood and α-cellulose 

The differences across sites for the δ18O values of source water or atmospheric water 

vapour may affect the interpretation of the δ18O values measured in tree rings, when all 

species (and sites) are considered together. We therefore explored relationships between the 

stable carbon and oxygen isotopic compositions at the species level within each site (Figure 

4). When considering the bulk wood, we did not find a significant relationship between δ13C 

and δ18O values for any of the investigated species. Similarly, for α-cellulose, most of the 

species did not show a significant relationship between the C and O isotope ratios, with two 

notable exceptions: Quercus rubra at Harvard Forest (R2= 0.67, slope=1.61, p<0.001) and 

Tsuga canadensis at Howland (R2=0.53, slope= 1.10, p<0.01). 

 

Discussion 

Offset between bulk wood and α-cellulose for δ13C and δ18O and %C values 

Significant differences were found in the isotopic compositions of bulk wood and α-

cellulose, with higher δ13C and δ18O values for α-cellulose. The offset of 1.1‰ and 5.6‰ 

between bulk and α-cellulose for C and O isotope ratios, respectively, is within the range of 

values reported in previous studies for δ13C  [13, 14, 15, 16, 32, 56, 57, 58, 59, 60, 61, 62] and δ18O values 

[16, 18, 62, 63]. 
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Extracted α-cellulose isolated from different tree species had a relative %C within the 

reported range of 41-45% from the literature and it is close to the theoretical value of 44.45% 

[64]. This suggests that the α-cellulose quality was high. Interestingly, the difference between 

bulk wood and α-cellulose for %C was higher in the case of species at the northern sites than 

those at the more southern sites. This could be attributed to a higher proportion of extractives 

being removed at the northern sites, with more conifer species than the other two sites (Table 

1). However, Harlow et al[10] reported higher %C for the extractive free wood than for bulk 

wood for over 40 species in the USA, which included both coniferous and deciduous species. 

The observed differences between sites at different latitudes for %C in bulk wood could 

indicate that species at the northern sites have a higher lignin:cellulose ratio than those at the 

southern sites. Indeed, lignin content is the greatest source of the difference in δ13C values 

between total wood and cellulose [58]. Higher lignin content, which implies a higher C content 

[65], was found for softwoods than for hardwoods [66]. Our results for bulk wood agree with 

previous studies, where significant differences among species for C content in wood were 

observed [66, 67].  

 

Comparing bulk and D-cellulose for the climate signal detected from tree-ring G13C and 

G18O values 

Tree-ring cellulose has often been considered as the best material for assessing the 

climatic signal recorded in tree ring C and O isotope ratios because it is a relatively pure, with 

consistent structure, known biosynthetic pathway, and low mobility between annual rings, so 

that its isotopic composition and interpretation are considered more predictable than those of 

bulk wood  [1,3,12,68]. Overall, we found that across the multiple species at the four sites, 

climate signals were similarly or more strongly recorded in bulk wood than in α-cellulose, 

particularly for δ13C values (Tables 4 and 5). This suggests that cellulose extraction may be 
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unnecessary when the goal is to capture a regional scale climate signal on a short-time 

window. This agrees with previous studies, which found that bulk wood provides the same 

climate signal as cellulose for δ13C values [14, 16, 20, 69]. More contrasting results have been 

reported for δ18O values as to whether bulk wood [18, 63, 70] or cellulose [14, 16, 41, 71] shows 

stronger or similar [72] correlations with climate.  

The combination of tree-ring δ13C and δ18O values provided complementary climate 

information. Tree-ring δ13C values were sensitive to T, while δ18O values to VPD and SPEI, 

consistent with previous studies [3,6,16, 20, 70]. The positive relationship between SPEI and δ18O 

values observed in this study is contrary to that expected, as lower SPEI is typically 

associated with greater moisture stress and, consequently, a reduction in leaf transpiration. 

This would presumably translate in higher leaf water 18O enrichment due to a lower mix 

between unenriched water from the xylem (which has the same isotopic composition as the 

soil water) and 18O-enriched water at the leaf evaporative sites [38], which is then partially 

reflected in the δ18O values measured in tree rings [36]. However, these assumptions may not 

apply to mesic forests occurring along a latitudinal gradient mostly driven by changes in T, 

rather than by moisture conditions. The relationship between δ18O values and climate 

suggests that VPD might constrain transpiration more than soil moisture for mesic forests [73]. 

The stronger relationship between δ13C and δ18O values and site-parameters in the case of 

the bulk wood could be partially explained by the difference across species along the 

investigated gradient in the lignin:cellulose ratio [8] and its link to xylem cell development 

during radial growth. Tree-ring formation consists of two main cellular processes: new xylem 

cell production and enlargement (radial growth) and deposition of cellulose, hemicellulose 

and at last lignin, to build the secondary walls (cell wall thickening) [74, 75]. Lignin deposition 

is a high C demand process extending beyond tree radial growth [76] and cellulose deposition, 

and it has been shown to be highly sensitive to temperature [74,77,78,79]. Preserving lignin may 



This article is protected by copyright. All rights reserved. 

increase the robustness of the temperature signal, the detection of a temperature gradient and 

its influence on physiological processes (e.g., investment of current year photosynthates in 

lignin deposition) toward the late growing season, if the bulk wood δ13C value is considered 

when investigating species across regions. Similar patterns for δ18O values were observed in 

the meta-analysis by Barbour et al.[18] However, the relationship between whole wood 

(including lignin) and cellulose is subject to change over long time periods (e.g. from changes 

in climate, CO2 concentration, wood composition), such that reconstructing climate from tree 

rings spanning centuries in paleoclimatic studies needs to be done cautiously [17]. 

Finally, another advantage of using bulk wood identified in our study is that it carries a 

stronger fingerprint of the δ18Osw values than α-cellulose (Tables 4 and 5) for tree-ring G18O 

values. This finding indicates that the isotopic signature of the source water is an important 

predictor of tree-ring δ18O values in the absence of soil water limitation. Barbour et al[18] 

showed that for Quercus and Pinus ssp., the δ18O values in lignin reflected not only the 

isotopic signal of the molecular oxygen during lignin synthesis, but also the leaf and source 

water δ18O values.  

Do bulk wood and α-cellulose carry similar physiological information to that derived 

from the dual isotope approach?  

While the most common use of the dual isotope approach [34] is to look at different 

combinations of shifts in δ13C vs δ18O values to assess changes of A and gs among species in 

response to climate [80,81,82,83,84] or to treatments [6,30,85], a number of studies looked at the 

relationship between δ13C and δ18O values measured in tree rings [33,80,81].  

In this study, we were particularly interested in assessing whether the directionality and 

strength of the relationship between δ13C and δ18O values were similar, regardless of the 

material considered. For the two species at Silas Little and Duke Forest, and one species at 
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Harvard Forest (Tsuga canadensis) and Howland (Picea rubens), no significant relationship 

between δ13C and δ18O values was observed for both materials (Figure 4), suggesting that 

interpretation of the results, in terms of changes in A and/or gs, would not be affected by the 

material used for analyses. Conversely, for Quercus rubra at Harvard Forest and Tsuga 

canadensis at Howland, significant and positive relationships were observed between δ13C 

and δ18O values for α-cellulose but not for bulk wood. In this case, the interpretation of the 

major controls on changes in ci/ca and WUE based on the dual isotope approach would differ 

depending on the used plant material. This diverging result could be partially related to the 

seasonal changes in δ18O values in precipitation and differences in water depth accessed by 

trees, which both will determine the isotopic signature of soil water, and by extension the 

tree-ring δ18O values [86]. At Howland, we did find a significant change over the investigated 

years in the modelled δ18Osw values, which might help to explain the difference between the 

two materials for the relationship between δ13C and δ18O values. However, this was not the 

case for δ18Osw values at Harvard Forest, which did not show significant changes over time.  

We acknowledge that the dual isotope approach should be used with caution, especially 

when interpreting qualitative changes in the integrated gs from tree-ring G18O values [87].  

However, this approach could be improved by using site-specific conditions [87] and also tree-

specific physiological and functional traits [44, 87].  

Conclusion 

Our study offers useful insight for the future directions of dendroisotopic research seeking 

to understand 

under climate change across regional networks of multiple sites and species. 

We found that extraction of α-cellulose can be avoided when aiming at detecting the climate 
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signal across the four investigated sites and species along a latitudinal gradient of mesic 

forests northeastern USA. Our results further suggest that removing lignin may reduce the 

detection of the climate signal toward the end of the growing season for both δ13C and δ18O 

values and for the δ18O values of source water in the case of tree-ring δ18O values. Moreover, 

considering both δ13C and δ18O values allows complementary climate information to be 

gained, with T alone and VPD and SPEI combined, serving as the best predictors for δ13C 

and δ18O values, respectively. Therefore, measuring both C and O isotope ratios contributes 

to improving the interpretation of plant physiology-climate interactions. Finally, α-cellulose 

extraction can be reliably avoided for sites where the physiological information using the 

dual isotope approach was similar for all species regardless of the material considered.  

We acknowledge that our results rely on a limited number of trees and might require 

confirmation when longer time series are considered. Nevertheless, they suggest that it could 

be good practice to conduct a site- and species-specific preliminary analysis to determine 

whether α-cellulose extraction is required before relying solely on bulk wood for 

dendroisotopic studies.  
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Table 1 Forest sites, tree species and years considered in the study. The dry years are indicated in bold. Ta, Pa, VPDa indicate the annual mean of 
temperature, precipitation and vapor pressure deficit, respectively, while Tgrs, Pgrs and VPDgrs the mean values of temperature, precipitation and 
vapor pressure deficit over the growing season, grs (May-August), calculated for the years considered in this study. Lat and Long indicate 
Latitude and Longitude, respectively.  
 

Site Lat 
°N 

Long 
°W 

Sampled 
species 

Years included in this study Ta  
(°C) 

Pa 
(mm) 

VPDa  
(kPa) 

Tgrs  
(°C) 

Pgrs  
(mm) 

VPDgrs  
(kPa) 

           

Duke  
Forest 

35°97’ 79°10’ Carya tomentosa L.  
(hickory) 

2000,2001,2002,2003,2004,2005,2006 15.13 1036 0.57 22.24 487 0.68 

Harvard  
Forest 

42°54’ 72°17’ Quercus rubra L. 
(red oak) 

 
1997,1998,1999,2000,2001,2002,2003 

7.85 1144 0.35 18.92 359 0.53 

Tsuga canadensis L. 
Carr. (hemlock) 

      

Howland  
 

45°20’ 68°74’ Picea rubens Sarg.  
(red spruce) 

 
1996,1997,1998,1999, 2003,2004,2005 

6.64 858 0.45 16.65 443 0.68 

Tsuga canadensis L. 
Carr. (hemlock) 

      

Silas 
Little  
 

39°91’ 74°60’ Quercus prinus L. 
(chestnut oak) 

2004,2005, 2006,2007, 2010,2011,2012 12.71 1123 0.53 21.49 476 0.78 

Pinus echinata Mill. 
(shortleaf pine) 

2003, 2004,2005, 2006,2009,2010,2011       
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Table 2. Results from the paired sample t-test assessing differences between bulk and α-cellulose for the G13C and G18O values measured for the 
years reported in Figure 1 and Table 1. The analyses were carried out by i) considering all species together (All Species), and ii) keeping 
separated each of the tree species included in the study. (*), (**) and (***) indicate p< 0.05, p< 0.01 and p< 0.001, respectively.  
 
Site Species G13C (‰) G18O (‰) 
  Bulk wood α-cellulose t-value p bulk α-cellulose t-value p 
          

All sites All species -23.9 -22.9 -5.97 *** 25.2 29.0 -20.31 *** 
Duke Forest Carya tomentosa -24.5 -23.3 -4.64 *** 24.1 28.4 -11.34 *** 
Harvard 
Forest 

Quercus rubra -24.2 -24.1 -0.42 n.s. 25.2 29.0 -12.92 *** 
Tsuga canadensis -22.7 -21.8 -3.30 ** 21.9 28.1 -13.21 *** 

Howland Tsuga canadensis -24.5 -23.0 -5.38 *** 22.7 29.2 -17.30 *** 
Picea rubens -22.3 -21.4 -2.53 * 22.4 28.0 -15.78 *** 

Silas Little Quercus prinus -25.0 -23.7 -4.13 *** 25.2 30.1 -11.54 *** 
Pinus echinata -24.5 -22.6 -4.05 *** 25.2 31.4 -21.23 *** 
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Table 3. Descriptive statistic of the Linear mixed effects model. Fixed factor is the G13C and G18O values measured in D-cellulose, while the 
random factor is Species nested in the Site (i.e., 1|Site/Species) for G13C values, and Site only (i.e., 1|Site) for G18O values. The selection of the 
model was carried out as described main text and based on results shown in the Table S2 (supporting information). Marginal R2 and conditional 
R2 indicate the *** 
indicates p< 0.001 
 

Equation Fixed factor Marginal R2 Conditional R2 

 Estimate  
(E) 

Standard  
Error 

t-value p   

G13Cb = D + E x G13Cc + (1|Site/Species) + H 0.41 0.09 4.46 *** 0.19 0.56 

 

G18Ob = D + E x G18Oc + (1|Site) + H 0.37 0.06 5.58 *** 0.22 0.69 
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Table 4. Results from the Partial correlation analyses to explore correlation between G13C and G18O values in bulk and α-cellulose and 
environmental parameters: mean annual and growing season temperature (Ta and Tgrs, respectively), mean annual and growing season vapor 
pressure deficit (VPDa and VPDgrs, respectively), SPEI for August with 3 months’ lag, modeled soil water δ18O values (δ18Osw) as described in 
the main text. Analyses were performed by considering all species and sites together. Pearson coefficients are reported and (*),(**) and (***) 
indicate p< 0.05, p< 0.01 and p< 0.001, respectively. 
 
 

Isotopic 
composition 

Material Parameters 
 

SPEI Ta VPDa Tgrs VPDgrs δ18Osw 
�

G13C 
Bulk -0.05 -0.43 

(***) 
-0.34 
(**) 

-0.38 
(***) 

-0.20  

α-cell -0.10 -0.23 
(*) 

-0.05 
 

-0.23 
(*) 

0.08  

 

�
G18O 

Bulk -0.17 0.70 
(***) 

0.73 
(***) 

0.61 
(***) 

0.64 
 

0.70 
(***) 

α-cell -0.13 0.35 
(**) 

0.55 
(***) 

0.29 
(**) 

0.66 
(***) 

0.35 
(**) 
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Table 5. Results from the multiple regression analyses to assess the relationship between G13C and G18O values measured in bulk wood (δ13Cb, 
δ18Ob) and D-cellulose (δ13Cc, δ18Oc) for all sites and environmental parameters to test for regional climate patterns along the site latitudinal 
gradient. Climate parameters included mean annual and growing season temperature (Ta and Tgrs, respectively), mean annual and growing season 
vapor pressure deficit (VPDa and VPDgrs, respectively), SPEI for August with 3 months’ lag, modeled soil water δ18O values (δ18Osw) as 
described in the main text. Because of the collinearity between Ta/Tgrs and δ18Osw values, we included only the latter in the linear models for δ18O 

values. We report only the adjusted R2 and the coefficient, β, when t-test showed β values were significantly different from zero.  (*), (**) and 
(***) indicate p< 0.05, p< 0.01 and p< 0.001, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model R2                β t-value p 
     

G13Cb ~ Ta +VPDa + SPEI 0.23 Ta -0.15 -2.74 ** 
G13Cb ~ Tgrs + VPDgrs +  SPEI 0.18 Tgrs -0.23 -3.66 *** 
G13Cc ~  Ta + VPDa +  SPEI 0.09 Ta -0.18 -3.01 ** 
G13Cc~  Tgrs+  VPDgrs +  SPEI 0.08 Tgrs -0.19 -3.003 ** 

 

G18Ob ~  VPDa + G18Osw +  SPEI� 0.58 VPDa 

G18Osw 
8.96 
0.29 

4.48 
2.48 

*** 
* 

G18Ob ~ VPDgrs + G18Osw +  SPEI� 0.66 VPDgrs 
      SPEI 

G18Osw 

5.94 
0.32 
0.51 

6.55 
2.14 
6.86 

*** 
* 
** 

G18Oc ~ VPDa + G18Osw +  SPEI 0.35 VPDa 13.005 5.08 *** 
G18Oc ~ VPDgrs + G18Osw +  SPEI 0.50 VPDgrs 

SPEI 

8.44 
0.42 

7.35 
2.23 

*** 
* 
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Figure 1 δ13C and δ18O values measured for each species (n=2 trees per species) across the 

seven selected years of study. Sites in the panels are arranged according to their latitude 

(from 45o 20′ to 35o 97′N). The dry years for each site: 1999 for Howland, 1997 for Harvard 

Forest, 2005 and 2010 for Silas Little and 2002 and 2005 for Duke Forest.  
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Figure 2.  Boxplots showing δ13C and δ18O values measured in bulk (δ13Cb and δ18Ob) and α-

cellulose (δ13Cc and δ18Oc) for the two dominant species at the four investigated AmeriFlux 

sites. Sites in the x-axis are arranged according to their latitude (from 45o 20′ to 35o 97′N). 
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Figure 3.  Relationship between bulk wood and α-cellulose for a) δ13C and b) δ18O values.  
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Figure 4. Relationship between δ13C and δ18O values measured in bulk (δ13Cb and δ18Ob) and 

α-cellulose (δ13Cc and δ18Oc) for tree species considered at each site. Relationship was 

significant only in the case of Quercus rubra at Harvard Forest (slope= 1.61, R2= 0.67, 

p<0.01) and Tsuga canadensis at Howland (slope=1.10, R2=0.53, p<0.01), and when α-

cellulose was considered.  

 


