
On primitive constant dimension codes and a geometrical

sunflower bound

R.D. Barrolleta∗, L. Storme†, E. Suárez-Canedo∗, and P. Vandendriessche†

Abstract

In this paper we study subspace codes with constant intersection dimension (SCIDs).
We investigate the largest possible dimension spanned by such a code that can yield non-
sunflower codes, and classify the examples attaining equality in that bound as one of two
infinite families. We also construct a new infinite family of primitive SCIDs.
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1 Introduction

A (k,m)-SCID is a set of k-dimensional subspaces in a vector space V , pairwise intersecting in
an m-dimensional subspace (SCID: Subspaces with Constant Intersection Dimension). This
term was coined in [2]. The (k, 0)-SCIDs in an `-dimensional vector space are called partial
k-spreads and are a classic object in finite geometry (so for V defined over a finite field), see
e.g. [5, 6].

A (k,m)-SCID S in the vector space V is called primitive ([2]) if it satisfies the following
properties:

1. 〈S〉 = V ;

2. no nonzero vector is contained in all of the elements of S (or ∩π∈Sπ = {0});

3. each element π of S is spanned by {π ∩ σ|σ ∈ S \ {π}};

4. dim(V ) ≥ 2k.

An easy way to construct a (k,m)-SCID in the vector space V is by fixing an m-space V ′

and by considering k-spaces through V ′ that have no point in common outside of V ′. Such a
(k,m)-SCID is called an m-sunflower. Section 2 is devoted to SCIDs that are sunflowers.
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It is easy to see that an (n, n− 1)-SCID is an (n− 1)-sunflower or a set of n-spaces in a
fixed (n+ 1)-space. In [2], the (n, n− 2)-SCIDs are studied, following the work of [1] wherein
(2, 0)-SCIDs were studied. Further constructions of SCIDs were presented in [3]. Section 3
contains new constructions of primitive SCIDs.

Recently, SCIDs gained attention as they are equidistant constant dimension codes. The
influential paper [4] marked the beginning of the theory of random network coding which
was developed for transmission of information in networks with a number of sources, inner
nodes and sinks, with a varying topology, typically a network where users come and go.
Unlike classical coding theory where vectors are sent as codewords, in random network coding
vector subspaces are used as codewords. These codes are therefore called subspace codes.
The distance d(U, V ) between two subspaces U and V is commonly defined as d(U, V ) =
dim(U) + dim(V ) − 2 dim(U ∩ V ). The subspace codes whose elements all have the same
dimension are called constant dimension codes and are the most studied subspace codes
as they are q-analogues of the classical codes. SCIDs correspond to equidistant constant
dimension codes, constant dimension codes whose pairwise distances of codewords are all
equal, the q-analogues of classical equidistant codes.

2 A bound for the sunflower property

In [3], the following theorem is proved (stated as a result on subspace codes).

Theorem 2.1 ([3, Theorem 1]). If a (k, t)-SCID in a vector space V over the field Fq has

more than
(
qk−qt
q−1

)2
+ qk−qt

q−1 + 1 elements, then it is a sunflower.

So, the largest SCIDs are sunflowers. However, from a random network coding point of
view the only interesting sunflowers are the 0-sunflowers. In other terms, Theorem 2.1 sets an
upper bound on the size of the ‘interesting’ subspace codes. Note that a k-spread (a maximal
partial spread) in the vector space Fnq , with k | n, contains qn−1

qk−1
elements.

In this section we look at SCIDs that span a large subspace. We will prove that again
sunflowers are the ‘largest’ SCIDs. Of course, not all t-sunflowers with the same number of
elements span a subspace of the same dimension. A sunflower of maximal dimension is a
t-sunflower such that any element π meets the subspace generated by all the other elements
in precisely the common t-space. It is easy to see that this name is well-chosen.

Theorem 2.2. Let S be a (k, k−t)-SCID in a vector space V , with |S| ≥ 3 and 3 ≤ t ≤ k−1.
If dim〈S〉 ≥ k + (t− 1)(n− 1) + 2, then S is a (k − t)-sunflower.

Proof. We assume that S is not a sunflower. We denote S = {π1, . . . , πn} and we consider
the differences δi = dim〈π1, . . . , πi〉 − dim〈π1, . . . , πi−1〉 for i = 1, . . . , n; so, δ1 = k, δ2 = t, ...
(we considered the span of the empty set as the empty subspace). We can sort the spaces in
S in such a way that the sequence (δ1, . . . , δn) is nonincreasing; without loss of generality we
can say that π1, . . . , πn are sorted such that this property is met. Note that such an ordering
is not necessarily unique.

Let m be the largest index for which δm = t. Then, the spaces π1, . . . , πm form a (k − t)-
sunflower of maximal dimension. Obviously, m ≥ 2. Denote the common (k − t)-space of
π1, . . . , πm by V ′. By the assumption S is not a sunflower, so we can find a subspace πr ∈ S
not containing V ′. We denote k − t − dim(πr ∩ V ′) by ε; it is immediate that ε ≥ 1. In the
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quotient vector space Π = 〈S〉/V ′, we then see that dimΠ πr = t+ε and that dimΠ(πr∩πi) = ε
for 1 ≤ i ≤ m. Moreover, the subspaces (πr ∩ πi)/V ′ in Π are linearly independent. Hence,

δr ≤ t+ ε−m · ε ≤ t−m+ 1 . (1)

Since (δ1, . . . , δn) is nonincreasing, we find that

dim〈S〉 =
n∑
i=1

δi

≤ k + (m− 1)t+ (r −m− 1)(t− 1) + (n− r + 1)(t−m+ 1) (2)

= k + (n− 1)(t− 1)− (n− r)(m− 2) + 1

≤ k + (n− 1)(t− 1) + 1 , (3)

which proves the theorem.

To show that the bound in the previous theorem is sharp, we will now present two families
of SCIDs that are not sunflowers, but where equality in the bound dim〈S〉 ≤ k+(n−1)(t−1)+1
is attained.

Figure 1: The (k, k − t)-SCID described in Example 2.3

Example 2.3. Choose integers n ≥ 3 and k, t such that 3 ≤ t ≤ k − 1 and let m be an
integer with 2 ≤ m ≤ min{t + 1, n − 1}. Let V be a vector space over a field F which is
either infinite or else a finite field Fq with q such that qm−1

q−1 + 1 ≥ n. Let V ′, X, N1, . . . , Nm

and Mm+1, . . . ,Mn−1 be linearly independent subspaces of V such that dimV ′ = k − t,
dimX = t+ 1−m, dimNi = t and dimMi = t− 1.

Let n1, . . . , nm be 1-spaces in N1, . . . , Nm respectively. Let pm+1, . . . , pn−1 be distinct
1-spaces in 〈n1, . . . , nm〉 \ {n1, . . . , nm}; here we need the bound on q in case F is a finite
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field. Let W be a (k − t − 1)-space in V ′ (see Figure 1). Then we define the sets π1, . . . , πn
as follows.

• π1 = 〈V ′, N1〉, π2 = 〈V ′, N2〉, ..., πm = 〈V ′, Nm〉,

• πm+1 = 〈V ′,Mm+1, pm+1〉, ..., πn−1 = 〈V ′,Mn−1, pn−1〉,

• πn = 〈W,X, n1, . . . , nm〉.

The pairwise intersection of the subspaces πi and πj , i, j = 1, . . . , n − 1, with i 6= j, equals
V ′ because pj is not contained in Ni. Since each of the spaces π1, . . . , πn−1 contains a unique
1-space from the set {n1, . . . , nm, pm+1, . . . , pn−1} (and these 1-spaces are pairwise different),
also dim(πi ∩ πn) = k− t for all i = 1, . . . , n− 1. Hence, the set S = {π1, . . . , πn} is a set of n
distinct k-spaces pairwise meeting in a (k − t)-space. As not all pairwise intersections equal
the same (k − t)-space, S is not a sunflower.

The 1-spaces n1, . . . , nm, pm+1, . . . , pn−1 are contained in 〈N1, . . . , Nm〉 and also W ⊂ V ′.
Hence,

〈S〉 = 〈π1, . . . , πn〉 = 〈V ′, N1, . . . , Nm,Mm+1, . . . ,Mn−1, X〉 .

Since V ′, X, N1, . . . , Nm and Mm+1, . . . ,Mn−1 are linearly independent subspaces of V , we
find that

dim〈S〉 = (k − t) +m · t+ (n− 1−m) · (t− 1) + (t+ 1−m)

= k + (n− 1)(t− 1) + 1 .

Considering the integers δi as introduced in the proof of Theorem 2.2, and using the ordering
π1, . . . , πn, we find that

(δ2, . . . , δn) = ( t, . . . , t︸ ︷︷ ︸
m−1 times

, t− 1, . . . , t− 1︸ ︷︷ ︸
n−m−1 times

, t+ 1−m) .

Note that in this example it is allowed to choose m = n−1 in which case there are no k-spaces
of the second kind.

Example 2.4. Choose integers n ≥ 3 and k, t such that 3 ≤ t ≤ k−1. Let V be a vector space

over a field F which is either infinite or else a finite field Fq with q such that qk−t+2−1
q−1 ≥ n, and

let X1, . . . , Xn and V ′ be linearly independent subspaces of V such that dimV ′ = k − t + 2
and dimXi = t− 1 (see Figure 2).

Let W1, . . . ,Wn be n distinct (k − t+ 1)-spaces in V ′, not all through a common (k − t)-
space. We define π1 = 〈X1,W1〉, π2 = 〈X2,W2〉, ..., πn = 〈Xn,Wn〉. It is clear that π1, . . . , πn
all are k-spaces. For all i, j = 1, . . . , n, with i 6= j, we know that πi ∩ πj = Wi ∩Wj and any
two distinct (k− t+ 1)-spaces in V ′ meet in a (k− t)-space. Hence, the set S = {π1, . . . , πn}
is a set of n distinct k-spaces pairwise meeting in a (k− t)-space. As there is no (k− t)-space
common to W1, . . . ,Wn, the set S is not a sunflower.

It is easy to see that 〈S〉 = 〈V ′, X1, . . . , Xn〉, which by the linear independence of the
spaces X1, . . . , Xn and V ′ yields

dim〈S〉 = (k − t+ 2) + n · (t− 1) = k + (n− 1)(t− 1) + 1 .
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Figure 2: The (k, k − t)-SCID described in Example 2.4

Again, considering the integers δi as introduced in the proof of Theorem 2.2, we find that

(δ2, . . . , δn) = (t, t− 1, . . . , t− 1︸ ︷︷ ︸
n−2 times

)

for every possible ordering of π1, . . . , πn.

Given the bound in Theorem 2.2, a natural next step is to classify all examples where the
bound is sharp. We prove that the only two families of examples meeting the bound are the
ones presented in Examples 2.3 and 2.4.

Theorem 2.5. Let S be a (k, k−t)-SCID in a vector space V , with |S| ≥ 3 and 3 ≤ t ≤ k−1.
If dim〈S〉 = k+ (t− 1)(n− 1) + 1, then S is a sunflower or S is described by Example 2.3 or
Example 2.4.

Proof. We denote the elements of S by π1, . . . , πn and we assume that S is not a sunflower.
Given this ordering, we define the differences δi = dim〈π1, . . . , πi〉 − dim〈π1, . . . , πi−1〉 for
i = 1, . . . , n, as in Theorem 2.2. We will consider all possible orderings of the elements of S
such that (δ2, . . . , δn) is nonincreasing. Since dim〈S〉 = k+(t−1)(n−1)+1, we have equality
in (2) and (3). Hence,

(δ2, . . . , δn) = ( t, . . . , t︸ ︷︷ ︸
m−1 times

, t− 1, . . . , t− 1︸ ︷︷ ︸
n−m−1 times

, t+ 1−m) (4)

for some m ≥ 3 or

(δ2, . . . , δn) = (t, t− 1, . . . , t− 1︸ ︷︷ ︸
n−2 times

) . (5)

5



We distinguish between two cases.

• First we assume that we can find a permutation of S such that (δ2, . . . , δn) is as in
(4) for a value m ≥ 3. Then for the set S ′ = {π1, . . . , πn−1}, we find that dim〈S ′〉 =
k+ (n−2)(t−1) +m−1 ≥ k+ (n−2)(t−1) + 2. So, by Theorem 2.2, S ′ is a sunflower.
Let V ′ be the common (k − t)-dimensional intersection space of π1, . . . , πn−1.

Denote k − t − dim(πn ∩ V ′) by ε as in the proof of Theorem 2.2. Since S is not a
sunflower, ε ≥ 1. It now follows from the equality in (1) that ε = 1. We denote the
(k− t−1)-space V ′∩πn by W . Since dim(πi∩πn) = k− t for i ≤ n−1, πn must contain
1-spaces n1 ∈ π1, . . . , nm ∈ πm, meeting V ′ trivially and linearly independent. Since
δn = t+ 1−m, it follows that πn = 〈W,n1, . . . , nm, X〉 for some (t+ 1−m)-dimensional
space X linearly independent of 〈π1, . . . , πn−1〉. Now we can choose t-spaces N1, . . . , Nm

such that π1 = 〈V ′, N1〉, ..., πm = 〈V ′, Nm〉 and such that ni ∈ Ni, i = 1, . . . ,m. Note
that N1, . . . , Nm, V

′ are necessarily linearly independent subspaces.

The k-spaces πm+1, . . . , πn−1 contain the (k− t)-space V ′, meet each other in a (k− t)-
space and meet all of the spaces π1, . . . , πm, πn in a (k− t)-space. The space πi, m+1 ≤
i ≤ n − 1, meets 〈n1, . . . , nm〉 in a 1-space pi since it meets πn in a (k − t)-space
that contains W . This 1-space pi is distinct from each 1-space nj , j = 1, . . . ,m, as
πi meets π1, . . . , πm in the (k − t)-space V ′. Since δi = t − 1, it is immediate that
πi = 〈V ′, pi,Mi〉, i = m + 1, . . . , n − 1, with Mi a (t − 1)-space and such that V ′,
N1, . . . , Nm,Mm+1, . . . ,Mn−1 and X are linearly independent. Finally, the requirement
that dim(πi ∩ πj) = k − t, m + 1 ≤ i, j ≤ n − 1, with i 6= j, yields that all 1-spaces pi
are different. Hence, S is isomorphic to Example 2.3.

• If there is a permutation of S such that δn ≤ t− 2, then we can find a permutation of
S such that (δ2, . . . , δn) is nonincreasing and such that δn ≤ t − 2; this case has been
covered in the preceding bullet point. So we may assume that for any permutation of S
the tuple (δ2, . . . , δn) is as in (5). Hence, as every space in S could be the final k-space
in the ordering, each space in S contains a (t−1)-space linearly independent of the span
of all the other spaces in S. So, πi = 〈Vi,Mi〉, for i = 1, . . . , n, where M1, . . . ,Mn and
〈V1, . . . , Vn〉 are linearly independent subspaces. From

k + (n− 1)(t− 1) + 1 = dim〈S〉 = dim〈V1, . . . , Vn,M1, . . . ,Mn〉
= dim〈V1, . . . , Vn〉+ n(t− 1),

we find that dim〈V1, . . . , Vn〉 = (k + (n− 1)(t− 1) + 1)− (n(t− 1)) = k − t+ 2. Hence,
S is isomorphic to Example 2.4.

3 A new family of primitive SCIDs

In this section we first present a new construction for primitive SCIDs, and afterwards we
apply it to describe some new examples. At the end we describe some other new examples.
There is always a particular attention for vector spaces over finite fields, given the interpre-
tation of SCIDs as subspace codes in random network coding.

Theorem 3.1. Let L be a set of k-subsets of a finite set Ω, with |L| = t ≥ n − k + 1 and
|Ω| = m ≥ n+ k+ 1 for an integer n ≥ k+ 1, such that every element of Ω is contained in at
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least two elements of L, such that any two different elements in L have exactly one element
of Ω in common, and such that no element of Ω is contained in all the elements of L. If V
is an (m + n − k + 1)-dimensional vector space over an infinite field or a finite field Fq with
qn−k+1−1

q−1 ≥ t, then a primitive (n, n− k)-SCID of size t in V exists.

Proof. We denote the set L of subsets by {L1, L2, . . . , Lt} and the element set Ω by
⋃
L∈L L =

{p1, p2, . . . , pm}. Let e1, e2, . . . , em+n−k+1 be a basis of V . Define W = 〈em+1, . . . , em+n−k+1〉
and W ′ = 〈e1, . . . , em〉. Let W1, . . . ,Wt be different hyperplanes in W such that

⋂t
i=1Wi is

the zero vector; note that it is possible to choose such a set of hyperplanes since t ≥ n−k+ 1
and since the underlying field of V is either an infinite field or else a finite field Fq with
qn−k+1−1

q−1 ≥ t.
Now we define Vi = 〈ej |pj ∈ Li〉 and πi = 〈Vi,Wi〉, for all i = 1, . . . , t. It is immediate that

dimπi = k+(n−k) = n, for all i = 1, . . . , t. We also know that dim(πi∩πj) = 1+(n−k−1) =
n − k for all i, j ∈ {1, . . . , t}, with i 6= j, since the hyperplanes Wi and Wj of W meet in an
(n− k − 1)-space. Hence, S = {π1, . . . , πt} is an (n, n− k)-SCID.

We check that S is primitive. Firstly, it is obvious that 〈S〉 = V . Secondly, we show
that the intersection of all πi is trivial. Each vector in V = W ⊕W ′ can uniquely be written
as the sum of a vector in W and a vector in W ′. Assume that v + v′ ∈

⋂t
i=1 πi, with

v ∈ W and v′ ∈ W ′. Since v + v′ ∈ πi for all i ∈ {1, . . . , t}, we know that v ∈ Wi for
all i ∈ {1, . . . , t} and that v′ ∈ Vi for all i ∈ {1, . . . , t}. From the former observation it
follows that v ∈

⋂t
i=1Wi = {0}, hence v = 0. From the latter observation it follows that

v′ ∈
⋂t
i=1 Vi ⊂ W ′; as there is no element of Ω contained in all Li, all coefficients of v′ with

respect to the basis e1, . . . , em of W ′ must be 0, hence v′ = 0. We find that v+ v′ = 0, so the
intersection of all πi is trivial.

Thirdly, we will show that each π ∈ S is generated by its pairwise intersections with the
other spaces, i.e. π = 〈π ∩ σ|σ ∈ S \ {π}〉. Note that the inclusion π ⊇ 〈π ∩ σ|σ ∈ S \ {π}〉
is trivial. Fix an arbitrary πi with i ∈ {1, . . . , t}. Recall that no element of Ω is contained in
exactly one of the elements of L, hence each element of Li is contained in the intersection of
Li and another L ∈ L. Consequently, for each j such that pj ∈ Li, the vector ej is contained
in the intersection of Vi and a subspace Vj with j 6= i. So, on the one hand,

Vi = 〈Vi ∩ Vj |j = 1, . . . , i− 1, i+ 1, . . . , t〉 ⊆ 〈πi ∩ πj |j = 1, . . . , i− 1, i+ 1, . . . , t〉 .

On the other hand, two hyperplanes in W meet each other in an (n − k − 1)-space. Since
only the zero vector is contained in all the subspaces W1, . . . ,Wt, not all intersections in the
set {Wi ∩Wj |j = 1, . . . , i− 1, i+ 1, . . . , t} can be equal. Hence,

Wi = 〈Wi ∩Wj |j = 1, . . . , i− 1, i+ 1, . . . , t〉 ⊆ 〈πi ∩ πj |j = 1, . . . , i− 1, i+ 1, . . . , t〉 .

Since πi = 〈Vi,Wi〉, we find that πi = 〈πi ∩ πj |j = 1, . . . , i− 1, i+ 1, . . . , t〉.
Finally, dimV = m + n − k + 1 ≥ 2n + 2 by the assumption on m. This concludes the

proof that S is primitive.

We present some applications of this main theorem. We start with an easy example.

Corollary 3.2. If n ≥ 2, there is a primitive (n, 1)-SCID in the (n2 − 2n + 3)-dimensional
vector space over the field F, with F an infinite field or a finite field Fq, with q ≥ 2n− 3.

Proof. We consider an (n − 1) × (n − 1)-grid. The statement follows by applying Theorem
3.1 with Ω the set of (n− 1)2 points of the grid and L the set of 2(n− 1) lines.

7



The projective plane PG(2, q) over the finite field Fq is the point-line geometry arising
from the vector space V (3, q) by considering the 1-spaces as points and the 2-spaces as lines,
i.e. it is the geometry of the subspaces of the vector space V (3, q). A line set without tangent
points in PG(2, q) is a line set S in PG(2, q) such that any point of PG(2, q) is on zero or at
least two lines of S.

Corollary 3.3. Let k− 1 be a prime power. Assume that PG(2, k− 1) contains a line set S
without tangent points, such that |S| = t and there are m points on the union of the lines in
S. If n is an integer such that k+ 1 ≤ n ≤ min{t+k− 1,m−k− 1}, then there is a primitive
(n, n− k)-SCID in the (m+ n− k + 1)-dimensional vector space over the field F, with F an

infinite field or a finite field Fq with q such that qn−k+1−1
q−1 ≥ t.

Proof. We take the points of PG(2, k− 1) that are on the union of the lines in S as the set Ω.
Now we consider the lines as sets of points, hence as subsets of Ω. The statement is a direct
corollary of Theorem 3.1 by choosing S as the set L.

We apply this corollary for two well-known line sets without tangent points. Many more
applications are possible.

Corollary 3.4. Let k − 1 be a prime power.

• For all integers n such that k + 1 ≤ n ≤ min{t+ k − 1,m− k − 1}, there is a primitive
(n, n− k)-SCID in the (k2 − 2k+ 2 + n)-dimensional vector space over the infinite field
F.

• Let t be an integer such that 3k − 3 ≤ t ≤ k2 − k + 1. For all integers n with max{k +

1, ln(t(q−1)+1)
ln(q) +k−1} ≤ n ≤ min{t+k−1, k2−2k}, there is a primitive (n, n−k)-SCID

in the (k2 − 2k + 2 + n)-dimensional vector space over the finite field Fq.

Proof. Let P1, P2 and P3 be three noncollinear points in PG(2, k − 1). Any line set that
contains all 3k− 3 lines that pass through P1, P2 or P3, is a set without tangent points. Now
one can apply Corollary 3.3.

Corollary 3.5. Let h ≥ 1 be an integer and denote k = 2h + 1. For all integers n such that
k + 1 ≤ n ≤ min{2k, k2−k2 − 1}, there is a primitive (n, n − k)-SCID in the (k

2−k
2 + n + 1)-

dimensional vector space over the field F, with F an infinite field or a finite field Fq with q

such that qn−k+1−1
q−1 ≥ k + 1.

Proof. We apply Corollary 3.3 for a dual hyperoval in PG(2, 2h), a set of 2h + 2 lines such
that any point is contained on zero or two of them.

We conclude this article by presenting a primitive (5,2)-SCID that does not arise from
Theorem 3.1.

Example 3.6. Consider the set {1, . . . , 12} and let L be the following set of subsets:

L = {{1, 2, 4, 7, 8}, {1, 2, 5, 9, 10}, {1, 2, 6, 11, 12}, {1, 3, 4, 9, 12},
{1, 3, 5, 7, 11}, {1, 3, 6, 8, 10}, {2, 3, 4, 5, 6}} .

Consider a 12-dimensional vector space V with basis {e1, . . . , e12}. Now, let S be the set

S = {〈ev, ew, ex, ey, ez〉 | {v, w, x, y, z} ∈ L} .

It can straightforwardly be checked that S is a primitive (5,2)-SCID of V .
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