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We report on fundamental aspects of spin dynamics in heterostructures of graphene and transition
metal dichalcogenides (TMDCs). By using realistic models derived from first principles we compute
the spin lifetime anisotropy, defined as the ratio of lifetimes for spins pointing out of the graphene

plane to those pointing in the plane.

We find that the anisotropy can reach values of tens to

hundreds, which is unprecedented for typical 2D systems with spin-orbit coupling and indicates a
qualitatively new regime of spin relaxation. This behavior is mediated by spin-valley locking, which
is strongly imprinted onto graphene by TMDCs. Our results indicate that this giant spin lifetime
anisotropy can serve as an experimental signature of materials with strong spin-valley locking,
including graphene/ TMDC heterostructures and TMDCs themselves. Additionally, materials with
giant spin lifetime anisotropy can provide an exciting platform for manipulating the valley and spin
degrees of freedom, and for designing novel spintronic devices.

PACS numbers: 72.80.Vp, 72.25.Rb, 71.70.Ej

Introduction. Following the discovery of graphene in
2004 [1], a host of other two-dimensional (2D) materi-
als have been synthesized and studied, each demonstrat-
ing unique properties and showing promise for techno-
logical applications [2]. Currently, there is a great deal
of interest in layered heterostructures of these materials
[3, 4], where the combined system might be engineered
for specific applications [5] or might enable the explo-
ration of new phenomena [6, 7]. In the field of spintronics,
graphene has exceptional charge transport properties but
weak spin-orbit coupling (SOC) on the order of 10 ueV
[8], which makes it ideal for long-distance spin transport
[9-11] but ineffective for generating or manipulating spin
currents. To advance towards spin manipulation, recent
work has focused on heterostructures of graphene and
magnetic insulators [12-16] or strong SOC materials such
as transition metal dichalcogenides (TMDCs) and topo-
logical insulators [17-19]. The SOC induced in graphene
by a TMDC could enable phenomena such as topological
edge states [20] or the spin Hall effect [21-23].

To this end, a variety of recent experiments have ex-
plored spin transport in graphene/TMDC heterostruc-
tures [21, 24-29]. Magnetotransport measurements re-
vealed that graphene in contact with WS, exhibits a large
weak antilocalization (WAL) peak, revealing a strong
SOC induced by proximity effects [24-26, 30]. Fits to
the magnetoconductance yielded spin lifetimes 7, ~ 5
ps, which is two to three orders of magnitude lower
than graphene on traditional substrates [10, 31]. It was
later asserted that after the removal of a temperature-
independent background, 75 becomes at most only a few
hundred femtoseconds [26]. Nonlocal Hanle measure-
ments, meanwhile, have revealed spin lifetimes up to a
few tens of picoseconds [27-29] that can be tuned by
a back gate [28, 29]. Finally, charge transport measure-

ments on a Hall bar demonstrated a large nonlocal signal
that was related to the spin Hall effect [21]. Fits to exper-
imental measurements have estimated the induced SOC
in graphene to be 10-20 meV [21, 26], while most density
functional theory (DFT) and tight-binding (TB) calcu-
lations find values closer to 1 meV [18-20, 24, 25, 32].
While these studies have demonstrated that TMDCs in-
duce strong SOC in graphene, the estimated values of
75 vary by three orders of magnitude and nothing is yet
known about the mechanisms governing spin dynamics
and relaxation in these systems.

In this Letter, we employ dissipative quantum spin
dynamics arguments, and quantum mechanical numer-
ical simulations, to elucidate the nature of spin relax-
ation in graphene/TMDC heterostructures. We find that
spin relaxation follows the D’yakonov-Perel’ (DP) mech-
anism, with 7, = 1 — 100 ps for realistic momentum re-
laxation rates and Fermi energies. Remarkably, the spin
lifetime anisotropy, defined as the ratio of lifetimes for
spins pointing out of the graphene plane to those pointing
in the plane, can reach unprecedented values of tens to
hundreds in the presence of intervalley scattering. This
behavior is mediated by spin-valley locking induced in
graphene by the TMDC, which ties the in-plane spin
lifetime to the intervalley scattering time. In the ab-
sence of valley mixing this ratio reduces to 1/2, typical
of systems dominated by Rashba SOC [33]. A giant spin
lifetime anisotropy thus represents a qualitatively new
regime of spin relaxation not typically seen in 2D sys-
tems, and its measurement [34, 35] should be an experi-
mental probe of systems with strong spin-valley coupling,
which includes both graphene/TMDC heterostructures
and TMDCs themselves. Furthermore, systems with gi-
ant spin lifetime anisotropy could serve as an exciting
new platform for the manipulation of spin and the im-



FIG. 1. Schematic of spin relaxation in graphene/TMDC het-
erostructures. The tall arrows depict the effective spin-orbit
field within the Dirac cones at K and K’ valleys. Intervalley
scattering dominates the in-plane spin dynamics, while overall
momentum scattering controls the out-of-plane behavior.

plementation of new spintronic devices.

Dissipative spin dynamics model. To clarify the nature
of spin relaxation in graphene/TMDC systems, we follow
the approach in [33], which describes spin dynamics in
a randomly fluctuating magnetic field. The low-energy
(Er < 300 meV) Hamiltonian of graphene on a TMDC

substrate is given by H = Hy+Ha +H}4/B+HR+H££]§’
where [20]
Hy = hwp(kogky + oyky),
Ha = Ao,
1
H}L‘/B = 5[)\}4(0,3 +o00) + )\]B(Uz —oo)lks., (1)

A/B a
R = S 1a(0= +00) + A1 a(0: = 00)) (ks — i),

Hp = Ar(Ko3Sy — 0ySz).

In Eq. (1), vg is the Fermi velocity, kK = 1(—1) for the K
(K') valley, o; (s;) are the sublattice (spin) Pauli matri-
ces, k; are the wave vector components relative to K or
K’, and @ = 0.246 nm is the graphene lattice constant.
Hj represents the graphene Dirac cone, and Ha is a stag-

gered sublattice potential induced by the TMDC. H}A/ B

and Hﬁ;f are the intrinsic and the pseudospin inversion
asymmetry (PTA) SOC, respectively, the latter of which
is permitted by broken z/-z symmetry in graphene [36].
Due to the broken sublattice symmetry, these terms can
have different strengths and signs on the A and B sublat-
tices ()\}4/3 and )\ﬁéﬁ). Finally, Hg is the Rashba SOC
induced by a perpendicular electric field [8, 37].

While Eq. (1) is useful for TB calculations, analyti-
cally it is more transparent to combine the sublattice-
dependent terms, giving H = Hy + Ha + Hr + Hy 7z +
Hr +Hpra+ Hpapp, with

Hr = \iko;s;,
Hyz = Avzks,, (2)

Hpra = alprac.(kzsy — kyss),

Hpppy = aApralkesy — kysa),

where A\; = ()\}4 + )\IB)/Q, Avz = (/\}4 — )\IB)/Q, Apra =
(Apra + ABra)/2, and Apra = (Apr4 — AZra)/2. In
this form, Hj is the usual intrinsic SOC in graphene,
which opens a topological gap 2\; at the Dirac point
[37]). Hyz is a valley Zeeman term, which locks valley to
spin and polarizes the bands out of the graphene plane
with opposite orientation in the K and K’ valleys. Hpya
renormalizes the Fermi velocity, while Ha,,, leads to
a k-linear splitting of the bands, as in traditional 2D
electron gases with Rashba SOC [38]. Except for the PTA
terms, this Hamiltonian is the same as that considered
in previous works [24-26, 32].

The next step is to derive the effective spin-orbit field
arising from the SOC terms. This is done by rewriting
Eq. (2) in the basis of the eigenstates of Hy and project-
ing onto the conduction and valence bands. At Fermi
energies away from the Dirac point (Er > 1 meV), this
gives

1
H = Ho + Shi(t) -5

hww = —Q(GkAp[A + )\R) sin@, (3)
Twy = 2(akApra £ Ag) cosb,
hwz = 25}‘\/27

where k is the wave vector magnitude, 6 is the direction
of k with respect to k;, and & is the spin precession
frequency of the effective spin-orbit field. The in-plane
components of @ give a Rashba-like spin texture, where
+(—) is for the conduction (valence) band. Strong PIA
SOC thus leads to electron-hole asymmetry, as will be
seen for graphene on WS,. The out-of-plane component
of & is determined by Ay z and changes sign between
valleys. The overall texture of the effective spin-orbit
field is depicted in Fig. 1.

Owing to momentum scattering, each component of &
will fluctuate in time. A simple model for the correlation
of the fluctuating spin-orbit field is [33]

wa(Dws(t') = bagwle 1!~ 1/Te, (4)

where the correlation time of fluctuation 7. o depends on
the component of &. The in-plane components w, /, de-
pend only on 0, and thus 7, , = 7., = 7p, the momentum
relaxation time. Meanwhile, the out-of-plane component
w, depends only on the valley index, giving 7. . = 75, the
intervalley scattering time. Assuming that 7. w, < 1,
applying Eqgs. (3) and (4) to the equation of motion for
the density matrix [33] yields the final expressions for the
spin relaxation rates

— 12 2
Ts,o = WsTiv + Wy Tp,
-1 _ 2 2
Toy = WiTiy + Wiy, (5)
-1 _ /2 2
Ts,z x +wy)TP



In Eq. (5), the out-of-plane spin relaxation follows the
usual DP relation, Ts_j_ =7, } = [2(akApra+ Ag)/h]*7p,
with the Rashba SOC augmented by the PTA term. How-
ever, the in-plane relaxation includes contributions from
both the intervalley and the overall momentum scatter-
ing, and is given by 7-;”1 =70 =Toy = (2Avz/h)’Ti +
7,2/2. The nature of the spin relaxation, with 7,
determined by 7, and 7,1 by 7,, is shown schemati-
cally in Fig. 1. Ignoring the PIA term, the spin lifetime

anisotropy is
Tl = (AVZ)2 <T> +1/2 (6)
TS,H )\R Tp '

Equation (6) is the main result of this work, and indi-
cates that a giant spin lifetime anisotropy, with the in-
plane spins relaxing much faster than the out-of-plane
spins, should be a defining characteristic of systems with
strong spin-valley locking. Using DFT values of A\yz =
1.2 meV and A\ = 0.56 meV for graphene on WSe,
[20], and assuming relatively strong intervalley scatter-
ing (74, ~ 57,), we obtain a spin lifetime anisotropy of
~20. This represents a qualitatively different regime of
spin relaxation than the usual case of 2D Rashba sys-
tems, where without valley Zeeman SOC the anisotropy
is 1/2, with the in-plane spins relaxing more slowly than
the out-of-plane spins.

Equation (5) assumes strong intervalley scattering,
Tivw, << 1, such that fast fluctuation of w, results in
motional narrowing of the in-plane spin precession and
an inverse dependence of 7, on 7. In contrast, when
Tiv — 00, electrons experience a constant out-of-plane
spin-orbit field and only the in-plane components fluctu-
ate with time. In this limit, the procedure above yields

-1 __ 792 %
Ts,z = wyTp,
-1 _ 2 %
Toy = WaT,, (7)
-1 _ 2 T\ -k
Ts,z - (wm +wy)7—p’

where 7 = 7, /(w277 +1). Without intervalley scattering
the spin lifetime anistropy thus collapses to 1/2, as found
in Rashba systems [33]. Interestingly, in this regime an
external perpendicular magnetic field B, can induce an
imbalance in the spin population of each valley by en-
hancing (canceling) the spin-orbit field at K (K’). The

ratio of spin lifetimes in each valley thus becomes

Ts{(a (gus B, + 2)\\/2)273 +1

’ = , 8
Ts{(oz (g,uBBz - 2sz)27'g +1 ( )

where g is the electron g-factor and pp is the Bohr mag-
neton. For graphene on WSe; with 7, = 100 fs, the
difference in 7, can reach 10% for B, = 4 T. Although
this difference is too modest to achieve a complete valley-
spin imbalance, it should be considered when observing
spin relaxation in these structures in a magnetic field.
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FIG. 2. Spin dynamics in the graphene/WSez system for (a)
strong and (b) weak intervalley scattering. The insets show
the corresponding momentum relaxation times.

Numerical simulations. To verify the above results, we
perform numerical simulations of spin relaxation. The
graphene/ TMDC system is described by the TB form
of Eq. (1), to which we add a disorder term Hgy;s =
D is Vais(75) czscis, where c;rs(cis) is the creation (anni-
hilz’ttion) operator at site i with spin s, and V(7)) is
the potential at site i. We assume the disorder consists
of Gaussian-shaped electron-hole puddles [39], such that
Viais (75) = Z;V:l ejexp(—|F; —7;|%/2€?), with the strength
¢; of each scatterer randomly chosen within [—e, €], and
with a uniform width ¢ = v/3a. In the dilute limit, Tp
and 7;, are inversely proportional to the number of scat-
terers IV, while € controls their relative magnitude, with
larger € giving stronger intervalley scattering [40, 41].

To calculate charge and spin transport, we employ a
real-space wavepacket propagation method that allows
for efficient simulation of large-scale disordered graphene
systems [42—44]. For charge transport we use the mean-
square spreading of the wavepacket (X2(FE,t)) to calcu-
late the diffusion coefficient D(E,t) = 9(X?(E,t))/0t,
which in turn gives the momentum relaxation time
7(E) = maxD(FE,t)/2v%. We simultaneously calcu-
late the expectation value of the spin of the wavepacket
3(E,t), from which the spin lifetime is evaluated by fit-
ting to exp(—t/7s,o) or exp(—t/7s o) cos(w,t), as appro-
priate. The density of charge scatterers is character-
ized as a percentage of the number of carbon atoms,
n = N/N¢ x 100%. We consider a 500 nm x 500 nm
system with 9.2 million carbon atoms, and TB parame-
ters are taken from Table I of Ref. [20].

Figures 2(a) and (b) show § and 7, for disorder profiles
corresponding to strong and weak intervalley scattering,
respectively. In the former we set n = 0.1% and ¢ = 2.8
eV, and in the latter n = 1% and € = 0.5 eV. The 7,
for these two cases are shown in the insets, with values
typical of those found experimentally [24-26]. The dif-
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FIG. 3. Spin lifetime with strong intervalley scattering for
graphene on (a) WSez and (b) WS,. The red (blue) lines are
for out-of-plane (in-plane) spin lifetime. Solid (dashed) lines
are for an impurity density of 0.1% (1%). The open circles
are from Eq. (5).

ferent energy dependence of 7, with a minimum or max-
imum at the Dirac point, is indicative of the contribution
of intervalley scattering [45]. In Fig. 2(a), where inter-
valley scattering is strong, the in-plane component of §
decays much more quickly than the out-of-plane compo-
nent, and spin precession is suppressed. Meanwhile, in
Fig. 2(b) the in-plane spin precesses about the effective
spin-orbit field with frequency w, = 2\y z/k, and relaxes
more slowly than the out-of-plane spin. This behavior is
consistent with Egs. (5)-(7).

Figure 3 shows the numerical spin lifetimes in the case
of strong intervalley scattering for graphene on (a) WSes
and (b) WSa. The solid lines, for n = 0.1%, indicate a
giant anisotropy with 75 1 = 20 — 200 ps and 7, ~ 1
ps. There is also a significant electron-hole asymmetry
in 75 | for graphene on WS, arising from the larger PIA
SOC in this system; A\g = 0.56 meV and Ap;q = 75 ueV
for WSes, while Ag = 0.36 meV and Ap;s = 1.4 meV
for WSs [20]. The open circles are the values of 7, es-
timated from Eq. (5), showing good agreement between
the numerical simulations and the spin dynamics model.
To fit 7, we assumed 7;, = 57p; although our calcula-
tions do not permit an exact determination of 7;,, this
ratio is consistent with prior numerical results [40]. As
shown by the dashed lines, increasing the disorder den-
sity to n = 1% scales 75 by a factor of 10, confirming the
inverse relationship between 7, and 7, ;,.

The numerical spin lifetimes in the absence of interval-
ley scattering are shown in Fig. 4, where 7, || is now larger
than 7, | . The agreement with the predictions of Eq. (7),
shown as the open circles, is very convincing. However,
we note that the agreement worsens at low energies, as
the effective spin-orbit field in Eq. (3) is only valid for
energies away from the Dirac point. The insets of Fig. 4
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FIG. 4. Spin lifetime without intervalley scattering for

graphene on (a) WSez and (b) WS;. The red (blue) lines
are for out-of-plane (in-plane) spin lifetime. The open circles
are from Eq. (7), and the insets show the anisotropy for strong
and weak intervalley scattering.

show the numerical values of the spin lifetime anistropy.
As predicted by the semiclassical theory, the anisotropy
is giant in the case of strong intervalley scattering, and
collapses toward 1/2 otherwise.

Summary and conclusions. Using realistic quantum
spin dynamics modeling and numerical simulations, we
have presented a unified picture of the spin relaxation in
graphene on TMDCs. We predict a giant spin relaxation
anisotropy, which emerges in graphene due to proximity
effects but should exist in any system with strong spin-
valley locking, including TMDCs themselves. In the ab-
sence of spin-valley locking or intervalley scattering the
anisotropy falls to 1/2, as expected for Rashba systems.
This large variation indicates a qualitatively new regime
of spin relaxation in graphene and other 2D materials.

It should be noted that the theory presented here is ap-
plicable when spin relaxation is dominated by SOC, but
other spin relaxation mechanisms can take over when the
SOC is small. This appears to be the case for graphene
on Si0s, where measurements yielded no anisotropy, i.e.,
Ts,L = Ts,| [34, 35]. In these systems the SOC is small
and spin relaxation is likely dominated by paramagnetic
impurities [46, 47]. Meanwhile, very recent measure-
ments have confirmed our prediction of giant spin lifetime
anisotropy in graphene/ TMDC heterostructures, with an
anisotropy of ~11 (40) for graphene on MoSe; (WSes)
at a temperature of 75 K [48]. Another recent measure-
ment found an anisotropy of ~10 in graphene on WS,
at room temperature [49], suggesting that temperature-
dependent effects driven by electron-electron or electron-
phonon scattering should have a weak impact.

These results also have important implications for the
WAL analysis of magnetotransport in graphene/TMDC
heterostructures. Previous analyses have concluded that



the spin relaxation is dominated by Rashba SOC [25, 30],
which is seemingly at odds with the presence of giant spin
lifetime anisotropy. By reanalyzing the magnetoconduc-
tance measurements of Ref. [30], and introducing valley
Zeeman SOC into the analysis, the experimental results
can be shown to be consistent with our theory [50].

On the more applied side, the giant spin lifetime
anisotropy in graphene/TMDC heterostructures might
be utilized for practical purposes in spin logic devices
[51, 52] or in relation with opto-valleytronic spin injec-
tion in graphene/TMDC spin valves [53, 54]. One possi-
ble application would be the design of a linear spin po-
larizer, where the in-plane components of an incoming
spin current would be filtered out, leaving only the net
out-of-plane polarization.
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In this Supplemental Material, we present a brief
complementary analysis of the weak antilocalization
(WAL) measurements of Ref. [1] (Ref. [30] in the main
text). This analysis is intended to show that the the-
ory of spin lifetime anisotropy presented in this Letter
can be consistent with prior measurements of WAL in
graphene/TMDC heterostructures. It also underscores
the need for further theoretical and experimental study
of the relationship between spin transport and quantum
conductivity in these systems.

We analyze the magnetoconductance (MC) measured
in a graphene/WSes heterostructure, shown in Fig. 3(a)
of Ref. [1]. We consider the MC taken at a gate voltage
of Vg = —32 V, which is reproduced in the symbols of
Fig. S1 below. The MC exhibits a large peak around
zero magnetic field, indicative of WAL induced by strong
Rashba spin-orbit coupling (SOC). The data can be fit
with the theory of McCann and Fal’ko [2],

—1 —1
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where Ac is the quantum correction to the conductivity
in units of e?/h, F(z) = In(z) + ¥(1/2 + 1/z), ¥ is the
digamma function, 75 ' — 4DeB /h, D is the diffusion
coefficient, 74 is the dephasing time, and B is the exter-
nal magnetic field. The spin-orbit time 7,4, arises from
Rashba SOC, while 7, is typically assigned to intrinsic,
or Kane-Mele, SOC.

The dashed line in Fig. S1 shows a fit to the exper-
imental data using Eq. (1). For this fit we set D =
phvpy/mn/2e, where p is the electron mobility, n is the
charge density, and vF = 10® cm/s is the graphene Fermi
velocity. Using u = 10* cm?/V-s and n = 2 x 10'2 cm =2
gives D = 0.08 m?/s. Fitting the rest of the parameters
then yields 74 = 20 ps, Tusy = 13 ps, and Tsym = 0.6 ps.

The first thing to consider from this fit is the magni-
tude of 744y. Assuming this arises solely from Rashba
SOC, and assuming the D’yakonov-Perel’ mechanism of
spin relaxation, 7,1 = (2Ar/h)*7,, we can estimate the
Rasbha SOC strength as Agp = h/\/4745,7p. For a mo-
mentum relaxation time 7, ~ 100 fs (cf. Fig. 4(b) of Ref.

)

0.00- | p=0.08ms % ]
v, =20 ps dp o Experiment
T, = 13ps T Fit
—~ = d o
= Tom 0.6 ps : i
= [
~p -0.08 H 1
2 i
b foo
< 6 q
o a
’l'O O“‘
‘o o
-0.16 W ?75\?".M 1
1 1 1 1 1
-10 -5 0 5 10
B (mT)
FIG. S1. Magnetoconductance of a graphene/WSes het-

erostructure. Symbols are experimental data taken from Fig.
3(a) of Ref. [1], for Vo = —32 V. The dashed line is the fit
using the WAL theory of Eq. (1).

[1]), we get Ag = 0.3 meV. This rough estimate is right
in the range of the values predicted by DFT [3].

Next we consider 7sym,, which is usually assumed to
arise from the Elliot-Yafet (EY) mechanism of spin relax-
ation induced by intrinsic SOC, 75, = (A\;/2Er)*7, ",
where Er is the Fermi energy [4]. Taking 7yy, = 0.6
ps, 7 =~ 100 fs, and Er =~ 160 meV (corresponding to
n =~ 2 x 1012 cm™2) gives \; = 2Ep\/Tp/Teym ~ 130
meV, which is an unreasonably large value. The DFT
simulations of Ref. [3] predict A\; on the order of tens of
peV, and those of Ref. [5] found it to be vanishingly small,
but even a value of A\; = 1 meV would give 7y, =~ 10
ns, four orders of magnitude larger than what is found
in the above fit. This analysis thus shows that the small
value of 75y, does not arise from intrinsic SOC.

Instead, we posit that 7., is governed by the valley
Zeeman SOC, such that 75, = (2A\vz/h)*7i,. In Ref.
[1] it was argued that this term does not relax the spin,
but we have shown that it does relax the in-plane spin.
Indeed, it should be noted that the EY mechanism in-
duced by intrinsic SOC is also an in-plane spin relaxation
process, as shown in the Supplementary Information of
Ref. [4]. Thus, the valley Zeeman SOC can contribute



to the MC through 74ym. If we choose 75, ~ 107, =~ 1
ps then Ay z = h/\/4TsymTiv ~ 0.4 meV, which is a rea-
sonable value in line with DFT simulations [3]. Finally,
assuming that 7,,, is driven by Rashba SOC and 7y,
by valley Zeeman SOC, the spin relaxation anisotropy
would be 745y /Tsym = 13/0.6 = 22. Therefore, the MC
data appear to support the presence of giant spin lifetime
anisotropy.

The linear scaling of 755 = Tasy+Taym With 7, shown
in Fig. 4(b) of Ref. [1], was used as evidence that Rashba
SOC was dominating the spin relaxation. However, this
scaling can also occur if we consider both Rashba and
valley Zeeman SOC. In this case, g5 = Tasy + Tagim =
4/h? - (A% + aXl ,)1p, where T, = aT1,. From the fit
in Fig. S1, this gives an effective Rasbha SOC of /\;ff =

VA% + aXi, = 1.3 meV, which is more or less what was
extracted for the graphene/WSes heterostructure of Ref.
[1]. Thus, in this instance, ignoring the valley Zeeman
term could lead to an overstimate of the Rasbha SOC by
a factor of ~5.

In summary, the original analysis of Ref. [1] concluded
that spin relaxation in a graphene/WSes heterostruc-
ture was dominated by Rashba SOC. This conclusion
was supported by a large WAL peak in the magnetocon-
ductance, and by the linear scaling of Tgolc with 7,. A
Rashba-dominated spin relaxation implies a small spin
lifetime anisotropy, which is seemingly in contradiction
with our theory as well as recent measurements of large
spin lifetime anisotropy in graphene/TMDC heterostruc-
tures [6, 7]. However, our revised analysis of the WAL
results, shown above, indicates that large spin lifetime
anisotropy actually could be present in the devices mea-
sured in Ref. [1]. The discrepancy could lie in the fits of
Eq. (1) to the magnetoconductance. These fits have a de-
gree of parametric freedom, and thus can lead to different
conclusions depending on the extracted spin-orbit times.

We also propose that the valley Zeeman SOC should be
considered in any WAL analysis of graphene/ TMDC het-
erostructures, as it is responsible for the in-plane spin
relaxation. More theoretical and experimental work is
clearly needed to fully reconcile the spin lifetimes ex-
tracted from WAL analysis to those from Hanle mea-
surements.
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