
 

 

 

 

This document is the unedited Author’s version of a Submitted Work that was subsequently 
accepted for publication in Nano letters, copyright © American Chemical Society after peer 
review. To access the final edited and published work see DOI 10.1021/acs.nanolett.7b02364 
 
Cop. “All rights reserved” 

  



Spin Hall effect and Weak Antilocalization in

Graphene/Transition Metal Dichalcogenide

Heterostructures

Jose H. Garcia,∗,† Aron W. Cummings,† and Stephan Roche†,‡

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona

Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain. , and ICREA

- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.

E-mail: josehugo.garcia@icn2.cat

Abstract

We report on a theoretical study of the spin Hall Effect (SHE) and weak antilocal-

ization (WAL) in graphene/transition metal dichalcogenide (TMDC) heterostructures,

computed through efficient real-space quantum transport methods, and using realistic

tight-binding models parametrized from ab initio calculations. The graphene/WS2 sys-

tem is found to maximize spin proximity effects compared to graphene on MoS2, WSe2,

or MoSe2, with a crucial role played by disorder, given the disappearance of SHE signals

in the presence of strong intervalley scattering. Notably, we found that stronger WAL

effects are concomitant with weaker charge-to-spin conversion efficiency. For further

experimental studies of graphene/TMDC heterostructures, our findings provide guide-

lines for reaching the upper limit of spin current formation and for fully harvesting the

potential of two-dimensional materials for spintronic applications.
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Introduction

Van der Waals heterostructures, made by assembling different classes of two-dimensional

materials, represent a fascinating playground for materials innovation.1–3 The improvement

of the material growth techniques is giving rise to intense efforts in developing practical

applications such as non-volatile resistive memory devices,4 energy harvesting,5 or optical

detectors.6 Among the variety of promising uses of these heterostructures, spintronics stands

as a leading topic which could shortly witness the full practical realization of innovative

devices.7,8 Indeed, beyond the long room-temperature spin lifetime achieved experimen-

tally,9–11 evidences of spin transport modulation by proximity effects have been reported in

heterostructures combining graphene with magnetic insulators,12–15 or by enhancing spin-

orbit coupling (SOC) in graphene through the deposition of adatoms.16–18 Another route is

the deposition of graphene onto transition metal dichalcogenides (TMDCs),19,20 where a con-

siderable enhancement of SOC in graphene interfaced with WS2 or WSe2 has been unveiled

by measuring weak antilocalization (WAL) effects.21–23

Additionally, large spin Hall effect signals have been reported in graphene/WS2 het-

erostructures,24 suggesting that such interfaces could be suitable for the optimization of pure

spin currents and the development of spin-torque technologies.7 However, the observation of

SHE in graphene/TMDC systems has been difficult to reproduce, opening some debate about

how intrinsic mechanisms inducing Hall effects are actually related to non-local resistance

signals.17,18,21,25–27 Additionally, some recent ab initio studies of the electronic structure of

graphene/TMDC layers have shown that the inherited SOC parameters in graphene lie in

the meV range,28 and little is known about how such SOC proximity effects impact spin

dynamics and the emergence of SHE. Similarly, to date the origin of the measured large

WAL effects in graphene/TMDC heterostructures, as well as the possibility to simultane-

ously observe the formation of the SHE, are unclear and challenging, and demand a detailed

inspection of the joint contribution of disorder and SOC proximity effects.

Here, we use a realistic tight-binding model, parametrized from ab initio simulations, to
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exactly compute spin Hall conductivities and dissipative conductivities in graphene/TMDC

heterostructures using Kubo transport methods. We show that a sizable SHE signal should

be observable in such heterostructures, and by varying the disorder strength, we establish

a range of experimental conditions for its optimization. The largest SHE signal is obtained

for graphene on WS2 when disorder-induced scattering is limited to intravalley processes. In

contrast, the presence of strong intervalley scattering, essential for observing WAL effects,

leads to a large reduction of the SHE figure of merit. This shows that although WAL is an

extremely useful tool to probe the efficiency of proximity-induced SOC in graphene,21–23,29,30

its presence precludes the existence of a SHE signal that is large enough for practical use.

Therefore, to maximize the magnitude of the intrinsic SHE in graphene/TMDC heterostruc-

tures, the highest interface quality should be sought.

Model and Methods

The electronic properties of graphene on a TMDC substrate can be captured with the Hamil-

tonian H = Horb +Hso. The first term31,32 ,

Horb = −t
∑
〈i,j〉

(
a†ibj + b†iai

)
+

∆

2

∑
i

(a†iai − b
†
ibi), (1)

represents the orbital part of the Hamiltonian, where the operators a†i (b†i ) and ai (bi) create

and annihilate respectively an electron on site i of graphene’s A(B) sublattice. The nearest-

neighbor hopping is given by t, while ∆ accounts for a weak superlattice effect induced by

the TMDC, which creates a gap of magnitude ∆ and modifies the Fermi velocity of graphene.
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The second term,

Hso =
2i

3

∑
〈i,j〉,σ

(ŝ× di,j)z,σ,σ̄ λR a
†
i,σ bj,σ̄ + h.c

+
2i

3

∑
〈〈i,j〉〉,σ

(ŝ×Di,j)z,σ,σ̄

(
λ

(A)
PIA a

†
i,σaj,σ̄ + λ

(B)
PIA b

†
i,σbj,σ̄

)
+

i

3
√

3

∑
〈〈i,j〉〉,σ

νi,j(ŝz)σ,σ (λ
(A)
I a†i,σaj,σ − λ

(B)
I b†i,σbj,σ), (2)

represents the proximity-induced enhancement of SOC in graphene due to a weak hybridiza-

tion with the heavy atoms in the TMDC. It is composed of different types of SOC allowed

by the symmetries of the system.31,32 The first element is a Rashba SOC with strength λR

due to the broken out-of-plane symmetry, where di,j is a normalized vector pointing from

site i to its nearest neighbor at site j, and s is the normalized spin operator. The second is a

sublattice-dependent PIA SOC,31,32 where λ(A)
PIA and λ(B)

PIA are the coupling intensities in each

sublattice and Di,j is a normalized vector pointing from site i to its next nearest neighbor

at site j. The final term is a sublattice-dependent intrinsic SOC, with couplings intensities

λ
(A)
I and λ

(B)
I for each sublattice. We use parameters provided in reference,31 which were

extracted from fitting to DFT band structures and spin textures.

The disorder is incorporated by considering a random distribution of np electron-hole

puddles defined by the potential33,34

Un(r) = unexp
(
−(r −Rn)2

2ξ2
p

)
, (3)

where un is the puddle height randomly chosen within the range [−Up, Up], Rn is the position

of the center of the Gaussian puddle, and ξp is the puddle range, fixed in our simulations

as ξp =
√

3a with a being the lattice constant. Previous characterization of this type of

puddle showed that one can induce a transition from intra- to intervalley-driven scattering

in graphene by fine-tuning its parameters.35,36
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The zero-temperature dissipative DC conductivity σxx is calculated using a real-space

O(N) numerical implementation of the Kubo-Greenwood formula based on wavepacket prop-

agation.37–39 In this approach, the time-dependent diffusion coefficient at a given Fermi en-

ergy D(εF , t) is obtained as the time derivative of the mean square displacement of the

wavepacket ∆X2(εF , t) = |〈X(t)〉2 − 〈X(t)2〉|, i.e.,

D(εF , t) =
∂

∂t
∆X2(εF , t), (4)

and is then related to the conductivity through the Einstein relation

σxx(εF ) = lim
t→∞

1

2
e2ρ(εF )D(εF , t) (5)

where ρ(εF ) = Tr [δ(H − εF )] is the density of states and e is the electron charge. A com-

putational advantage of this approach is that it can efficiently access all possible conduction

mechanisms, from ballistic to diffusive and localized regimes.34,36,40,41 The diffusive conduc-

tivity occurs when the diffusion coefficient reaches a saturation limit (maximum value), where

σsc(εF ) = 1
2
e2ρ(εF )Dmax(εF , t),39 while at longer times the contribution of quantum correc-

tions δσ, due to multiple scattering and interference effects, are encoded into the scaling

behavior of the quantum conductivity σxx(εF ) = σsc(εF ) + δσ(εF ). In the presence of weak

disorder, the quantum correction is dictated by the scaling theory of localization42,43 and

takes the form

δσ = ±2e2

πh
log(L/`e), (6)

where L is the system size (or coherence length) and `e is the mean free path. The negative

sign implies a suppression of the conductivity leading to the weak localization (WL) regime,

while a positive correction indicates that quantum interference constructively increases the

diffusive conductivity, giving rise to WAL. Within the framework of this wavepacket propaga-

tion approach, one can then change the effective system size L through its relationship with
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the mean square displacement L ≡
√

∆X2(ε, t), and dynamically evaluate WL and WAL

corrections by contrasting the quantum and the semi-classical conductivities. Additionally,

this method also allows for the calculation of the momentum relaxation time τp = σsc(εF )

v2F ρ(εF )
, a

key parameter to characterize the scattering regimes.36

The spin Hall conductivity is computed using a different real-space O(N) method based

on the numerical evaluation of a modified version of the Kubo-Bastin formula17,18,44,45

σzxy(µ, T ) =
ih̄

Ω

∫ ∞
−∞

dεf(T, µ, ε) (7)

× Tr
〈
jxδ(ε−H)jzy

dG+(H, ε)

dε
− jx

dG−(H, ε)

dε
jzyδ(ε−H)

〉
,

where δ(ε−H) is the δ-function operator, jzy ≡ {σz, jy} the spin-current operator with σz the

third Pauli matrix, and jα ≡ −i eh̄ [H, rα] the α-component of the current operator, G+(H, ε)

and G−(H, ε) are the advanced and retarded Green’s functions, and f(T, µ, ε) is the Fermi-

Dirac distribution. In this method, the Green’s functions and the δ-functions are numerically

calculated using the kernel polynomial method (KPM).44,46–48 For the determination of the

spin Hall angle, defined as the charge to spin conversion efficiency γsH = |σzxy/σxx|, the

diagonal conductivity in the denominator was also computed using the KPM method, in

order to keep both within the same approximation.

Both methods allow us to simulate large system sizes; the quantum conductivity calcu-

lations in this article were performed on a 500 nm2 system consisting of 9.2 million atoms,

while for the spin Hall conductivity simulations we considered a 400 nm2 system consisting

of 8.3 million atoms. The Chebyshev expansion of the Green’s functions was performed with

M = 4096 expansion moments47,48 and the Jackson kernel, which is equivalent to a Gaussian

broadening of 10 meV.49 The trace in both cases was determined stochastically by using

exponential random phase vectors.50 The spin Hall conductivities were computed within the

PRACE infrastructure using 2000 cores per run, accumulating a total of 10 million hours.
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Figure 1: Spin Hall conductivity σ
z (0)
xy (εF ) in the absence of disorder for different

graphene/TMDC heterostructures, which serves as a proxy for the capability of a system to
host the SHE. In the inset we show the spin Hall conductivity arising from only the sub-
lattice-dependent intrinsic SOC (red and black curves, see text), indicating that this term is
responsible for the peak in the main panel. We also show a comparison between the analyt-
ical calculation51 and our numerical approach for the pure Rashba case with λR = 0.1t, to
validate our methodology (orange curve and symbols).

Results

In Fig. 1 we show the spin Hall conductivity for different graphene/TMDC heterostruc-

tures in the absence of disorder σz (0)
xy (εF ). In contrast to the dissipative conductivity, which

is defined only in the presence of disorder, the spin Hall conductivity for a perfect crys-

tal is proportional to the Berry phase,52 which gives the topological contribution to spin

transport.51,53,54 In the presence of a scalar disorder such as electron-hole puddles, this con-

tribution is expected to be the main source of the intrinsic spin Hall effect, and therefore

can be used as a reference to examine the potential for charge-spin conversion of a given

material under these conditions. Fig. 1 shows that all graphene/TMDC heterostructures

possess non-zero spin Hall conductivity, which is consistent with previous experimental re-

sults.22 Additionally, we find that the graphene/WS2 heterostructure stands out as the most

promising for large spin Hall angles. In the inset of Fig. 1, we show σ
z (0)
xy arising only from

the sublattice-dependent intrinsic SOC. The magnitude of the peak near εF = 0 indicates

that the main contribution to the spin Hall conductivity comes from this term, which can
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Figure 2: Diffusive conductivity for graphene/WS2 heterostructures as a function of the
carrier density for different kinds of disorder: Up = 0.5 eV and conc = 1% (solid black line),
Up = 1.4 eV and conc = 0.1% (dashed red line), Up = 2.8 V and conc = 0.1% (dotted green
line). Inset: momentum relaxation time as a function of the Fermi energy.

be separated into two contributions,23 a standard intrinsic SOC and a valley Zeeman SOC

that couples spin and valley degrees of freedom. Due to this spin-valley coupling, one can

conjecture that the relation between intra- and intervalley scattering can greatly impact the

spin Hall effect in these heterostructures.

Although σz (0)
xy can be used as a starting point to determine the potential for spin Hall

effects in these heterostructures, one also needs to consider the effect of disorder to correctly

compute the spin Hall angle. For this purpose, we incorporate electron-hole puddle disorder

into our system, and we follow the conclusions of previous studies35,36 to control the ratio

between the intra- and intervalley scattering rates πi.v ≡ τ−1
intra/τ

−1
inter. We consider two types

of puddles with similar mobilities µ ≈ 104 cm2/Vs but different values of πi.v: Up = 0.5

eV and conc = 1%, versus Up = 1.4 eV and conc = 0.1%, with ratio πi.v 1000 and 160

respectively.35 We also consider a third type of puddle with Up = 2.8 eV and conc = 0.1%,

which has a lower mobility µ ≈ 1000 cm2/Vs and a much smaller value of πi.v = 5 .35 The

charge mobilities were obtained from the conductivity simulations, computed using the KPM

method, presented in Fig. 2, in this plot we also show the momentum relaxation time τp as

a function of Fermi energy (inset). The transition from a peak to a dip of τp at the Dirac
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point can be linked to the transition between pure intravalley scattering and a mix of inter-

and intravalley scattering.36
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Figure 3: (a) Spin Hall angle γsH for two puddle characteristics : Up = 2.8 eV and conc=0.1%
(thick black line) and Up = 1.4 eV and conc=0.1% (dashed red line). Inset: Spin Hall
conductivity for the same puddles and in absence of disorder (dotted blue line) (b) Diffusive
conductivity for graphene/WS2 heterostructure at the Dirac point with (solid line) and
without (dashed line) SOC for the puddle parameters Up = 0.5 eV, conc=1% .

In Fig. 3(a) we show the spin Hall angle γsH = |σzxy/σxx| computed in the graphene/WS2

system for these puddles. The highest charge-to-spin conversion was found to be 4% for

the shallowest puddles (Up = 0.5 eV). Interestingly, despite the similar mobilities between

the shallow and intermediate (Up = 1.4 eV) puddle disorder, the spin Hall angle suffered a

reduction of 50% for the latter case. Meanwhile, the spin Hall signal is markedly suppressed

for the case of strong puddles (Up = 2.8 eV), see Fig.4(b)-inset. This trend is also evident in

the spin Hall conductivity for these three systems, see Fig.3(a)-inset.

As shown earlier, the main contribution to the spin Hall effect comes from the sublattice-

dependent intrinsic SOC induced in the graphene by the TMDC (Fig. 1 inset). Although

broadening induced by intravalley scattering processes could suppress the SHE arising from

intrinsic SOC, it should also affect the mobility of the sample in a similar fashion, leaving

the spin Hall angle insensitive to the intravalley scattering rate. Instead, we attribute this

reduction to intervalley scattering. The spin Hall effect for this type SOC is indeed very
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sensitive to the spin-valley locking induced by proximity effects. Since the state of a carrier

is completely defined by its momentum p, its spin sz = ±1, and its valley τz = ±1 quantum

numbers, by invoking Haldane’s argument,55 one can state that in presence of an intrinsic

SOC (λ
(A)
I = λ

(B)
I = λI), the effective mass of an electron with given spin and valley is

m(sz, τz) = szτzλI, which changes sign when switching spin or valley. Thus, when intervalley

scattering is dominant the electron is continuously scattered from one valley to the other,

which changes the sign of its effective mass. On average, this process effectively reduces the

mass of the carrier, leading to a suppression of SHE. With valley Zeeman SOC (λ
(A)
I 6= λ

(B)
I )

the argument is similar; the sign of sz is opposite in opposite valleys, such that intervalley

scattering will also lead to an average reduction of the effective mass.

With respect to transport measurements, WL and WAL are quantum corrections of the

semi-classical conductivity which are strongly related to the nature of disorder and symmetry

breaking effects at play in the system. Both WL and WAL originate from the scattering of

coherent electrons around a closed loop, which they traverse in clockwise and anticlockwise

directions and interferes at the point of intercept. In the absence (presence) of SOC, the

interference at the intercept is constructive (destructive), giving rise to the WL (WAL)

phenomenon. In graphene, the relative strength of intra- versus intervalley scattering is

essential because it dictates which localization phenomenon dominates the low temperature

transport.34,56 In the absence of SOC and intervalley scattering, WAL can be obtained due

to the pseudospin degree of freedom, but WL dominates as soon as valley mixing is increased

by short range disorder.34,56 The presence of SOC is then essential for generating WAL in the

presence of intervalley scattering, although its observation in graphene also depends on the

nature of symmetry breaking effects, as theoretically demonstrated by McCann and Falko.57

Fig. 3.(b) shows the diffusive conductivity for the weaker puddles, although a similar

picture is obtained for the intermediate ones. As can be observed, the diffusive conductivity

is slightly suppressed when the SOC is turned on (solid line). This is due to the modification

of the band structure, which becomes slightly more massive and therefore favors backscat-
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tering.35 Fig. 4.(a) shows the dissipative conductivity for the strongest puddles with (solid

line) and without SOC (dashed line). Here one can observe a clear transition from WL

in the absence of SOC to WAL once the SOC is turned on. This is consistent with the

fact that intervalley scattering plays a fundamental role in determining which localization

phenomenon dominates.56,57 Additionally, the presence of SOC is expected to lead to WAL

as long as mirror symmetry is broken,56,57 which is the case for this system. However, Fig.

4.(b) shows that under this conditions, the spin Hall conductivity is significantly suppressed,

and the spin Hall angle becomes much less than 1%, which is again, a consequence of the

fluctuating effective magnetic field that the electron feel due to intervalley scattering.
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Figure 4: (a) Kubo conductivity for graphene/WS2 at the Dirac point with (solid line) and
without (dashed line) SOC for the puddle parameters Up = 2.8 eV, conc=0.1%. (b) σzxy for
the same puddle parameters (solid black line), with the clean case is shown for comparison
(dotted blue line). Inset: Spin Hall angle for the same parameters; the maximum spin Hall
angle obtained for the weak puddles is also shown as a reference (dotted line).

Discussions

In summary, we computed the spin Hall conductivities for different graphene/TMDC het-

erostructures, and found that all of them have sizable amplitude, as needed to observe

the spin Hall effect, although the graphene/WS2 heterostructure seems to be the most ef-
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ficient one. By incorporating electron-hole puddles, we simulated samples with mobilities

µ ≈ 10000 cm2/Vs and found a spin Hall angle which can reach γsH ∼ 4%. The origin

of γsH is related to the sublattice-dependent intrinsic SOC, induced by proximity with the

TMDCs. By varying the ratio of disorder-induced valley mixing, we showed that SHE in

graphene/TMDC heterostructures is highly sensitive to inter-valley scattering and is more

strongly suppressed by short-range disorder and large valley mixing. This information is

key for the design of experiments aiming at observing SHE in such systems, since structural

defects and grain boundaries,58,59 which cause intervalley scattering and are usually found

in large-area graphene materials, are clearly detrimental to strong SHE signals. We also

reported on the opposite impact of SOC on the spin Hall effect and weak antilocalization

phenomena,21–23 suggesting that the clear observation of WAL, despite providing unques-

tionable evidence of proximity-induced SOC, might simultaneously indicate valley mixing

and vanishing of the SHE.

It should be noted that the calculated values for γsH do not reach the experimental

values > 10% that have been reported to date.24 Additionally, one observes that the spin-

orbit coupling parameters extracted from WAL experiments,21 differ by almost one order

of magnitude compared with those obtained from DFT.28 Different attempts to fit these

parameters attribute this difference to a weak strain field that pulls graphene closer to the

TMDC, hence increasing the proximity effect. Nevertheless, our results showed rather large

γsH even without considering this effect of SOC enhancement. One can thus anticipate that

by "artificially" increasing the SOC-parameters used in the tight-binding model, larger γsH

could be easily obtained. Finally we also mention that our findings give an upper limit for

the intrinsic spin Hall effect since the origin of the spin separation is entirely driven by spin

splitting and spin textures of the bands. On the other hand, different types of defects could

also lead a local rescaling of the spin-orbit interaction, and thus also generate an extrinsic

spin Hall effect which would be superposed on the intrinsic SHE.

We finally note that our findings could also be of interest in the context of multifunctional
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spintronic/valleytronic systems based on TMD/graphene heterostructures, in the light of

recent demonstrations of spin field effect transistors60,61 and hybrid spin valves based on

optically-stimulated spin injection.62
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