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Abstract

Molecular dynamics is used in combination with density functional theory to determine the

thermal transport properties of the single-layer hexagonal boron nitride (SL h-BN) from ab initio

calculations. Within this approach, the possible anisotropy in the thermal conductivity of SL h-BN

was studied. For samples with finite length (of the order of 20 nm), we find a significant dependence

of the conductivity on the transport direction. We make a direct comparison of the results obtained

for 2D layers and for nanoribbons with similar size, and show that, as a consequence of edge

scattering, the ribbon geometry induces a significant decrease in the conductivity, and produces a

strong change in the anisotropy. For the zigzag and armchair transport directions, the dependence

of the thermal conductivity on the system length was also obtained, as well as its value in the

2D-bulk limit case. A very small anisotropy was found for the limit of long samples, in contrast

with the finite length ones. This is explained analyzing the dependence of the average square group

velocities on the transport direction and the phonon frequency.
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INTRODUCTION

The novel properties of carbon-based honeycomb structures [1–5] have stimulated strong

interest in isomorphic two-dimensional (2D) materials such as hexagonal boron nitride (h-

BN). The strong covalent bond between B and N atoms by sp2 hybridization [6] and its

honeycomb atomic structure result in some of its physical properties being similar to those of

graphene, like e.g.: strong mechanical properties, high thermal stability and superior thermal

conductivity [7–11]. The fact that h-BN is an insulator, makes it an almost ideal insulating

and dielectric layer for graphene based electronics. As a matter of fact, the feasibility of

graphene/h-BN devices with improved electrical properties in comparison to the graphene

on amorphous SiO2 substrate counterpart has been demonstrated [12]. Moreover, the high

thermal conductivity of h-BN makes it perfect for the thermal management in nanodevices

where efficient heat dissipation is a key factor [13].

Understanding the lattice thermal transport properties of single layer (SL) h-BN is cru-

cial for the design of novel nanodevices as well as for improving our fundamental insight into

the behavior of phonon transport in 2D layered structures [14–16]. Recently, thermal con-

ductivities in few-layer h-BN samples were measured obtaining: 360 W/mK for the 11-layer

h-BN sample [17], 227-280 W/mK for the 9-layer sample [10], 250 W/mK for 5-layers [17]

and 484 W/mK for 2-layers [18]. In contrast, the highest recorded thermal conductivity of

bulk h-BN is around 400 W/mK [19] at room temperature. Despite sharing similar lattice

structure with graphene, the obtained thermal conductivities of h-BN are significantly lower

than for their carbon counterparts.

From the theoretical point of view, the thermal conductivity of h-BN has been extensively

studied, but most of the studies were focused on nanoribbon structures. Thermal conduc-

tivity in two-dimensional layers was computed using model potentials from the Einstein

relations, obtaining 460 W/mK [20], Green Kubo formalism 400 W/mK [21] and solving

the linearized Boltzmann transport equation (BTE) 780-810 W/mK [22], where the Ter-

soff potential was adopted. Other approaches such as tight-binding models have also been

used in combination with molecular dynamics to study polycrystalline h-BN for different

grain sizes reporting values close to 600 W/mK for the infinite limit [23]. More recently,

Cepellotti et al. have solved the linearized BTE equation using parameters obtained from

Density Functional Perturbation Theory (DFPT) for SL h-BN reporting 1050 W/mK as the
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value of the bulk thermal conductivity [24]. This result is the most accurate value from first

principles calculations to date since it is based on the exact solution of the BTE equation

where phonon frequencies, phonon lifetimes and scattering rates have been computed fully

ab initio by DFPT. Concerning the thermal properties in nanorribons, the values reported

so far are significantly lower than the 2D infinite monolayer counterpart. Moreover, strong

dependence as a function of the width and the length of the ribbon has also been observed

[25, 26]. Although it was reported that the thermal conductivities for zigzag and armchair

oriented nanoribbons are different [21, 25, 27] suggesting a possible anisotropy, the only work

that has studied systematically the thermal conductivity as a function of the orientation of

the ribbon was done by Y. -C. Chen et al. [26] by Non Equilibrium Molecular Dynamics

(NEMD) using Tersoff-type potentials. They have reported anisotropy due to the boundary

scattering in the free edges of the ribbon in a similar case to the graphene nanostructure

[28].

In this work, the Approach to Equilibrium Molecular Dynamics (AEMD) [29–31] method

was used in combination to density functional theory (DFT) as implemented in Siesta [32]

to elucidate from first-principles the possible anisotropy in SL h-BN. The AEMD approach

was used since it has demonstrated that its computational cost is reduced compared to other

MD techniques [29, 30] and, therefore, it optimally matches the high computational demands

posed by DFT calculations. Siesta shows a comparatively high numerical efficiency due to

the description of the electronic wavefunctions by means of strictly localized basis sets. By

combining AEMD with Siesta we have reached an unprecedented computational efficiency

which the possibility to determine accurately the thermal conductivity in h-BN from ab-

initio MD.

THEORY AND COMPUTATIONAL SETUP

The evaluation of the thermal conductivity was done using the Approach to Equilibrium

Molecular Dynamics (AEMD) methodology as described in [29, 30]. This approach evaluates

the thermal conductivity from the temperature transient regime using the exact solution

of the heat transport equation for an initial step-like temperature profile. The system is

initially decomposed in two different regions (subsystems 1 and 2) characterized by average

temperatures 〈T1〉 and 〈T2〉, respectively. The average temperature at given time t is defined
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as 〈T 〉 = 1
L

∫ L
0 T (z, t)dz being L the subsystem length. From the solution of the heat equation

for the above initial condition, the time evolution of the average temperature difference is

expected to have the form

∆T (t) = 〈T1〉 − 〈T2〉 =
∞∑
n=1

Cne
−α2

nκ̄t (1)

where

Cn = 8(T1 − T2)
[cos(αnLz/2)− 1]2

α2
nL

2
z

(2)

being αn = 2πn/Lz, Lz the length of the total system and n an integer number. From the

thermal diffusivity κ̄, the thermal conductivity κ can be obtained as

κ =
κ̄Cv
V

(3)

where V is the total system volume and Cv is the heat capacity. The quasi harmonic

approximation [33] was used to evaluate the heat capacity Cv needed for the calculation of

the thermal conductivity (see eq. 3). Cv at given temperature T can be directly calculated

from the phonon density of states (DOS) g(ν) using the following expression [34]

CQHA
v = rNkB

∫ ∞
0

dνg(ν)W (hν/kBT ) (4)

with the weighing factor W (x) = x2ex/(ex − 1)2. h is the Planck constant, kB is the

Boltzmann constant, ν is the frequency of the phonons and r andN are the number of degrees

of freedom and the number of atoms in the unit cell, respectively. From the heat capacity,

the Debye temperature ΘD can be also obtained by fitting CQHA
v (T ) to the expression for

the heat capacity under the Debye approximation for 2D materials [35]

CDebye
v = 6NkB

( T
ΘD

)2
∫ ΘD/T

0

x3ex

(ex − 1)2
dx. (5)

This magnitude is a measurement of the temperature above which basically all modes are

excited and below which some modes are instead frozen out.

All the simulations were performed using the ab-initio Siesta code [32, 36] taking advan-

tage of its molecular dynamics package in combination to DFT for the forces determination

(see Supporting Information for the code implementation). Within this combination, the

time dependent positions and velocities of the atoms are described by fully ab-initio inter-

atomic forces in contrast to force fields methods based on empirical potential approaches.
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The DFT-Siesta calculations were performed using norm-conserving Troullier-Martins

[37] pseudopotentials with nonlinear core corrections within the local density approximation

(LDA) with a Ceperley-Alder [38] exchange-correlation potential as parametrized by Perdew-

Zunger [39]. A non-optimized Siesta single-ζ basis set [40] was used to describe the valence

electrons, and a mesh cutoff of 800 Ry for the real-space grid [32]. The h-BN unit cell

and the atomic positions were relaxed using conjugate gradients until the forces acting on

each atom were smaller than 0.04 eV/Å. The first Brillouin zone (FBZ) was sampled by a

8×8×1 k-points mesh. The convergence criteria for the electron density matrix was chosen

as 10−4 between two consecutive steps. In order to properly describe a single layer h-BN, a

large spacing of 10 Å of vacuum was added in order to prevent interaction between periodic

images. The optimized lattice constant and the B-N bond distance were a=2.511 Å and

d=1.450 Å, respectively, in good agreement to the values reported on [41–44]. Phonon

calculations were done using finite differences: we obtain the dynamical matrix from the

atomic forces in a large enough supercell, caused by atomic displacements of the atoms in

the unit cell of 0.04 Bohr from their equilibrium positions.

To perform the AEMD simulations, the simulation box was divided in two equal sub-

systems containing the same number of atoms and dimensions. Starting from a random

Maxwell-Boltzmann velocity distribution, the initial step-like temperature profile was cre-

ated during the equilibration run. At this stage, the subsystems were coupled to external

Berendsen thermostats which rescale appropriately the atomic velocities of each subsystem

in order to reach the target temperatures 〈T1〉 = 400 K and 〈T2〉 = 200 K, respectively. The

average temperatures were obtained from the kinetic energy of the atoms in each subsystem.

The number of equilibration steps was 500 and the equations of motion were integrated by

the Velocity Verlet algorithm using 2 fs time step. Previous tests provided evidence that

this number of steps is enough to reach the target temperatures and the calculated thermal

conductivity is independent of the number of steps in this equilibration stage. Once the

initial temperature profile was created with ∆T (0) = 200 K, the system was aged by a

microcanonical run for which the time dependence of the temperature difference (eq. 1) was

monitored. Each simulation was repeated 5 times starting from different initial distributions

of the atomic velocities and, therefore, all calculated thermal conductivity values have been

obtained as a configurational average. The number of fitting exponentials was set to n = 20

in eq. 1 and the thickness in the perpendicular direction is chosen as the experimental one
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of the corresponding 3D material 3.306 Å as is usually done in these simulations [24, 26].

FIG. 1. Simulated h-BN samples for three orientations. Eight orientations were studied with

different chiral angles (from the zigzag to the armchair).

In order to assess any anisotropy in thermal transport, our simulation boxes are build

from a 2D single layer, by defining rectangular samples of material with a given orientation

angle σ (measured with reference to the zigzag direction), and with lengths Lz and Ly in

the directions parallel and perpendicular to transport, respectively, as indicated in Fig. 1.

The number of atoms in the direction of transport was made as large as possible, while

the length in the perpendicular direction was reduced to a minimum. Periodic boundary

conditions are used in the MD runs in which we simulate the 2D single layer. 2D samples

were used to determine the thermal conductivity along the zigzag and armchair directions

as a function of the system length. The width of the zigzag samples were Ly = 0.869 nm

while 10 nm ≤ Lz ≤ 100 nm. The corresponding number of atoms in the systems varied

from 320 to 3200. Similar numbers were obtained for the armchair case but the width of

the samples was Ly = 1.004 nm. Eight different orientation were studied from the zigzag

(ZZ) configuration (σ = 0◦), to the armchair (AC) configuration (σ = 30◦), with system

sizes around Lz ≈ 20 nm and Ly ≈ 0.86 nm (see Supporting Information section for further

system details).

Concerning the simulation of finite-width structures, the zigzag and the armchair BN

nanoribbons (ZZBNNR and ACBNNR) were created starting from the previous systems
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including extra layer of vacuum (10 Å) in the y-direction. Since our calculations are based

on the DFT approach, the free dangling bonds have to be correctly passivated. Thus, the

edges of the ribbons were passivated including H atoms in order to maintain the appropriate

atomic coordination. The H atomic mass was increased to a comparable value as the N and

B to perform the integration of the equations of motion using the previous defined time step.

FIG. 2. (a) Calculated phonon dispersion relation of SL h-BN in the FBZ along the high-symmetry

directions (solid line). The symbols correspond to the phonon modes calculated within DFTP

using PWSCF software extracted from [41]. (b) Phonon density of states (DOS) for the 2D BN

honeycomb structure.

RESULTS AND DISCUSSION

Phonon and thermal properties

Fig. 2(a) shows the calculated phonon dispersion curves of SL h-BN along symmetry

lines in the first Brillouin zone (FBZ), and Fig. 2(b) the corresponding phonon density of

states (DOS). This figure also shows a direct comparison between the present phonon bands

obtained by finite differences from Siesta using a single-ζ basis set (solid line) and those

(symbols) calculated within density functional perturbation theory (DFPT) using plane-

wave methods as implemented in the PWSCF code [45] taken from ref. [41]. A rather good

agreement is obtained specially for the flexural acoustic (ZA), longitudinal acoustic (LA) and

transverse acoustic (TA) modes which are the principal phonon modes that contribute to
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the thermal transport. This agreement stands for the accuracy and reliability of the present

computational setup. Similar to other 2D materials [46, 47], the LA and the TA branches

are linear near the Γ point, while the ZA branch is quadratic. Although the frequencies of

the longitudinal and transverse optical branches (LO and TO) are slightly overestimated,

these phonons do not contribute significantly to the thermal transport [48]. These small

discrepancies, due to the use of a minimal basis set (single-ζ, selected to minimize the very

high computational demands of the DFT-AEMD simulations) are expected to have a minor

effect on the computed thermal transport properties, while the computational cost is greatly

reduced.

FIG. 3. Calculated Cv of SL h-BN in the harmonic approximation (solid line). The dashed line

corresponds to the fit using the Debye approximation in order to evaluate ΘD.

Fig. 3 shows the calculated CQHA
v and the fitting to the Debye model (eq. 5). This model

is used to fit the Cv in the low temperature range, and the calculated Debye temperature

ΘD lies between 1150 K and 1690 K, depending on the upper temperature limit of the

fit. The discrepancies in the fit at low temperature arise from the assumption that, in the

Debye model, the 3 acoustic bands are well described by a linear dispersion relation with a

common group velocity vs. This assumption is not true for the ZA phonon band which has

a parabolic dispersion and dominates the Cv behaviour at low temperatures. The obtained
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Debye temperature is higher than the reported one for bulk h-BN which is around 1500 K

[34]. On the other hand, the Debye temperature ΘD can also be calculated from the average

sound velocity vs as [49]

ΘD =
h̄vs
kB

(4πN

S

) 1
2 (6)

where h̄ is the reduced Planck constant, N is the number of atoms in the unit cell, S is the

area of the unit cell and the avearge maximum sound velocity is given by

vs =
[1
3

( 1

v2
l

+
1

v2
t

+
1

v2
z

)]− 1
2 (7)

which accounts the group velocities of the longitudinal (vl), transverse (vt) and out of plane

(vz) acoustic modes which are taken from Fig. 2. The calculated Debye temperature using

eq. 6 was ΘD = 1030 K which is close to the lowest value calculated directly from the

Debye model (1150 K) reflecting that the Debye model is only valid in the low temperature

limit. This result can be compared to the Debye temperature of other 2D materials such

as graphene, silicene and germanene (2539 K, 680 K and 352 K, respectively) [49, 50].

Higher Debye temperatures mean larger phonon velocities and increased acoustic phonon

frequencies which suppress phonon-phonon scattering by decreasing phonon populations

[51] reflecting higher thermal conductivity. In all 2D materials, the thermal conductivity

decreases monotonically with decreasing ΘD. Thus, being the conductivity of graphene in

the range from 1000 W/mK to 8000 W/mK [52] and the conductivity of silicene κ ≈ 28

W/mK [53–55] and in view of the value of ΘD for SL h-BN, its thermal conductivity is

expected to lie in the range between graphene and silicene.

Anisotropy of the thermal conductivity in samples of finite length

We now focus on the possible anisotropy of the thermal conductivity. We first center

our study on 2D layers of finite length, which may represent the case of h-BN layers in

nanoscale devices. In order to perform a feasible systematic study along several transport

orientations, we build samples with different orientations and similar sizes, and compute the

thermal conductivity of each of them. Although, due to geometrical constraints, it is not

possible to build simulation cells with the exact same lengths for the different orientations,

in all cases we have chosen cell sizes close to Ly ≈ 1 nm and Lz ≈ 20 nm (see the Supporting

Information for further system details). Fig. 4 shows the calculated thermal conductivity
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FIG. 4. Angular dependence of the thermal conductivity for system lengths around 20 nm. σ = 0◦

corresponds to the zigzag direction and σ = 30◦ to the armchair one. The colored areas represent

the values of κ for small variations of Lz for the zigzag (red area) and armchair (green area)

orientations.

for different orientations given by 0◦ ≤ σ ≤ 30◦, i.e. ranging from zigzag to armchair. We

find that there is a sizable dependence of the conductivity with the transport direction. The

maximum thermal conductivity is found for the armchair direction, whereas the minimum

one corresponds to the zigzag and the 15◦ chiral angles. Moreover, there exists a local

maximum around 7◦. In order to ensure that the obtained anisotropy corresponds to intrinsic

properties of the SL h-BN and that the slight differences in the system sizes do not affect

the observed trend, the two extremal chiral angles (zigzag and armchair) were simulated

using the shortest and largest length (Lz) of the all orientated samples. This is reflected

in two colored regions in Fig. 4 corresponding to the zigzag (red area) and the armchair

(green area). Since both regions do not overlap, we can draw the conclusion that thermal

anisotropy is present in finite h-BN samples for the sizes considered (around 20 nm). In

particular, we obtain a ratio of the conductivities in the armchair and zigzag directions of

κAC/κZZ ≈ 1.6.

It is interesting to contrast the results for the finite size 2D samples described above with
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those of h-BN nanoribbons (BNNRs) where edge effects (edges are parallel to the transport

direction) are expected to affect the heat flux. Y. -C. Chen et al. [26] reported on the

anisotropy of thermal conductivity of BNNRs along various transport directions by Non-

Equilibrium Molecular Dynamics (NEMD) using a Tersoff-type potential. They observed

a maximum value of thermal conductivity for the zigzag σ = 0◦, two local maxima in the

armchair σ = 30◦ and in the σ = 19◦ nanoribbons, and minima of conductivity for the

13◦ and 23◦ chiral angles. Their thermal conductivity behavior was explained solving the

linearized Boltzman transport equation (BTE) under the relaxation time approximation

including an extra scattering term caused from the free lateral edges (parallel to transport

direction). This scattering term depends on the edge specularity which is a parameter related

to the edge roughness of the ribbons. From their results, the ratio between the armchair and

the zigzag directions is κNRAC /κ
NR
ZZ ≈ 0.68. This is further supported by the results from other

authors, who have reported that, for the nanoribbon case, the most conductive transport

direction is the zigzag one obtaining values around κNRAC /κ
NR
ZZ ≈ 0.6− 0.7 [21, 25, 27].

Our results for the anisotropy of 2D samples with finite length are not affected by any

boundary scattering, as in the case of the nanoribbons, since 2D samples are simulated

in periodic boundary conditions. Therefore, we conclude that Fig. 4 provides evidence of

an intrinsic anisotropy in thermal transport for finite samples, not related to any bound-

ary scattering physics. In order to further confirm this conclusion and to perform a direct

comparison with the results for BNNRs from the literature, we have calculated the thermal

conductivity of zigzag and armchair BN nanoribbons using our AEMD-Siesta methodol-

ogy. From the previous systems for the study of the thermal transport along the zigzag

and armchair transport directions, the nanoribbons were created adding extra layer of vac-

uum in the Ly direction and including H atoms to pasivate the free edge dangling bonds

(see Supporting Information for system details). The calculated thermal conductivity was

κNRZZ = 11.47 ± 0.91 W/m K for the zigzag and κNRAC = 8.63 ± 0.85 W/m K for the arm-

chair nanoribbons, respectively. These values for the nanoribbon structures are lower than

the corresponding 2D counterpart, implying the existence of extra scattering channels not

present in the bulk samples, associated with the ribbon edges. Moreover, for the nanoribbon

case, the zigzag direction has larger thermal conductivity than the armchair. The ratio is

κNRAC /κ
NR
ZZ = 0.75± 0.10 in good agreement to all the previous reported results and far from

the value obtained for the fully periodic case. We conclude that in the nanoribbon case, the

11



role played by boundaries is twofold, namely: (i) they reduce the thermal conductivity with

respect to the bulklike samples (because of boundary scattering); (ii) they change completely

the anisotropy behaviour in terms of the κAC/κZZ ratio.

FIG. 5. 1/κ vs. 1/Lz for the zigzag (a) and for the armchair (b) transport direction. Each symbol

corresponds to the average of 5 independent simulations, with the error bar showing the standard

deviation. The full line is the fit to eq. 8.

Bulklike thermal conductivity

We are now interested in the bulk-like behaviour of the thermal conductivity for the SL

h-BN samples, i.e., the limit for large sample sizes. To obtain it, AEMD simulations must

be repeated for samples with increasing length Lz, and extrapolate to the limit of infinite

Lz. We use a second order Taylor expansion for the extrapolation [30, 31]:

1

κ
=

1

κ∞
+
A

Lz
+
B

L2
z

(8)

where 1/κ∞ is the inverse of the thermal conductivity at the bulk limit Lz → ∞, and A

and B are the coefficients of the linear and quadratic terms, respectively. 1/κ∞, A and

B are obtained from the fitting of the computed values of κ for different lengths Lz to
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eq. 8. Fig. 5 shows the corresponding 1/κ vs. 1/Lz plots and the fitted curves to the

simulated data for the zigzag and the armchair orientations. The bulk thermal conductivity

values are κZZ∞ = 1003 ± 150 W/mK for the zigzag and κAC∞ = 1160 ± 260 W/mK for the

armchair orientations. The errors of the fitted κ∞ reflect both the dispersion around the

functional form assumed for the fitting curve, and the error bars associated for each point.

These values of the bulk thermal conductivity agree well with the most accurate one of 1050

W/mK obtained by Cepellotti et al. [24] solving the linearized BTE equation using DFPT

data for h-BN. This value is very close to the average over both directions (κZZ∞ + κAC∞ )/2

obtained in this work. In comparison to other two-dimensional materials with the same

honeycomb atomic structure such as silicene or graphene, the thermal conductivity of SL

h-BN is one order of magnitude larger than that of silicene (28 W/mK) [53–55] and much

lower than that of graphene (1000-8000 W/mK) [52], which is the most conductive material.

It is interesting to note that the thermal conductivity of the SL h-BN is larger than the

bi-layer (484 W/mK) [18] and bulk (≈ 400 W/mK) [19] counterparts.

From the extrapolated value of 1/κ∞ for both zigzag and armchair directions, we observe

a noticeable but small anisotropy in the bulk limit However, the difference is much smaller

than that obtained for finite samples, and for the nanoribbon structures. We, therefore,

conclude that, for large area SL h-BN, thermal conduction is nearly isotropic, whereas small

samples do present a marked anisotropy. In order to understand this finding, we have ana-

lyzed the average square group velocities of the acoustic branches along the high symmetry

directions. From the solution of the BTE under the relaxation time approximation, the

thermal conductivity for phonons with a given frequency ω can be written as [56]

κω,α =
1

kBT 2NV
f0(1 + f0)(h̄ω)2

∑
λ

v2
λ,ατλδ(ω − ωλ) (9)

where N is the number of points of the k-sampling of the Brillouin zone, V is the volume

of the unit cell, f0 is the Bose-Einstein distribution function, τλ is the relaxation time per

phonon mode λ and vλ,α is the group velocity along the α direction. Since κω depends on the

square of velocity v2, a detailed study of v2 along the armchair (Γ −M k-point bandpath)

and zigzag (Γ−K k-point bandpath) directions can reveal the origin of the anisotropy. The

average square group velocity in one direction α was calculated with the following expression

[56]

v2
α(ω) =

∑
λ

v2
λ,αδ(ω − ωλ)/

∑
λ

δ(ω − ωλ). (10)
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The δ function was approximated with a Gaussian one using adaptive broadening parameter

depending on the mode group velocity [57].

FIG. 6. The average square group velocities of the acoustic phonon branches along the different

directions: Γ−M for armchair and Γ−K for zigzag, respectively.

Fig. 6 shows the average square group velocity along the high symmetry lines calculated

from the phonon dispersion curve presented before (see Fig. 2). Only the acoustic phonon

branches (ZA, LA and TA) were used for this calculation since, in 2D materials, the thermal

transport is practically mediated by acoustic phonons. It is clearly shown that the main

differences are in the range of high phonon frequencies whereas for low frequencies, the

square group velocity is quite similar. We remark that in 2D materials, the low frequency

acoustic phonons play the dominant role in the thermal conductivity. Thus, when the length

of the system increases, more low frequencies (long wavelength) phonons are excited and

contribute to the thermal conduction [58]. In view of the above and taking into account

the calculated v2 behavior, for shorter systems the conductivity is mediated by phonons

with high frequencies which have different group velocities, leading to anisotropic transport

behavior along the zigzag and the armchair directions. However, when the length of the

system increases, phonons with lower frequencies are excited which have comparable square

group velocities along the two directions resulting in a similar thermal conductivity. This
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qualitative argument is supported by the fact that the value of v2 in the armchair direction

is greater than in the zigzag one in the high frequency range, leading to a higher thermal

conductivity in that direction for short samples, as discussed above.

CONCLUSIONS

The thermal transport properties of single-layer hexagonal boron nitride were studied us-

ing AEMD in combination to DFT. The thermal conductivity along the zigzag and armchair

directions as a function of the sample length was presented determining that the value of

the bulk κ is around 1050 W/m K for both directions in agreement to recent publications.

Moreover, in the bulk limit case, the results point out that the anisotropy in the thermal con-

ductivity is small. A systematic study of the thermal conductivity along several orientations

ranging from 0◦ to 30◦ rotation angle was done for finite samples. From the studied samples

(20 nm length), the maximum conductivity is obtained for the armchair direction (30◦) as

well as a local maximum appears at 7◦ whereas the zigzag (0◦) one shows lower conductivity.

The observed length dependent anisotropy in the SL h-BN is explained with the average

square group velocities as follows: for shorter systems the phonons that contribute to the

thermal conductivity are the ones with larger frequencies being v2 quite different for the

zigzag and armchair directions leading to anisotropy in the thermal conductivity. However,

as the length of the system increases, more phonons with lower frequencies contribute to κ

whose have comparable square group velocities resulting in a similar thermal conductivity.
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[22] L. Lindsay and D. A. Broido, Phys. Rev. B 85, 035436 (2012).

[23] J. E. Barrios-Vargas, B. Mortazavi, A. W. Cummings, R. Martinez-Gordillo, M. Pruneda,

L. Colombo, T. Rabczuk, and S. Roche, Nano Letters 17, 1660 (2017), pMID: 28195494,

http://dx.doi.org/10.1021/acs.nanolett.6b04936.

[24] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Marzari, Nature Com-

munications 6, 6400 (2015).

[25] A. Tabarraei, Computational Materials Science 108, Part A, 66 (2015).

[26] Y.-C. Chen, S.-C. Lee, T.-H. Liu, and C.-C. Chang, International Journal of Thermal Sciences

94, 72 (2015).

[27] A. Tabarraei and X. Wang, Applied Physics Letters 108, 181904 (2016),

http://dx.doi.org/10.1063/1.4948650.

[28] T.-H. Liu, S.-C. Lee, C.-W. Pao, and C.-C. Chang, Carbon 73, 432 (2014).

[29] E. Lampin, P. L. Palla, P.-A. Francioso, and F. Cleri, Journal of Applied Physics 114, 033525

(2013), http://dx.doi.org/10.1063/1.4815945.

[30] C. Melis, R. Dettori, S. Vandermeulen, and L. Colombo, The European Physical Journal B

87, 96 (2014).

[31] H. Zaoui, P. L. Palla, F. Cleri, and E. Lampin, Phys. Rev. B 94, 054304 (2016).

[32] J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera, P. Ordejn, and D. Snchez-Portal,

Journal of Physics: Condensed Matter 14, 2745 (2002).

[33] W. G. H. Maraudin A. A., Montroll E. W. and I. I. P., Theory of Lattice Dynamics in the

Harmonic Approximation, (1971).

[34] T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, Phys. Rev. B 73, 064304 (2006).

[35] V. N. Popov, Phys. Rev. B 66, 153408 (2002).

17



[36] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garćıa, J. Junquera, R. M. Martin,
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