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Abstract 33 

Biodiesel represents an interesting alternative to fossil fuels. Traditionally the standard method for 34 

biodiesel production from oils is alkaline–catalyzed transesterification. Chemical catalysis can be 35 

replaced by enzymatic catalysis using lipases (EC 3.1.1.3, triacylglycerol acyl hydrolases), obtained from 36 

plants, animals or microorganisms. These biocatalysts act at milder temperature and normal pressure 37 

conditions, resulting in lower energy consumption. Also, undesirable side-reactions do not occur, 38 

originating pure products.  39 

Refined vegetable oils are the most common feedstocks for biodiesel production, accounting for 70-80% 40 

of the overall biodiesel production costs. The search for low-cost feedstocks, i.e. non-edible oils and high 41 

acidic waste oils/greases, is an alternative to make biodiesel competitive. Non-regioselective and sn-1,3-42 

regioselective lipases can catalyze esterification of free fatty acids and transesterification of 43 

triacylglycerols with good yields. The lipases used as catalysts for biodiesel production must present 44 

alcohol resistance, thermo-tolerance, high stability and activity.  45 

Recently, enzymatic processes for biodiesel production have been implemented at industrial scale. 46 

Despite this trend, the conventional chemical process still remains the most popular, mainly due to the 47 

high cost of commercial lipases.  48 

This review consists of an update of the state of the art of enzymatic biodiesel production, including 49 

legislation, feedstocks, lipases used for biodiesel synthesis, the role of acyl acceptors and strategies to 50 

avoid lipase inactivation, the mechanisms proposed for biocatalysis and the enzymatic bioreactors used. 51 

In addition, the economics of the bioprocess is also presented.  52 
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 102 

1. Introduction 103 

Biodiesel production is widely implemented at industrial level, representing an increased alternative to 104 

fossil fuel by the depletion of fuel reserves, with environmental benefits, because their use reduces CO 105 

and polycyclic aromatic hydrocarbon emissions [1]. The use of biodiesel is also favored by the legislation 106 

and mandates by the countries in the last years. 107 

The standard method in industry to transform oil into biodiesel (fatty acid ethyl esters, FAEEs; or fatty 108 

acid methyl esters, FAMEs) is alkaline–catalyzed transesterification. However, some problems have been 109 

described chemical biodiesel industries, namely (i) the low quality of glycerol produced due to the 110 

presence of impurities formed by undesirable side-reactions, catalyzed by the non-selective chemical 111 

catalysts, (ii) the need for high cost operations for biodiesel recovery and purification and (iii) the 112 

generation of large amounts of pollutant alkaline effluents during catalyst inactivation and biodiesel 113 

washing and recovery steps.  114 

To overcome these problems, chemical catalysts can be replaced by enzymatic catalysts (lipases, EC 115 

3.1.1.3, triacylglycerol acyl hydrolases) which are highly selective and can act at lower temperatures and 116 

normal pressure conditions. These properties allow for lower energy consumption than in chemical-117 

catalyzed processes, and the formation of pure products in higher yields, since undesirable side-reactions 118 

do not occur. Also, in lipase-catalyzed processes, raw materials of different origins and low-quality (e.g. 119 

high free fatty acid and water contents) can be used. In the presence of high acidic oils, lipases can 120 

convert free fatty acid (FFA) to FAMEs (or other alkyl esters) by esterification and TAG to FAMEs by 121 

transesterification.  122 

When immobilized lipases are used, the end of the reaction is easily controlled by removing the 123 

biocatalyst from the reaction medium by filtration or centrifugation and easier phase separation is 124 

observed because no emulsions are formed [2-4]. Fewer unit operations are needed, since biodiesel 125 

washing to remove the catalyst and purification steps are no longer necessary, with a subsequent 126 

reduction in the volumes of generated effluents.  127 

The main limitations to substitute chemical catalysis by enzymatic catalysis of biodiesel in industrial 128 

large-scale processes are the cost of the lipases [5] and the cost of raw materials to ensure the economic 129 



feasibility of the bioprocess. In fact, the cost of feedstocks represents 70- 85 % of production cost of 130 

biodiesel [6-10]. Nowadays the use of feedstock from nonedible, waste, wood, and microbial oils is the 131 

cheapest alternative [11].  Thus, the response of the scientific community has been since 2007 a deep 132 

research in this field. 133 

When the key words enzym* biodiesel production are enter in ISI Web of Knowledge (IWK) data base, 134 

3541 articles are selected from 2007, with significant increasing every year up to 2015 when the scientific 135 

production seems to attain a stationary phase of around 550 articles per year. This data show the 136 

importance in the scientific community of enzymatic biodiesel production. 137 

In the following sections, an update of the current progress on the enzymatic-catalyzed biodiesel 138 

production including an overview of world legislation, potential new feedstock of oils, economics 139 

evaluation and industrial scale production are summarized. 140 

 141 

2. Biofuels and Biodiesel 142 

Biofuels are fuels produced from biomass feedstocks, used primarily for transportation, as substitutes or 143 

blended with fossil fuels. They are renewable and help to reduce pollution. Although net greenhouse 144 

gases (GHG) emissions depends on specific feedstock and production process. It is now well known that 145 

advanced biofuels (from non-food, waste or lignocellulosic feedstocks) are better in terms of reduction of 146 

GHG emissions [12, 13]. 147 

Biofuels market is estimated at 115 millions of tons for 2018 with an annual increase of 3% [14]. The US 148 

Environmental Protection Agency (EPA) identified ethanol and biodiesel as the most viable biofuels by 149 

2022 [15], whereas in Europe biodiesel has been used for more than 20 years and it is now a well-150 

established industry that provides 220000 jobs [16]. 151 

In this review, we refer to biodiesel as mono-alkyl esters of fatty acids, not to renewable diesel or green 152 

diesel, which is a mixture of diesel-like hydrocarbons, obtained by hydrogenation of vegetable oils 153 

(HVO),  and is often also called biodiesel. Indeed, diesel motor was originally designed to work with 154 

vegetable oils and later redesigned to work with fossil diesel. For this reason, diesel motors do not need 155 

for major modifications to work with biodiesel. However, biodiesel must comply with standards and 156 

maximum blends recommended by motor fabricants (Table 1). For instance, a maximum of 7 % (v/v) of 157 

biodiesel in allowed in commercialized diesel for road transportation in Europe (EN 590:2014). 158 



Table 2 presents the major advantages and drawbacks of biodiesel as biofuel. As it can be seen, 159 

environmental advantages are considerable. Biodiesel can also be used as efficient heating oil, and in the 160 

USA it is commercialized under the name of “bioheat” [17]. 161 

 162 

Table 1. Biodiesel quality legislation and available blends in selected countries/regions. 163 

Country/Region Blend* − Normative 

European Union B5-10, B25-30, B100 − EN 14214 

United States B1-B5 − ASTM D975, B6-20 − ASTM D7457, B100 − ASTM D6751 

Brazil B2-7, B100 − ANP 44/2014  

Argentina B5, B20, B100 − IRAM 6515-1 

Mexico B5, B33, B100 − To be published in 2017 

Indonesia B20, B100 − SNI 7182:2012 

Japan B2-5 − JIS K 2390 

*Volume percentage of blend is indicated as the number following the B (v.g. B5 is 5% biodiesel). 164 

 165 

Table 2. Advantages and drawbacks of biodiesel as biofuel [6, 7, 10, 18]. 166 

Issue Advantages Drawbacks 

 

Environmental -Reduction of carbon monoxide (-50%) 
and dioxide (-78%) 
-Reduction of PAH (-75-85%) 
-Reduction of carbon particles (-69 %) 
-Elimination of sulfur 
-Reduction of nitrogen oxides (-10 %)* 
-Non-toxic 
-Biodegradable 
 

-Increased aldehydes emissions 
-Increased NOx emissions* 

Motor 
performances 

-Better lubricity 
-Better ignition (as it contains oxygen) 
-Less noise 
-Safer (non-inflammable) 
 

-Corrosion, obstruction and oxidation 
problems when using biodiesel that does 
not complies with quality standards 

Economics -Energetic security 
-Fossil diesel imports reduction 
 

-High cost of feedstocks (vegetable oils) 

*Some tests report reduction and others increased emissions of NOx; NOx: nitrogen oxides; PAH- 167 

polycyclic aromatic hydrocarbons. 168 

 169 



Regarding biodiesel production in the world, in 2015 the US leaded the production followed by Brazil, 170 

Indonesia, Germany, France and Argentina. World production reached 7952 million of gallons (26.8 171 

millions of tons) in 2015 (Figure 1). 172 

 173 

 174 

Figure 1. Production of biodiesel in the world in 2015 [19]. 1 liter equals 0,26 US gallons. 175 

 176 

2.1  Bioenergy legislation in the European Union 177 

The European Union establishes that until 2020, in each Member-State, the share of energy from 178 

renewable sources in all forms of transport is at least 10 % of the final energy consumption in transports 179 

(Directive 2009/28/CE). This goal can be attained by blending different biofuels. Also, the increase in 180 

energy efficiency is an absolute need to attain fixed targets of bioenergy consumption, in a sustainable 181 

way, if the global trend of energy consumption for transports continuous to increase. Energy efficiency is 182 

also important for the reduction of GHG emissions. 183 

By 31 December 2020, a reduction by at least 6 % of GHG along the life cycle, per unit of energy of fuels 184 

used in transports in EU (e.g., road vehicles, non-road mobile machinery, agricultural and forestry 185 

tractors, recreational craft when not at sea) is mandatory for fuel and energy suppliers. Blending of 186 

biofuels has been one of the methods used to reduce the intensity of GHE of the fossil fuels supplied. 187 

Sustainability criteria for biofuels are also established by the EU (Directive 2009/28/CE).  188 



Nowadays, biofuels are mainly produced from crops installed in agricultural lands and pastures. The 189 

increase in raw-materials for biofuels is only possible either by the intensification of current production 190 

and/or by using non-agricultural lands. In addition, research on the development of novel advanced 191 

biofuels not competing with food crops must be encouraged.  Further studies on the impact of different 192 

crop groups (e.g. oil crops, sugar crops, cereals and other starch-rich crops) on both direct and indirect 193 

land use change should be promoted.  194 

The use of advanced biofuels, obtained from wastes and algae, must be implemented, since it represents a 195 

high decrease in greenhouse gas emissions, has a low risk of indirect modifications of land use. Advanced 196 

biofuels do not compete with food and feed markets, for the use of arable land. However, this type of 197 

biofuels is not yet commercially available in high amounts. Thus, research focused on advanced biofuels 198 

is needed.  199 

The consumption of advanced biofuels is promoted in the EU. It would be desirable to reach by 2020 a 200 

significantly higher level of consumption of advanced biofuels compared to the current situation. 201 

However, the minimum consumption level in each Member State will be a non-legally binding national 202 

target to achieve within the obligation of ensuring that the share of energy from renewable sources in all 203 

forms of transport in 2020 is at least 10 % of the final consumption of energy in transport in that Member 204 

State. To prepare for the transition towards the use of advanced biofuels, the amount of biofuels and 205 

bioliquids produced from oil crops, sugar crops, cereals and other starch-rich crops grown as main crops 206 

for energy purposes on agricultural land must be restrained. The targets are set out in Directive 207 

2009/28/EC.  208 

The EU is moving towards a “Recycling Society”, where waste generation must be avoided and, instead, 209 

its use as resource is desirable following a waste hierarchy (Directive 2008/98/CE; Directive 210 

2009/28/EC). The waste hierarchy is based on a priority order established according to the best overall 211 

environmental option in relation to waste legislation and policy. Member States should support the use of 212 

recyclates together with the waste hierarchy to become a recycling society. Whenever possible, the 213 

landfilling or incineration of such recyclates must be avoided.  214 

 215 

2.2 Bioenergy legislation in other countries  216 

Under the Energy Policy Act of 2005, the US Congress created the renewable fuel standard (RFS) 217 

program, which was and later expanded under the Energy Independence and Security Act of 2007, with 218 



the aim to reduce GHG emissions and expand the nation’s renewable fuels sector. The Environmental 219 

Protection Agency (EPA) authorizes annual quotas dictating the percentage of the total amount of motor 220 

fuels consumed in the USA that must be blended with biofuels. The target of renewable fuels by 2022 is 221 

36 000 million of gallons (136 274 million liters), with an increasing percentage of cellulosic and 222 

advanced biofuels (Figure 2). Regarding biodiesel, the target for 2017 is set to 2 000 million of gallons 223 

(7.6 million liters) [20]. 224 

In Brazil, in 2013 the share of renewable energy in the total primary energy supply was around 40 % and 225 

around 28 % for bioenergy. It has 75 % of renewables in its electricity supply, which qualifies Brazil as a 226 

low carbon economy [21]. The official document that is driving the national policy framework of 227 

renewable energy in Brazil was announced in December, 2015, in the Paris Conference (COP 21). Brazil 228 

set targets of GHG reductions of 37 % below 2005 levels by 2025 and 47 % below 2005 levels by 2030. 229 

Brazil also intends to increase the share of sustainable biofuels to 18 % by 2013. This includes increasing 230 

levels of advanced biofuels and increasing 78% the share of biodiesel in diesel blends to 4 602 million of 231 

tons of oil equivalent (Mtoe) by 2023 [21]. A concern in Brazil is Amazonia deforestation. However, 232 

Brazil has reduced the deforestation rate in the Brazilian Amazonia by 82 % between 2004 and 2014 and 233 

it is also strengthening policies and measures to achieve zero illegal deforestation and  also reforesting 12 234 

million hectares by 2030 [21]. 235 

China currently produces about 3 000 million liters of ethanol and about 1140 million liters of biodiesel 236 

per year.  The Chinese government has set targets to increase annual biofuels production to 12 700 237 

million liters of ethanol and 2 300 million liters of biodiesel by 2020. However, it is highly unlikely that 238 

these targets will be met, because biofuels received little attention in the recently released 13th five-year 239 

plan for China and no exact output targets were given for biofuels [22].  240 

In some countries, mandates are not still set.  However, in spite of this, biofuels have been incipiently in 241 

the market and they are becoming an attractive alternative to increasing fossil fuel prices. This is the case 242 

in Mexico, where an expected increment of 30% in fossil fuel prices for 2017 is triggering markets for 243 

ethanol [23] and biodiesel [24]. Whit the aim of developing research and markets for renewable energy, 244 

the Mexican Ministry of Energy (SENER) and the National Council of Sciences, (CONACYT) are 245 

financing National Innovation Centers on Renewable Energies (CEMIEs) through the Sustainable Energy 246 

Fund (FSE). In 2016, the Mexican Innovation Center for Bioenergy (CEMIE-BIO) started its activities. 247 



The CEMIE-BIO has been divided into five national clusters, each one focusing on a specific biofuel: 248 

biodiesel, bioalcohols, biogas, bioturbosine and solid biofuels [25].  249 

 250 

 251 

Figure 2. Targets by 2022 for the Renewable Fuels Standard (RFS) program in the USA [26]. 252 

 253 

3. Biodiesel production process 254 

Biodiesel is derived from fatty acids or from its acylglycerols through esterification or transesterification 255 

reactions with an alcohol. Water is coproduced from esterification reaction, whereas glycerol is obtained 256 

in transesterification starting with triacylglycerols (TAG) (Figure 3). Reaction proceeds in the presence of 257 

a catalyst, being basic catalysts the most common used (generally, sodium or potassium hydroxide or 258 

methoxide), acid (usually, hydrochloric acid or sulfuric acid), or enzymatic (lipases).  Reaction could also 259 

be uncatalyzed when supercritical alcohol is used. Methanol is the most commonly used alcohol, that is 260 

way biodiesel is currently referred as FAMEs (Fatty Acid Methyl Esters), but ethanol has shown to be a 261 

real alternative to methanol, in some biodiesel standards (e.g. Brazilian biodiesel). When ethanol is used, 262 

biodiesel is referred as FAEEs (Fatty Acid Ethyl Esters). Other larger-chain alcohols have been tested to 263 

minimize the inactivation problems of lipases when methanol is used as alcohol. 264 

 265 



 266 

Figure 3. Esterification (A) and transesterification (B) reactions to produce biodiesel (fatty acid alkyl 267 

esters). 268 

 269 

3.1 Chemically catalyzed reactions  270 

Table 3 presents illustrative examples of conditions and conversion of biodiesel produced with chemical 271 

catalysts, using either edible or non-edible oils as feedstock. Chemical catalysis with alkalis has been 272 

traditionally used to produce biodiesel and it is a well-established process with the advantage of the low 273 

cost of the catalyst. The high rate of conversion of TAG into FAMEs, in relatively short periods of time 274 

(less than 2 hours), makes this one of the most efficient and cost effective transesterification processes. 275 

Alkaline catalysis is also less corrosive than acid catalysis. However, it presents some problems related to 276 

downstream operations. For instance, glycerol recovery is difficult and time consuming. Biodiesel 277 

washing and purification steps require a high consumption of water and produce large volumes of 278 

alkaline effluents that need to be treated [2]. Furthermore, conversion of low cost raw materials such as 279 

used frying oils into biodiesel is a complicated task, if the oil presents a high free fatty acid content 280 

(>1%). Soap formation occurs, reducing the yield in methyl esters [3]. The use of solid catalysts 281 

(generally metallic oxides) have the advantage to be recyclable. The use of guanidine carbonate (organic 282 

basic catalyst) has also been reported: during boiling at reflux, guanidine carbonate disintegrates into 283 

guanidine and carbon dioxide in presence of methanol, but not with other alcohols [27]. When the oil 284 

contains a high percentage of FFA (e.g. crude or waste frying oils), acid catalysis or a previous step of 285 

acid esterification becomes necessary to avoid soap formation.  286 



Table 3. Examples of biodiesel production catalyzed by chemical catalysts. 287 

Oil 
Alcohol:Oil 
Molar ratio 

Catalyst type 
[Catalyst] 

(%, w/w oil) 
Reaction conditions 

FAMEs 
Yield 

(%, w/w) 
Reference 

Edible 

Crude Corn 7.6:1 
Sodium methoxide 

1.7 50 ºC, 0.5 h 
96 
 

[28] 

Refined Corn 9.0:1 
Sodium methoxide 

2.0 50 ºC, 0.5 h 
94 
 

[28] 

Neutralized Olive 
Residue 

9:1 
Sodium methoxide 

1.9 68 ºC, 0.5 h 
95 
 

[29] 

Refined Olive 
Residue 

7:1 
Sodium methoxide 

1.6 
55 ºC 
0.5 h 

95 
 

[30] 

Crude Rapeseed 6.1 
Sodium methoxide 

1.4 
58 ºC 
0.25 h 

99 
 

[31] 

Sunflower 9:1 
Potassium hydroxide 

0.28 
70 ºC 

 
96 
 

[32] 

Rapeseed 
 

Soybean 

2.8:1 
(methanol:FFA) 

Guanidine carbonate 
0.5-1.3 

64.7 ºC 
(Boiling Temperature) , 1 h 

99 [27] 

Palm 12:1 
KF/hydrocalcite (solid 

base catalyst) 
3 65 ºC, 3 h-5 h 

85 
92 

[33] 

Safflower 6 :1 

Potassium hydroxide 
Sodium hydroxide 
Sodium methoxide 

Potassium methoxide 

1 
60 ºC, 1.5 h 

 

98 
(Sodium 

methoxide) 
 

[34] 

Soybean 9:1 Mg–Al hydrocalcites 1.3 40 ºC, 1.3 h 
95 
 

[35] 

Cottonseed 7:1 Magnetic solid base 5 60 ºC, 1.7 h 99.6 [36] 

Peanut 
 

Refined rapeseed 

 
6 :1 

 

Potassium hydroxide 
0.5 60 ºC, 1.5 h 

95 
 

[37] 
Sodium 

hydroxide 
1 60 ºC, 1.5 h 

97 
 

Palm 6:1 
Sodium 

methoxide 
0.75 45 ºC, 1.5 h 

95.4 
 

[38] 



Sunflower 6:1 
Calcium oxide 

7 65 ºC, 1 h 
100 

(Ecodiesel) 
[39] 

Non-
edible 

Waste frying oils 7.4:1 
Sodium hydroxide 
& ultrasonication 
(24 kHz, 200 W) 

1.5 60 ºC, 0.7 h 98 [40] 

Datura stramonium 

L. 
6:1 

Sodium methoxide 
1.8 50 ºC, 0.5 h 72 [41] 

Crude cardoon 6.4:1 Sodium methoxide 1.4 52 ºC, 0.5 h 97 [42] 

Jatropha 7.28:1 
Potassium 
hydroxide 

2.06 61 ºC, 1.5 h 81.9 [43] 

Sterculia foetida 

seed 

8:1 
(2 stepwise 
addition) 

Sodium hydroxide 
(2 stepwise addition) 2 60 ºC, 2 h 98.2 [44] 

Yeast 
Rhodosporidium 

tortuloids Y4 

20:1 
(v/w dried 
biomass) 

Sodium hydroxide (in-

situ transesterification) 
4 g/L 

biomass 
50 ºC, 10 h 97.7 [45] 

Waste agro-residues 
(banana peel, copra 

meal, corn cob, 
grape stalks, 

sugarcane bagasse) 

10:1 (v/w 
biomass 

Sulfuric acid 
(in situ acid 

transesterification) 

1:1 
(0.2 M 

alcoholic 
sulfuric acid 
solution v/w 

biomass) 

65 ºC, 8 h 
Not 

reported 
[46] 

 

Karabi seed 

(Cascabela thevetia) 
6:1 

Esterification: 
(Sulfuric acid) 

+ 
Transesterification: 
(Sodium hydroxide) 

1 % (w/w) 
(sulfuric 

acid) 
+ 

0.5 % (w/w) 
(Sodium 

hydroxide) 

60 ºC,  1 h + 2 h 
Not 

reported 
[47] 

 288 

 289 



3.2 Non-catalyzed reactions 290 

Non-catalyzed production of biodiesel under supercritical conditions has also been reported. At high 291 

pressure and temperature, alcohol reaches the supercritical fluid (SCF) region (Figure 4), but pressure 292 

must be below the pressure required to condense it into a solid. At SCF region, liquid and gas phase have 293 

the same density and the state is an intermediate between such phases and small changes in pressure and 294 

temperature permits to manipulate SCF physical properties. This tunability near and above critical 295 

conditions, turns SCF into remarkable and reusable solvents for extraction, but in biodiesel case it allows 296 

the uncatalyzed reaction. Critical temperature, critical pressure and density and supercritical conditions 297 

for methanol and ethanol are 239.6 °C, 8.09 MPa, 272 kg.m-3 and 240.9 °C, 6.14 MPa, 276 kg.m-298 

3respectively [48]. 299 

 300 

 301 

Figure 4. Pressure-temperature phase diagram showing supercritical fluid region. 302 

 303 

In addition of molar ratio alcohol to oil, temperature and pressure are key parameters in supercritical 304 

production of biodiesel. An increase in temperature leads to better reaction conversions, but at elevated 305 

temperatures (> 350 °C) a decrease in reaction yield is observed because of oil decomposition, while 306 

pressure influences the properties of the SCF such as density and viscosity. The best temperature and 307 



pressure depends on the length and degree of saturation of the fatty acid chains of the oil as well as the 308 

configuration of reactor (batch or continuous) [49]. Table 4 shows conditions and performances in 309 

supercritical processes for various feedstocks. In tubular reactor lower conversions are observed and the 310 

highest conversion was obtained in a spiral reactor (Figure 5). In supercritical alcohol processes, high 311 

molar excess of ethanol is used. Supercritical CO2 could be used as solvent to decrease alcohol needed. 312 

The observation of the phase behavior of the system CO2+biodiesel+methanol or ethanol showed that 313 

alcohol improves biodiesel solubility in the system [50, 51]. A cosolvent could increase reaction yield: 314 

CO2 and alkanes have been added in small amounts to the alcohol in supercritical processes to improve 315 

the yield [52-54]. Supercritical dimethyl carbonate (scDMC, Figure 6) has also been used instead of an 316 

alcohol to produce biodiesel in an uncatalyzed process. An uncatalyzed process using DMC at 317 

atmospheric pressure has also been reported to reach high conversion (98%), but still using high 318 

temperatures (up to 450 °C) [55]. Uncatalyzed two-step process is carried out under more moderate 319 

temperature and pressure compared to the one-step process [56, 57]. High energy and equipment cost of 320 

supercritical process could be counterbalanced by integrative process combining simultaneous extraction, 321 

reaction and purification, achieving high quality biodiesel and coproducts in a single step. 322 

 323 

Table 4. Examples of supercritical biodiesel production. 324 

 

Feedstock/alcohol/cosolvent 

 

T 

(°C) 

 

P (MPa) 

Alcohol : 

oil molar 

ratio 

Reaction 

time (min) 

Esters 

(% wt) 

 

Reference 

BATCH REACTOR       
Waste canola/methanol 270 10 ≈28* 45 96.4 [58] 
Soybean/methanol/propane 320 NR 33 10 95 [52] 
Rapeseed/methanol 350 45 42 4 95 [59] 
Cottonseed/metanol 350 NR 41 5 95 [60] 

 
TUBULAR REACTOR       
10 % FFA soybean/ethanol 300 20 40 49 90 [61] 
Palm olein/methanol 350 35 40 15 85 [62] 
Palm/methanol 350 NR 40 20 80 [54] 
Soybean oil/ethanol 320 15 40 45 80 [63] 

 
SPIRAL REACTOR       
Canola/methanol 350 20 40 10 100 [64] 

NR: Not reported. *Mass ratio of 1 325 



 326 

Figure 5. Spiral reactor for supercritical biodiesel production [64]. 327 

 328 

Figure 6. Uncatalyzed process for biodiesel synthesis using supercritical dimethyl carbonate [65].  329 

 330 



3.3 Enzyme-catalyzed reactions 331 

Currently most common techniques used for biodiesel production are chemical catalysis using liquid 332 

alkali or acid. The previously described processes present some technical and environmental problems 333 

that make enzyme production of biodiesel an alternative to the non-catalyzed and chemical catalyzed 334 

reactions. The enzymes capable of catalyzing biodiesel synthesis are esterases, lipases and 335 

acyltransferases (see section 5). 336 

Lipases (EC 3.1.1.3.) catalyze the hydrolysis of the ester bond of mono-, di- and triacylglycerols (TAG) 337 

producing free fatty acids and glycerol. However, under favorable conditions such as organic solvent 338 

systems and low water content, lipases catalyze synthesis reactions on different types of substrates [66].  339 

The enzymatic process shows some advantages over the traditional processes, for instance lipase 340 

biodiesel production can be carried out under mild reaction conditions (<70°C) reducing operational costs 341 

[67], it allows an easy product and glycerol recovery and products are of high quality [7, 18, 68]. This 342 

process avoids soaps formation and FFA and TAG can be esterified in one single step. One of the most 343 

interesting advantages of enzyme-catalyzed biodiesel production is the high substrate specificity and 344 

selectivity of lipases [5]. The differences observed for lipases in substrate specificity have been used to 345 

design a combi-lipase for the hydrolysis of heterogeneous substrates [69]. However, for industrial 346 

production, the use of lipases present some disadvantages including lipase cost, alcohol inhibition, lipase 347 

inactivation and slow reaction rates [3, 18, 67]. Some factors that can affect enzymatic synthesis of 348 

biodiesel are discussed in section 5.4.  349 

 350 

4. Feedstock (oils) 351 

Refined vegetable oils have been the most used feedstocks for biodiesel production using alkaline 352 

catalysts. Animal fats (e.g. tallow, lard, chicken fats) are highly viscous and due to their high content in 353 

saturated fatty acids (SFA), they are solid at ambient temperature. Biodiesel from animal fats presents 354 

poor cold temperature performance in internal combustion engines [70]. Usually animal fats are blended 355 

with vegetable oils to be used as raw-material for biodiesel production.  356 

The use of refined oils accounts for 60-88 % of the overall biodiesel production costs [6-10]. A 357 

substantial cost reduction may be attained if completely refined oils are replaced by neutralized oils, in 358 

alkali-catalyzed transesterification, or degummed oils in lipase-catalyzed process [9]. In fact, 95 % 359 

FAMEs were obtained after 30 min of alkali transesterification when refined [28] or only neutralized 360 

olive residue oils were used [29]. 361 



The search for low-cost feedstocks, namely (i) oils from crops with high oil productivity/ha such as palm 362 

oil or jatropha oil [9, 71], and (ii) non-edible oils, is a way to reduce biodiesel costs and make it 363 

competitive with petrol-diesel [6, 9].  364 

In the last years, the debate concerning the use of edible oils for energy purposes has also promoted the 365 

search for non-edible oils and fats. Tables 3, 6, 7 and 8 show some examples of using edible or non-edible 366 

oils as raw-material for biodiesel production either by chemical (Table 3) or enzyme catalysis (Tables 6, 7 367 

and 8).  368 

In addition to the non-edible oils referred in Tables 3 and 7, it is worth noticing also the following 369 

potential feedstocks: castor (Ricinus communis L.) [72, 73], Brassica carinata A. Braun [74], stillingia oil  370 

[75], siberian apricot (Prunus sibirica L.) [76], rendered chicken oil [77], waste frying oils and high 371 

acidic greases from restaurants [40, 78], and oils from food waste [79]. 372 

 Some of these non-edible crops may have great potential as bioenergy crops. That is the case of Cynara 373 

cardunculus L. and Brassica carinata for the Mediterranean region. Cynara cardunculus L. (a thistle 374 

currently known as cardoon) is a perennial and spontaneous plant that grows in harsh soils and dry 375 

climate conditions, with a long productivity period (15–20 years). In 2005, Cynara was recognized by the 376 

European Commission as an energy crop for biomass and oil production (EC Regulation n71701/2005, 377 

October 18). 378 

Brassica carinata A. Braun is a plant from Ethiopian highlands well adapted to semiarid climates with 379 

mild to hot temperature. Its seeds are rich in non-edible oil due to the high content of erucic acid. This 380 

crop presents higher oil yields than edible oilseed crops (3000 kg oil/ha vs 850 kg sunflower oil/ha). 381 

Thus, B. carinata may be a promising oleaginous crop for biodiesel production even for the 382 

Mediterranean region [74].  383 

For tropical regions, Jatropha curcas L. has been considered as a miracle crop for biofuel that could 384 

become the solution to energy independence and poverty eradication in these regions. Jatropha is a small 385 

tree or shrub from the North-eastern part of South America that was disseminated by Portuguese 386 

navigators to other countries in Africa and Asia [80]. Nowadays, jatropha is found in almost all tropical 387 

and subtropical regions in the World. Some important claims have been ascribed to this crop, namely (i) 388 

high oil yield production, in sub-humid tropical and subtropical environments, (ii) a long productive 389 

period of 30-50 years, (iii) jatropha grows and is potentially productive in semi-arid areas, on poor, 390 



degraded and saline soils, and (iv) jatropha is drought resistant and therefore can be used to combat 391 

desertification and soil erosion. Jatropha seeds are rich in non-edible oil (up to 45 %, w/w), with more 392 

than 75 % unsaturated fatty acids. This oil is rich in oleic (mean 40%) and linoleic (mean 40%) acids and 393 

poor in linolenic acid (mean 0.22%), with high content of beta-sitosterol (71% of total sterols) making it 394 

adequate for biodiesel production [81]. Jatropha oil may be easily converted by alkaline-catalysed 395 

transesterification into biodiesel that meets American and European standards. Due to these properties, 396 

several governments, international organizations and NGOs promoted the planting of Jatropha curcas L. 397 

in the African continent. However, the expected results in terms of oil productivity of this crop under 398 

adverse growing conditions (marginal lands and droughts) were not observed. 399 

Other non-edible crops have also been studied in order to find low-cost alternative oils for biodiesel 400 

production. Datura stramonium L. is a plant from America that is spread worldwide. It is a weed of 401 

irrigated crops, toxic for animals and humans due to the presence of alkaloids (daturin and atropine). The 402 

oil in its seeds (about 23 % w/w) is rich in linoleic (56.4 %), oleic (26.4 %) and palmitic (13 %) acids and 403 

adequate as feedstock for biodiesel [41]. 404 

Pongamia pinnata tree is native from humid and subtropical environments and it is usually planted to 405 

control soil erosion. P. pinnata seeds contain about 25 % oil that can be extracted by mechanical 406 

expellers.  407 

Siberian apricot (Prunus sibirica L.) is a greening tree in China with seed kernels containing 44-58 % oil 408 

which showed to be an adequate raw-material for biodiesel [76]. 409 

Sterculia foetida is a soft wooded tree natural from East Africa to North Australia, but also growing in 410 

Myanmar, Sri Lanka, India, Ghana and Puerto Rico. Seed kernels contain 30–35% oil (w/w) rich in 411 

cyclopropene fatty acids namely sterculic and malvalic acids to an extent of 50–55%. The properties of 412 

the biodiesel obtained with S. foetida oil are similar to that of sunflower, soybean and rapeseed oil-based 413 

biodiesels except for the pour point. Thus, the presence of cyclopropene fatty acids did not limit the use 414 

of these esters as biodiesel [44].  415 

Karabi (Cascabela thevetia) is an ornamental tree that grows naturally in the north-east part of India. Its 416 

seeds contain about 60-65 % (w/w) of non-edible oil in their kernel, with a high oil productivity per ha. 417 

The oil is rich in oleic (44 %), palmitic (20.7 %) linoleic (20.8 %) and stearic (12.4 %) acids, which 418 

makes it adequate for biodiesel production [47]. 419 



Besides non-conventional vegetable oils, animal fats, waste frying oils and oils from waste and agro-420 

residues, microbial [45, 82] and marine or heterotrophic algal lipids [83, 84] were considering promising 421 

feedstock for biodiesel production due to their potential high productivity. Microalgae containing 70 or 422 

30 % oil (w/w) in biomass could provide, in theory, 136.900 L and 58.700 L of oil per ha (Christi, 2007). 423 

These values would represent about 23-fold the production of palm fat and 72-fold the production of 424 

jatropha oil for the most productive algae (Schorken and Kempers, 2009). However, these algae 425 

productivity values are rather optimistic. The high investment costs together with high energy demand for 426 

harvesting algae biomass at low concentration have been some constraints on the industrial scale-up of a 427 

cost-effective biodiesel production from algal oils [85, 86]. The costs of the salts used to obtain 1 kg of 428 

algal biodiesel are similar to the price of 1 kg of petrol-diesel. Also, the energy demand for algal biodiesel 429 

production is several-fold higher than the energy income from its combustion [85] According to [9], 430 

production costs of oil obtained from algae grown in closed or open photobioreactors are never below 5 431 

€/kg. Upstream and downstream processes should be optimized and intelligent technologies such as in-432 

situ wet biomass processing should be developed, in parallel with life cycle assessment evaluation [87].  433 

Despite these problems, the production of these advanced biofuels obtained from wastes and algae has 434 

been encouraged by the EU since it represents a high decrease in greenhouse gas emissions (Directive 435 

2009/28/CE).  436 

Concerning oil type, polyunsaturated oils are highly prone to oxidation which is reflected in a low 437 

stability of the obtained biodiesel. Regarding the European (DIN EN 14214) and US legislations (ASTM 438 

D 6751), a minimum Oxidative Stability Index of 6 h/110 ºC or 3 h/110ºC is required, respectively. In 439 

addition, the limit was set at 12% for linolenic acid methyl ester and 1% for fatty acids with four or more 440 

double bonds in European biodiesel, to avoid the use of polyunsaturated oils as biodiesel raw-material.  441 

To ensure oxidative stability for the biodiesel, a maximum iodine value (IV) of 120, a parameter related 442 

with the unsaturation of fatty acids, is permitted by the European legislation (DIN EN 14214). It means 443 

that highly unsaturated oils (e.g. fish and marine oils) cannot be used for biodiesel production. Also, 444 

soybean oil (IV: 117-143), normal sunflower oil (IV: 110-143) and safflower oil (IV: 126-152) hardly 445 

meet the requirements to be used as potential biodiesel feedstock in Europe [88]. Partial hydrogenation of 446 

these oils may be an option to lower iodine value, increase biodiesel oxidative stability and meet both 447 

European and American standards. However, the production of partially hydrogenated methyl esters from 448 

refined oil would increase biodiesel production costs. An increase by around 0.04 €/L was estimated for 449 



partially hydrogenated methyl esters of soybean oil [89]. Blending high iodine value biodiesel with 450 

biodiesel of lower IV to achieve the desired properties of the fuel is a current industrial practice. 451 

The addition of antioxidants such as BHT and Bis-BHT may be an option to increase biodiesel oxidative 452 

stability. These antioxidants are highly soluble in biodiesel, they are commercially available at acceptable 453 

prices, they are not corrosive and they do not contain either acid or sulfur and nitrogen [90]. 454 

Oil quality parameters, including water, free fatty acids (FFA) and oxidation products contents, greatly 455 

influence the yield and properties of the final product (biodiesel) and may determine the feasibility of the 456 

transesterification process. High moisture content (> 0.3 %) interferes negatively with the activity of the 457 

alkaline catalyst, inactivating it. When alkaline catalysts are used, the oil should have FFA content below 458 

2%. The FFA will react with the catalyst to form soaps, the catalyst is inactivated and a considerable 459 

decrease in the yield in methyl esters is observed [3]. In addition, an increase in viscosity and gel 460 

formation, which makes it difficult to separate glycerol, are observed [91, 92]. Also, oxidation products in 461 

the oil interfere negatively with the activity of alkaline catalysts [91]. 462 

In general, most of the low-cost raw-materials (e.g. used frying oils or crude oils) have high acidity and 463 

high amounts of oxidation products. In these cases, the traditional approach consists of the esterification 464 

of FFA with methanol in excess, catalyzed by an acid catalyst (usually sulfuric acid), and followed by 465 

alkaline transesterification (see section 3.1). [93] proposed the replacement of acid-catalyzed step by the 466 

enzymatic esterification to remove FFA of high acidic rapeseed oil prior to the alkaline transesterification 467 

process.  468 

 469 

5. Lipases  470 

5.1 Structural characteristics of lipases 471 

Lipases structure is characterized by a common α/β hydrolase fold [66], a conserved catalytic triad 472 

formed by a nucleophile (serine, cysteine or aspartate), an acidic residue (aspartate or glutamate) and a 473 

histidine [94] and an oxyanion hole that stabilizes the tetrahedral intermediate formed during the reaction 474 

[66]. In addition, most of the lipases have an important structural feature, a “lid” [95], which is a flexible 475 

structure formed by one or more α-helixes that cover the active site of lipases. The lid is responsible for 476 

the conformational changes of lipases: in their closed conformation, the lipase is inactive since the lid 477 

covers the active site; in the presence of a lipid water interface the lid uncovers the active site, allowing 478 



the access of the substrate [96-98]. The movement of the lid in the presence of lipid water interface is 479 

known as interfacial activation [96] and it is also implied in the selectivity of lipases [99, 100]. 480 

 481 

5.2 Sources and selectivity of lipases 482 

Lipases can be obtained from different organisms including plants, animals and microorganisms [66]. 483 

Plant lipases do not have commercial applications while those from animal and microbial origins are 484 

widely used [101]. The most interesting lipases used in industrial processes are those obtained from fungi, 485 

bacteria and yeast [102]. Lipases from microorganisms are easier to produce and more abundant, 486 

therefore represent the most studied lipases in biodiesel production. Lipase producing microorganisms 487 

include Bacillus sp., Pseudomonas sp., Staphycococcus sp., Aspergillus sp., Candida sp., Rhizopus sp., 488 

Thermomyces sp., - and Yarrowia sp. among others [102].  489 

Screening of lipase producing microorganisms is usually carried out in oily environments. Screening 490 

techniques generally use agar plates where oils are used as carbon source allowing easy identification of 491 

lipase producing microorganism [103, 104].  These traditional techniques do not identify the lipase gene 492 

encoding nor can be applied for uncultivable organisms [66].  493 

New techniques have emerged for the identification of new lipases. Metagenomics represents a technique 494 

capable of isolating genes from unknown or uncharacterized species [105].  For example, novel lipases 495 

have been successfully identified from metagenomic libraries obtained from soil samples [106], tidal flat 496 

sediments [107], and oil contaminated soil [108]. PCR with degenerated oligonucleotides has also been 497 

used for identification of lipases in DNA libraries [109]. After identification, novel lipase genes can be 498 

expressed in yeast or bacteria [108].  499 

An important characteristic of lipases is their selectivity, which is the property related to their preference 500 

for specific substrates [66, 102]. Selectivity is classified in type-selectivity, regioselectivity and 501 

enantioselectivity. Type-selectivity relates to lipase preference for mono-, di-, or triacylglycerols, fatty 502 

acid chain length, degree of unsaturation and potential substrate substitutions. Lipase selectivity for 503 

specific chemical groups is part of type-selectivity and is also known as chemo-selectivity. Lipases 504 

regioselectivity refers to their preference versus a specific ester bond in the glycerol backbone of TAG 505 

and can be sn-1 (3) or sn-2. Finally, enantioselectivity refers to lipases preference for one enantiomer of a 506 

chiral molecule. 507 



When regioselectivity lipase are used only two moles of FAMEs are formed per mole of triacylglycerol 508 

(TAG), instead of three moles of FAMEs per mole of TAG, the theoretical maximum biodiesel yield is 66 509 

mol-%. The formation of glycerol is thus replaced by 2-MAG, a product with interesting applications as 510 

emulsifier in food, pharmaceutical and cosmetics industries, with a higher value added than glycerol 511 

[110]. 512 

Several microbial lipases show sn-1 (3)regioselectivity including lipases from Yarrowia lipolytica, 513 

Rhizomucor miehei, Rhizopus oryzae and Thermomyces lanuginosus. Few lipases like those from 514 

Staphylococcus show sn-2 specificity [111]. Lipases can also be non-selective and act randomly on the 515 

ester bonds of triacylglycerols. Non-selective and sn-1,3-regioselective lipases are capable of carrying out 516 

esterification of FFA and transesterification of TAG with good yields. Therefore, they are of interest for 517 

enzymatic biodiesel production.  Despite of the sn-1,3-selectivity of certain lipases good yield can be 518 

obtained due to the behavior known as acyl migration.  Hydrolysis of TAG with this type of lipases 519 

produces 1,2-DAG or 2,3-DAG and 2-MAG, unstable molecules that after acyl migration change to 1,3-520 

DAG and 1-MAG or 3-MAG and can be used by the lipase [102].  Studies about the sn-1,3-selective 521 

lipase of R. oryzae showed that acyl migration is independent of enzymatic catalysis [112] being the 522 

temperature and the water activity, important factors for acyl migration [113].  It has been reported that 523 

immobilization of lipases can promote acyl migration [2]. Acyl migration is important for enzymatic 524 

production of biodiesel and should be considered in kinetic studies [114].  525 

 526 

Table  5. Lipases specificity. (L) long-chain fatty acids, (S) short-chain fatty acids and (M) medium-chain 527 

fatty acids. From [115]. 528 

Lipase source Fatty acid specificity Regio specificity (sn) 

A. niger S, M, L 1, 3 >> 2 

Y. lipolytica S, M, L 1, 3 > 2 

T. lanuginosus S, M, L 1, 3 >> 2 

M. javanicus M, L >> S 1, 3 > 2 

R. miehei S > M, L 1 > 3 >> 2 

Pancreatic S > M, L 1, 3 

Pre-gastric S, M >> L 1, 3 

P. roquefortii S, M >> L 1, 3 



R. delemar M, L >> S 1, 3 >> 2 

R. javanicus M, L > S 1, 3 > 2 

R. japonicus S, M, L 1, 3 > 2 

R. niveus M, L > S 1, 3 > 2 

R. oryzae M, L > S 1, 3 >>> 2 

P. fluofescens M, L > S 1, 3 > 2 

P. sp. S, M, L 1, 3 > 2 

R. arrhizus S, M > L 1, 3 

  529 

 530 

5.3 Heterologous expression of lipases 531 

Lipases have limitations such as methanol inhibition, temperature tolerance, stability and activity. In 532 

addition, lipase-producing organisms can present low production yields [102] which may be an 533 

inconvenient when these lipases are to be used as catalysts for the industrial production of biodiesel. 534 

Furthermore, some lipases from natural sources do not have the selectivity, activity and stability required 535 

for the industry. Lipases can be improved using protein engineering and cloned for their heterologous 536 

expression on different organisms. Also, they can be modified to improve desired characteristics using 537 

rational design [116] or directed evolution [117]. Rational design requires information about the 3D 538 

structures of the lipase and the structure-function relation, while directed evolution is based on random 539 

mutagenesis [118]. Lipases evolution using both approaches generates smaller libraries easier to test 540 

[119]. The characteristics that are usually improved include activity, selectivity, stability in organic 541 

solvents, thermostability and pH stability [102]. 542 

Heterologous expression is a technology of great interest for their reproducibility and high yield 543 

production of recombinant lipases [102, 120].  Bacterial, yeast and filamentous fungi are the most 544 

common host systems used for the heterologous production of lipases [121]. Choosing the best cell 545 

factory requires a deep study of several parameters such as on inserting multiple copies of the gene of 546 

interest, the type of glycosylation, the adequate folding, and on the economics of scale-up. Unfortunately, 547 

there are no rules and the choice depends on the target lipase [122]. The most common prokaryotic 548 

systems used for heterologous expression of lipases are E. coli, B. subtillis, A. eutrophus and the 549 

Pseudomonas-based systems developed by DOW Chemical Company [121]. In prokaryotic systems 550 

Saccaromyces cerevisiae, Y. lipolytica, Aspergillus sp and P. pastoris are the most common cell factories 551 



to produce heterologous lipases [102].  552 

Among them, the methylotrophic yeast P. pastoris is the most popular expressing many lipases from 553 

bacteria to mammalians species, for instance Candida sp., Rhizopus ap., Yarrowia sp., Aspergillus sp., 554 

Rhizomucor sp, Thermomyces sp, Penicillium sp, Serratia sp, Galactomyces sp, Malessezia Pseudomonas 555 

sp,  Bacillus sp, [102, 121].  556 

Some examples of recombinant lipases for biodiesel have been produced in E. coli, S. cerevisiae, P. 557 

pastoris and A. oryzae [102]. Lipases from P. aeruginosa [123], P. fluorescens [124], B. 558 

amyloliquefaciens [125], B. subtilis [126], B. thermocatenulatus [127], Proteus mirabilis [128], P. 559 

vulgaris [129] and Staphylococcus haemolyticus [130] were expressed in E. coli. Lipases from C. 560 

antarctica [131], Y. lipolytica [132] and R. oryzae [133] have been expressed in S. cerevisiae. P. pastoris 561 

has been used for expression of lipases from R. miehei [134], R. oryzae [135 , 136, 137], a chimera from 562 

R. oryzae and R. chinesis [120] and P. cyclopium [138]. For fungi heterologous expression, the most used 563 

genera are Aspergillus sp. and Trichoderma sp. [134]. The commercial immobilized biocatalyst Novozym 564 

435 is a recombinant C. antarctica lipase B expressed in A. niger, immobilized onto acrylic macroporus 565 

resin and is one of the most used lipases in biodiesel production [139].   566 

The heterologous production of two of the most used lipases, C. rugosa and R. oryzae produced in 567 

different cell factories has been reviewed [121].  568 

 569 

5.4 Factors affecting lipase performance 570 

The enzymatic production of biodiesel is mainly affected by the following factors: lipase specificity and 571 

selectivity, feedstock, type of immobilization, acyl acceptor type and concentration, reactor configuration, 572 

reaction temperature, water content, presence or absence of solvent and reaction time among others [7, 573 

18, 114].  574 

Water content is essential to maintain structure and function of lipases [140]. In addition, the presence of 575 

water increases interfacial activation between the aqueous-organic phase [141]. In transesterification 576 

reactions with lipases, optimal water content is important, since the enzyme is unable of catalyzing the 577 

reaction in absence of water because no water-oil interphase is formed [101]. However, high water 578 

activity will increase hydrolysis and reduce transesterification yields [141]. High amounts of water can 579 

also affect the access of hydrophobic substrates to the enzymes in porous hydrophilic supports because 580 

the pores will be filled with water [140]. In solvent and solvent-free systems the optimum water content 581 



depends on the lipase, immobilization support and organic solvent; ranges from trace amounts to up to 582 

20% wt have been reported [3, 18, 114, 141-143].  583 

Lipase-catalyzed production of biodiesel at moderate temperatures is an advantage of the enzymatic 584 

process since it reduces energy consumption. Lipases have different optimal temperatures ranging from 585 

20-70°C depending on their sources [141]. In the transesterification reaction, the reaction rate increases 586 

with temperature until the optimal temperature is reached [144]. Temperatures above the optimal 587 

temperature cause enzyme denaturation, reducing conversion [141, 144]. In general immobilization is a 588 

good strategy to improve enzyme temperature stability [145]. Several factors affecting optimal 589 

temperature reaction include immobilization method and support used, lipase stability, type of alcohol, 590 

alcohol to oil molar ratio and type of solvent [141].  591 

Although, productivities are higher in solvent-free systems, lipase-catalyzed esterification and 592 

transesterification proceed faster in solvent than in solvent-free systems where alcohol in excess acts as 593 

solvent. This is due to both mass-transfer issues and alcohol inhibition [146] which decreases with 594 

alcohol chain length. Strategies to avoid alcohol inhibition are discussed in section 7. 595 

Optimal solvent depends on reactor and reaction type: while for esterification hydrophobic solvent is a 596 

good choice [147], for transesterification hydrophilic solvent is a better choice [148]; especially in 597 

continuous systems [149], because a hydrophilic solvent decreases alcohol inhibition by decreasing its 598 

thermodynamic coefficient [147]. Indeed, thermodynamical modeling could be a useful tool to choose 599 

solvent and substrate concentrations in lipase-catalyzed reactions [150, 151]. Response surface 600 

methodology could also be a useful tool to optimize reaction conditions [152]. 601 

In most cases, the optimum methanol/oil molar ratio (MR) corresponds to the stoichiometric value of 3:1, 602 

for non-regioselective lipases, or slightly higher values. However, higher molar ratios were used in batch 603 

methanolysis catalyzed by Burkholderia cepacia lipase immobilized on modified attapulgite (MR = 604 

6.6:1) [153] or by B. cepacia lipase immobilized on silica-PVA matrix and used in continuous ethanolysis 605 

(MR Ethanol/oil = 7) [154]. This can be explained by the high tolerance of B. cepacia lipase to alcohols, 606 

namely to methanol [155]. 607 

It is worth to notice that lipases can efficiently use crude oils, most of them with high free fatty acid 608 

contents, in transesterification reactions, which is not an option with alkaline catalysts [78, 84, 156-159]. 609 

The presence of high FFA in crude olive residue oil (19 % FFA; [137]) or in jatropha oil (18.3 %; [157]) 610 

improved reaction efficiency. 611 



 612 

6. Lipases used as catalyst for biodiesel production 613 

6.1 Free lipases 614 

In biodiesel production, the most widely used lipases are from C. antarctica, C. cylindracea, C. rugosa, 615 

P. cepacia, P. fluorescens, R. oryzae, Rhizomucor miehei, T. lanuginosus, A. niger and R. delemar [141], 616 

being generally used in their immobilized form. The use of some commercially available lipases, either in 617 

their free form such as lipases from P. fluorescens (Lipase AK, Amano), B. cepacia (Lipase PS, Amano), 618 

and T. lanuginosus (Lipase LA201 and Lipopan 50BG, Novozymes), or immobilized lipases from T. 619 

lanuginosus (Lipozyme TL, Novozymes), R. miehei (Lipozyme RM, Novozymes) and C. antarctica 620 

(CALB) have been reported [102]. 621 

Few studies have been carried out about biodiesel production using free lipases. However, in recent years 622 

it has been drawn attention due to its lower preparation costs, when crude extracts with lipase activity are 623 

used [160]. Kaieda et al. [161] studied methanolysis of soybean oil using free lipases from C. rugosa, P. 624 

cepacia and P. fluorescens. Reaction rates with C. rugosa and P. fluorescens lipases decreased at low 625 

water content, while for P. cepacia lipase, the reaction rate was higher at low water content. This lipase 626 

also showed good methanol resistance. The lipase from P. fluorescens was also tested in its free and 627 

immobilized form in the reaction between triolein and 1-propanol or 1-butanol [162]. Free and 628 

immobilized lipase from P. fluorescens catalyzed the reaction. However, the reaction was faster (10 h) 629 

and with better yields with the immobilized lipase than with the free lipase (25h). The use of combination 630 

of free lipases was studied by Guan et al. [138], who expressed lipases from R. miehei and P. cyclopium 631 

in the cell factory P. pastoris. Using R. miehei lipase as catalyst, the methanolysis of soybean oil reached 632 

68.5% yield while no reaction was detected with P. cyclopium lipase. A combination of these two lipases 633 

gave a reaction yield higher than 95% due to the difference in the specificities. R. miehei lipase was also 634 

expressed in P. pastoris by Huan et al. [134] and used in the methanolysis of microalgae oil. The lipase 635 

was stable over six months at 4°C and gave a reaction yield in methanolysis of 91%. 636 

The commercial free lipase NS81006 from the genetically modified Aspergillus niger was studied for 637 

biodiesel production [160, 163]. Fatty acid methyl (FAMEs) and ethyl (FAEEs) esters were produced 638 

from soybean oil obtaining yields of 95.1% [160] and 90% [163] respectively. Lipase NS81006 was 639 

stable for five batches in the production of FAEEs after simple separation of the water phase [163]. 640 

Another commercial lipase studied is Callera Trans L. Ethanolysis of rapeseed oil using Callera Trans L 641 



formed a biphasic system with conversion of 97.8% [164]. Callera was also tested for methanolysis of 642 

corn, rapeseed and crude soybean oils obtaining reaction yields higher than 95 % [165].  643 

 Table 6 presents examples of biodiesel produced by free lipases. 644 



Table 6. Examples of biodiesel production catalyzed by free lipases. 645 

Lipases Oil Alcohol System 
Reaction 

conditions 
Yield (%) Reference 

Cryptococcus spp. S-2 yeast Rice bran  
Olive 
Rapeseed 
Soybean 

Methanol Solvent-free 
High water content 
medium: 80 % (w/w of 
oil) 

120 h, 30 °C, 80.2 (rice 
bran oil) 

[166] 

C. rugosa  

B. cepacia 

P. fluorescens 

Soybean oil Methanol Solvent-free 
Water 0-20% wt 

90 h, 35 °C, 
150 rpm 

90 
80 
90 

[161] 

P. fluorescens Triolein Propanol 
Butanol 

Solvent-free 25h, 35 °C 90 
80 

[162] 

R. oryzae  Crude vegetable oils 
(soybean, palm and 
rapeseed) from waste 
bleaching earths  

Methanol Solvent-free 
High water content 
medium: 75 % (w/w of 
oil) = 36.9 MR water/oil 

35 °C, 96 h 55 (palm 
oil) 

[167] 

R. miehei expressed in Pichia pastoris 
P. cyclopium expressed in Pichia pastoris. 
R. miehei + P. cyclopium 

Soybean oil Methanol Solvent-free 
Water 28.6% wt 

12h, 30 °C, 
180 rpm 

68.5 
ND 
>95 

[138] 

Lipase NS81006 from Aspergillus niger Soybean oil Ethanol Solvent-free 
Water 20% wt 

8h, 45 °C, 
1200 rpm 

90 [163] 

R. miehei expressed in Pichia pastoris Microalgae oil Methanol Hexane 24h, 30 °C, 
150 rpm 

91 [134] 

Lipase NS81006 from Aspergillus niger Soybean oil Methanol Solvent-free 
Water 10% wt 

8h, 55 °C 95.1 [160] 

Callera Trans L Crude soybean oil Methanol Solvent-free 
Water 3.5% wt 

24h, 35 °C, 
250 rpm 

>95 [165] 

Callera Trans L Rapeseed oil Ethanol Solvent-free 
Water 10% wt 

35 °C, 
1200 rpm 

97.8 [164] 

T. lanuginosus Rapeseed and 
soybean oil 

Methanol Solvent-free 
Water 2-20% wt 

24h, 35 °C 92-97 [168] 

(ND- not detected) 646 

 647 



6.2 Whole cells 648 

Another alternative for enzymatic biodiesel production is using whole cell displaying lipase activity as 649 

biocatalyst. Bacteria, yeast and fungal species can be used as whole cell biocatalyst [68]. Whole cell 650 

refers to intracellular lipases or lipases that are attached to the cell wall of microorganisms [169]. Whole 651 

cells do not require enzyme extraction or purification steps, reducing operational costs [141]. In addition, 652 

whole cell biocatalysts may show high operational stability, high enzyme activity and immobilization can 653 

be done simultaneously during fermentation [140]. Some disadvantages of this method include mass 654 

transfer limitation and the need for aseptic handling to avoid contamination [140]. An interesting 655 

approach of whole cell is the production of recombinant proteins on the cell surface of the host by fusion 656 

with its cell surface proteins [102]. Three types of whole cells can be used for biodiesel production: wild-657 

type lipase producing cells, yeast-based surface display technology, and genetically engineered cells 658 

[140].  Microorganisms that naturally produce cell bound lipases are classified as wild type lipase 659 

producing cells [140], such as Rhizopus oryzae whole cell [170]. Cell surface is a technique that exploits 660 

the functional element of microbes to place the enzymes on the extracellular cell surface of the 661 

microorganisms [140].  662 

Whole cells from R. oryzae have been used for biodiesel production [11, 171-173]. Lipase-producing R. 663 

oryzae cells were immobilized during batch cultivation in polyurethane foam biomass and used for the 664 

methanolysis of soybean oil in a packed bead reactor [174]. Using a flow rate of 25 L/h resulted in methyl 665 

ester yields over 90% with conserved conversion of 80% after 10 repeated-batch reaction cycles of 72 h 666 

in the PBR.  Immobilized R. oryzae whole cells inside biomass support particles (BSPs) were treated with 667 

cross-linking glutaraldehyde to improve stability [175]. Tests showed that treated cells were more stable 668 

in the presence of methyl esters after six batches of 72 hours each. R. oryzae IFO4697 whole cell was 669 

used for methyl ester production by direct esterification of oleic acid, reaching a biodiesel yield of 90% 670 

after 48 h[172]. R. oryzae IFO4697 whole cell was also tested on different vegetable oils; under optimal 671 

conditions, and three stepwise methanol addition an ethyl ester yield of 86% was obtained after 72h [173] 672 

and of 90 % in the presence of 15 % water were reported, also after 72 h reaction [171]. This biocatalyst 673 

was also tested in a tert-butanol system that reduced negatives effects caused by methanol [170]. R. 674 

oryzae whole cell biocatalyst were immobilized in BSPs and tested in oil from Jatropha curcas [176]. 675 

Methanolysis of jatropha oil gave better yields with the whole cell biocatalyst (80% wt, 90 h) than with 676 

Novozym 435 (76% wt, 90 h).  677 



R. miehei lipase has been displayed in P. pastoris cell surface and used for biodiesel production from 678 

soybean oil [177]. The whole cells showed good stability in isooctane system where methanol was 679 

provided in a three-stepwise addition procedure to reduce lipase inactivation. Under these conditions a 680 

methyl ester reaction yield of 83.1% was obtained after 72 h. Lipase 2 from Y. lipolytica is an 681 

extracellular lipase that was displayed on the surface of the yeast to test its applications as a whole cell 682 

catalyst [178]. Results showed that the cell-bound lipase was more thermostable than the free lipase and 683 

was capable of producing biodiesel with a yield of 84.1% after 33 h. Yan et al. [179] co-displayed the 684 

lipase B from C. antarctica and the lipase from T. lanuginosus on the surface of P. pastoris cell to 685 

produce a combined whole cell. The use of co-displayed whole-cells showed high biodiesel conversion 686 

(95.4%, reaction time 12.6 g) and only 16% loss in activity was detected after 15 cycles. 687 

The lipase B from C. antarctica was produced as whole-cell biocatalyst in A. oryzae with high 688 

esterification activity [180]. This biocatalyst was stable for 20 cycles of 24 hours with a conversion over 689 

80%. A. oryzae was also used for the expression of the thermostable lipase from Geobacillus 690 

thermocatenulatus [181]. This lipase was highly tolerant to organic solvents and gave nearly 100% 691 

methanolysis of palm oil (96 h). Fusarium heterosporum lipase was expressed in A. oryzae cells, 692 

immobilized in BSP and tested in six packed bed reactors [182]. Under optimal conditions, a product with 693 

96.1% of methyl esters was obtained after the sixth column. Combination of whole-cell biocatalyst using 694 

lipases from R. oryzae and A. oryzae was also tested as an alternative of biodiesel production in ionic 695 

liquids [183]. This combination gave conversion over 95% after 72h. However, the use of ionic liquids as 696 

solvent in biodiesel production is not yet industrially viable due to economic and toxicity issues. Other 697 

lipases producing whole cell biocatalyst include A. niger, R. mucilagenosa, Pseudomosa sp., P. 698 

fluorescens and Candida sp. [101]. E. coli can also be used for the production of whole-cell biocatalyst. 699 

The lipase from Serratia marcescens YXJ-1002 was cloned and expressed as an intracellular lipase in E. 700 

coli [184]. Using this biocatalyst, biodiesel was produced from waste grease in a non-solvent system with 701 

yields of 97% after 72h. 702 

 703 

6.3 Immobilized lipases 704 

The main reasons why lipases are not yet widely used in the industry are their cost, longer reaction time 705 

and consequently lower productivity, compared with alkaline catalysts. An essential strategy to lower the 706 



cost of the enzymatic process is the multiple reuse of the biocatalyst or its use in continuous bioreactors, 707 

which can be achieved by using immobilized enzymes.  708 

Immobilization by adsorption, cross-linking, covalent binding, entrapment and encapsulation are the most 709 

commonly used methods for improving lipase operational stability and to make lipases more appealing 710 

for industrial use [6, 185]. 711 

Table 7 shows some interesting examples of the production of biodiesel from edible or non-edible oils, in 712 

solvent-free or in presence of an organic solvent, catalyzed either by commercial or by non-commercial 713 

immobilized lipases. The replacement of high-cost commercial immobilized lipases (e.g. Lipozyme RM 714 

IM, Lipozyme TL IM and Novozym 435, from Novozymes A/S, Bagsvaerd, Denmark) by non-715 

commercial lipases and the use of novel carriers have been attempted during the last years. Recombinant 716 

Rhizopus oryzae lipases [82, 137, 156, 158, 186], Carica papaya lipase [158], Cryptococcus spp. S-2 717 

yeast lipase [166], the lipase/acyltransferase from Candida parapsilosis [159] and intracellular Cal A and 718 

Cal B lipases [83] are examples of non-commercial enzymes tested for biodiesel production. Synthetic 719 

resins [82, 137, 156, 158, 159, 186, 187], silica derivatives [154, 157, 188], modified attapulgite [153] 720 

and calcium alginate [83] are examples of carriers used for enzyme immobilization.  721 

The sn-1,3 regioselective Thermomyces lanuginosa lipase was immobilized on iron oxide nanoparticles, 722 

to facilitate biocatalyst recovery with a magnet, and used in the presence of silica to facilitate acyl 723 

migration and promote FAMEs synthesis [189]. Also, the use of Amberlite IRA-93 resin, to immobilize 724 

the sn-1,3 regioselective recombinant R. oryzae lipase, showed to accelerate acyl migration allowing the 725 

conversion of TAG into FAMEs and glycerol [186]. 726 

From the examples presented in Table 7, the time needed to attain reaction equilibrium is between 0.5 to 727 

120 h. longer reaction times reflect on a lower biodiesel productivity, which can be easily calculated from 728 

these examples. The highest FAEEs productivity (33 % FAEEs/h) was obtained by ethanolysis of 729 

soybean oil catalyzed by Thermomyces lanuginosa lipase immobilized on iron oxide nanoparticles [189] 730 

followed by 19 % FAEEs/h when Lipozyme TL IM was used [190]. In methanolysis, in hexane medium, 731 

the highest productivity value (154 % FAMEs/h) [191] followed by 19 % FAMEs/h [78] were attained 732 

with Lipozyme RM IM as catalyst. In solvent-free media, the highest productivity values were 16 % 733 

FAMEs/h in the methanolysis of crude jatropha oil catalyzed by a recombinant lipase from Rhizopus 734 

oryzae immobilized in synthetic resins [158]. FAMEs or FAEEs productivities of enzymatic processes 735 

are lower than those attained by chemical catalysis (Table 3). However, the overall time of enzyme-736 



catalyzed process is similar to that of chemical-catalyzed biodiesel processes because the time-consuming 737 

and high cost downstream operations needed when chemical catalysts are used (e.g. catalyst inactivation, 738 

biodiesel washing, glycerin purification) are not required in enzyme-catalyzed processes.  739 



Table 7. Examples of biodiesel production catalyzed by immobilized lipases.  740 

Biocatalyst Biocatalyst 
load 

Oil System Reaction conditions Yield (%) Stability Reference 

Lipozyme IM 60 (M. 
miehei lipase) 
 

SP435 (C. antarctica 

lipase B)  
 

Other powdered lipases 
(G. candidum, B. 

cepacia, R. delemar) 

 
 
 
10 % (oil 
weight) 

Tallow 
High acidic 
greases from 
restaurants 
Rapeseed  
Soybean 
Olive 
 

Hexane 
 
MR alcohol/ oil = 
3 
 
 

45 ºC, 5 h Lipozyme IM 60: 
77-94.8 
(methanol);  
68-98 (ethanol); 
98-100 (butanol); 
SP435: 83.8 (2-
butanol) 

Not evaluated [78] 

Solvent-free 
MR alcohol/ oil = 
3 
 
 

45 ºC, 5 h SP435: 90.3 
(isopropanol); 
96.4 (2-butanol) 

Not evaluated 

 

 

 

B. cepacia lipase 
(PS30, Amano) 
immobilized on 
diatomite 

 
 
 
 
10 % (oil 
weight) 

Palm kernel Solvent-free 
MR alcohol/ oil = 
4 

40 ºC, 8 h Ethanol: 72 
t-butanol: 62 
1-butanol: 42 
n-propanol: 42 
iso-propanol: 24  
methanol: 15 

Not evaluated [192] 

Coconut  Solvent-free 
 
MR alcohol/oil = 
4 

40 ºC, 8 h Ethanol: 35 
1-butanol: 40 
Iso-butanol: 40 
1-propanol: 16 
methanol: traces 

Not evaluated 

Lipozyme TL IM (T. 

lanuginosa lipase) 
 
Immobilized P. 

fluorescens (AK) 
 
 
Lipozyme RM IM 

 
10 % (oil 
weight) 
 
 

Cotton seed 
Peanut 
Sunflower 
Palm olein 
Coconut  
Palm kernel 

n-hexane 
 
MR alcohol/oil = 
3 

40 ºC, 24 h 97 
 
 

Not evaluated [187] 

solvent-free with 
methanol (3-step 
methanol 
addition) 
 

40 ºC, 24 h >90 (Lipozyme 
RM IM; AK) 
 
>60 (Lipozyme 
TL IM) 

Lipozyme RM 
IM: 70 % 
activity after 
168 h  
 



Lipozyme TL 
IM: 75% 
activity after 
120 h; 35% 
residual activity 
after 192 h 
(repeated 24 h-
batches) 

solvent-free with 
2-propanol (3-step 
methanol 
addition) 

40 ºC, 24 h 50-65 Not evaluated 

Lipozyme TL IM (T. 

lanuginosa lipase) 
 
Lipozyme RM IM 
Immobilized  
 
P. fluorescens (AK) in 
polypropylene (EP 
100) 
 
Immobilized C. 

antarctica A, C. 

antarctica B & R. 

miehei lipases in celite 
or EP 100 

10 % (oil 
weight) 

sunflower n-hexane or 
petroleum ether 
 
 
 
 
 

40 ºC, 24 h 
 
 
 
 

80 (RM IM, TL 
IM and  
P .fluorescens 

lipase) 
 
 
 
 

Not evaluated [193] 

solvent-free 
MR alcohol/oil = 
4.5 
 
(3-step methanol 
addition) 

40 ºC, 24 h >90 
(P.fluorescens 

lipase in EP 100) 

Lipozyme RM 
IM stable over 
120 h (repeated 
24 h-batches) 
 
Lipozyme TL 
IM: 50 % 
activity after the 
second reuse  
 

Lipozyme TL IM (T. 

lanuginosa lipase) 
10 % (oil 
weight) 

soybean Solvent-free 
 
MR alcohol/ oil = 
3 (3-step 
methanol 
addition) 

40 ºC, 12 h 98 94 % activity 
after 15 batches 

[194] 



Lipozyme RM IM 9 % (oil 
weight) 

soybean n-hexane 
 

MR methanol/oil 
= 2.37 

50 ºC, 0.5 h 77 Not evaluated [191] 

Novozym 435 (C. 

antarctica lipase B) 
10 % (oil 
weight) 

jatropha 
 
 
Pongamia 

pinnata 
(karanji) 
 
 
sunflower 

MR Ethyl 
acetate/oil = 11 

50 ºC, 12 h 91.3 
 
 
 
90 
 
 
 
92.7 

Stable after 12 
repeated batches 
(144 h)  
 
Activity = 0, 
after 6th batch 
when ethanol is 
used 
 

[195] 

Novozym 435 (C. 

antarctica lipase B) 
 Soybean MR methanol/oil 

= 4.3 
 

52 ºC, Flow rate= 
0.1 mL/min 

75.2 Continuous 
reactor 

[196] 

Lipozyme TL IM (T. 

lanuginosa lipase) 
15 % (oil 
weight) 

Soybean Solvent-free 
MR ethanol/oil = 

7.5 
4 % water (w/w 

oil) 
 

32 ºC, 5 h 96 Not evaluated [190] 

Novozym 435 (C. 

antarctica lipase B) 
 

 

 

 

R. oryzae lipase 
immobilized on 
biomass support 
particles 

4 % (oil 
weight) 

Jatropha MR methanol/oil 
=3 

30 ºC, 90 h 
 
 
 
 
 

30 ºC, 60 h 

76 
 
 
 
 
 
80 

93.8 % of initial  
activity after 5 
batches (90 h 
each)  
 
91.1 % of initial 
activity after 5 
batches (60 h 
each) 

[176]  



 

E. aerogenes lipase 
immobilized on 
activated silica 

50 U/g oil Jatropha MR methanol/oil 
=4 

55 ºC, 48 h 68 Negligible 
activity loss 
after 7 batches 
(48 h each). 

[188] 

Novozym 435 (C. 

antarctica lipase B 
3% (oil 
weight)  

Sunflower Solvent-free 
MR methanol/oil 

=3 
(3 stepwise 
addition) 

45 ºC, 
50 h 

95.65 t1/2= 82.4 h 
after 5 batches 
(50 h each). 

[197] 

Solvent-free 
MR methyl 

acetate/oil =3 
(3 stepwise 
addition) 

45 ºC, 50 h 99.83 t1/2= 1728 h 
after 5 batches 
(50 h each). 

Solvent-free 
MR methyl 

acetate/oil =12 
(one step 
addition) 

 

45 ºC, 8 (fed-batch 
P BR: flow rate 
16.6 mL/min) 

96.2 No loss of 
activity after 72 
h (8 batches) 

Recombinant R. oryzae 
lipase immobilized on 
Amberlite IRA-93 

24 U/g oil Soybean Solvent-free 
MR methanol/oil 

= 4.8 
60 % water/oil 

37 ºC, 48 h 90.5 
 
 

No deactivation 
after 7 batches 
(48 h each) 

[186] 

B.  cepacia 
immobilized on 
polyacrylonititrile 
membrane 

0.35 % (oil 
weight) 

Soybean Solvent-free 
 

51 % methanol 
 

Methanol/water = 
4:3.84 (w/w) = 
1.83 (mol/mol) 

30 ºC, 24 h 70 (pure soybean) 
 
90 (soybean with 
50 % FFA) 

91 % activity 
after 10 batches 
(240 h) 

[135] 



B. cepacia lipase 
immobilized on 
hydrophobic silica 

14.8 % (oil 
weight) 

Jatropha Solvent-free 
MR methanol/oil 
= 3; 0.6% water 
(w/w) based on 
the total mass 

 

40 ºC, 12 h 90 (batch) 
 
 

Not evaluated 
 
 

[157] 

40 ºC, flow rate 0.6 
mL/h) 

95, continuous 
reactor, 

80% activity 
after 49 d 
continuous 
operation 

B. cepacia lipase 
immobilized on 
modified attapulgite 

10 % (oil 
weight) 

Jatropha Solvent-free 
MR methanol/oil 

= 6.6 

35 ºC, 24 h 94  [153] 

B. cepacia lipase 
immobilized on silica-
PVA matrix 

7.8 g 
biocatalyst 

Babassu  
 
Macaw palm  

Solvent-free 
MR Ethanol/oil= 

7 

50 ºC, flow rate 
0.78 mL/h) 

87.6 , continuous 
PBR 

t1/2= 453 h (babassu) 
 
t1/2= 478 h (macaw 
palm oil) 

[154] 

Recombinant R. oryzae 
lipase immobilized on 
octadecyl-Sepabeads 

40 mg of 
biocatalyst 

Olive Solvent-free 
 

MR alcohol/ oil = 
3 

7 stepwise 
methanol addition 

30 ºC, 2 h 40,96 2 reuses [156] 

Recombinant R. oryzae 
lipase immobilized on 
HFA-Relizyme 

4000 U/g oil alperujo oil* 
with 19 % 
FFA 

Solvent-free 
 

MR alcohol/oil = 
1 

3-stepwise 
methanol addition 

30 ºC, 6 h 28,6 9 reuses  [136] 

Recombinant R. oryzae 
lipase immobilized on 
Relizyme OD403 

4000 U  Candida sp. 
yeast oil 
 
 
 

n-hexane 
(oil/solvent = 1:5) 

 
MR alcohol/oil = 

1 
6 stepwise 
methanol 
additions 

30 ºC, 4 h 40.6 
 
 
 
 
 

70% activity 
after 6 reuses of 
4 h each 

[82] 

Recombinant R. oryzae 
lipase immobilized on 
different resins 

10 % (oil 
weight) 

Crude jatropha  
Solvent free 

 

30 ºC, 4 h  
 
 

t1/2= 16-579 h 
 
 

[158] 



(Lifetech ECR8285M, 
AP1090M, 
ECR1030M; Amberlite 
IRA-96; Lewatit VP 
OC 1600) 
 
Carica papaya lipase 
immobilized on 
Lewatit VP OC 1600 

MR methanol/oil 
= 3 

(7 stepwise 
methanol 
additions) 

51-65  
 
 
 
t1/2= 27 h 
(repeated 
batches) 

Lipase/acyltransferase 
from C. parapsilosis 
immobilized on 
Lewatit VP OC 1600 
and Accurel MP1000 
 

10 % (oil 
weight) 

Crude jatropha Biphasic oil/water 
medium 

 
MR methanol/oil 

=6 

30 ºC, 8 h 80.5 (Accurel 
preparation) 
 
93.8 (Lewatit 
preparation) 

No deactivation 
after 5 reuses of 
8 h each 

[159] 

T. lanuginosa lipase 
Immobilized on iron 
oxide nanoparticles 

0.8 % (14 U) 
weight oil 

Soybean solvent-free 
 

MR ethanol/oil=4 
2 % (w/w) water 
20 % silica (to 
facilitate acyl 

migration) 

40 ºC, 3 h 99 Not evaluated [189] 

Novozym 435 (C. 

antarctica lipase B) 
30 % (w/w 
biomass) 

Lipids from 
Aurantiochytri

um sp. 
(heterotrophic 
microalgae) 
rich in FFA 

In-situ esterification in 
dimethyl carbonate 

50 ºC, 12 h 89.5 Not evaluated [84] 

 741 



 742 

6.4 Combination of lipases 743 

Combination of lipases is an alternative to increase reaction yield in biodiesel production. Due to lipase 744 

differences in selectivity, when a blend of different lipases is used, each one will attack preferential 745 

targets, and a total conversion is reached [18]. Several lipases combinations have been studied; examples 746 

of these studies are presented in Table 8. Lard and oils from rapeseed, soybean, palm, stillingia and olive 747 

have been used with lipase combinations to produce biodiesel. An interesting combination of lipases is 748 

the lipases from C. antarctica and T. lanuginosus, since the first limiting step is conversion of 749 

diacylglycerols (DAG) into monoacylglycerols (MAG), while the second rate limiting step is the 750 

conversion of TAG into DAG [141]. Li et al. [198] studied methanolysis of rapeseed oil with the 751 

commercial lipases Lipozyme TL IM and Novozym 435. Reaction using Lipozyme TL IM had a yield of 752 

85%, while 90% was obtained with Novozym 435. Combination of both lipases gave 95% conversion 753 

under the following optimal conditions: tert-butanol/oil (1:1 v/v); methanol/oil (4:1, molar), 3% 754 

Lipozyme TL IM and 1% Novozym 435 based on oil weight. A combination of Lipozyme TL IM and 755 

Novozym 435 was also used for biodiesel production from lard, obtaining better results with the mixture 756 

(yield of 97.2 %, 72 h) than with the single lipases (N435 90.5%, 72h, TL IM 72.8%, 72 h) [199]. This 757 

enzyme combination was also used in a co-solvent system of tert-butanol/acetronitrile obtaining a 758 

conversion of 96.4%, where the compound-lipase was recycled 30 times in 12h batch reactions [75].  759 

Immobilized lipases from R. oryzae and C. rugosa were used for biodiesel production from soybean oil 760 

[200]. Reactions with only one lipase produce yields lower than 70 % (30 h). However, a combination of 761 

both lipases increased conversion up to 99% (30 h). This process was optimized using supercritical 762 

carbon dioxide with a mixture of immobilized R. oryzae and C. rugosa lipases (1:1), reaching 99% 763 

conversion in only 2h [201]. Other lipase combinations studied include immobilized R. oryzae with C. 764 

rugosa lipases [202], immobilized P. fluorescens with C. rugosa lipases [202], immobilized T. 765 

lanuginosus lipase combined with Lipozyme RM IM [203, 204] and Lipozyme TL IM, Lipozyme RM IM 766 

and Novozyme 435 [203].  767 

 768 

In summary, enzyme-catalyzed biodiesel production requires a free or immobilized lipase (or lipase 769 

combination) capable of accepting all types of acylglycerols (mono-, di- and triacylglycerols) and free 770 



fatty acids. In addition, other properties like alcohol tolerance, thermo tolerance, stability, good activity 771 

and reaction yields on non-aqueous media and reusability are desired [2, 140]. 772 

 773 

 774 



Table 8. Examples of biodiesel production catalyzed by combination of lipases (wt% is based on oil mass). 775 

Lipases Oil Alcohol System 
Reaction 

conditions 

Yield 

(%) 
Reference 

Lipozyme TL IM (20% wt) 

Novozym 435 (2% wt) 

Lipozyme TL IM (3% wt) + Novozym 435 (1% wt) 

Rapeseed 

oil 

Methanol tert-butanol 12h, 35 °C, 

130 rpm 

85 

90 

95 

[198] 

R. oryzae immobilized (30% wt) 

C. rugosa immobilized (30% wt) 

R.oryzae (15% wt) + C. Rugosa (15% wt) 

Soybean oil Methanol Solvent free 

Water 10% wt 

30h, 45 °C, 

200 rpm 

70 

20 

99 

[200] 

P. fluorescens immobilized (10% wt) 

P. fluorescens (5% wt) + Candida rugosa immobilized (5% wt)   

C. rugosa immobilized (5% wt) + Novozym 435 (5% wt) 

Palm oil Ethanol Solvent free 

Water 2% wt 

12h, 45 °C, 

500 rpm 

85 

85 

 

45 

[202] 

Novozym 435 (3% wt) 

Lipozyme TL IM (8% wt) 

Novozym 435 (1.96% wt) + Lipozyme TL IM (2.04% wt) 

Lard Methanol tert-butanol 20h, 50 °C 90.5 

72.8 

97.2 

[199] 

R. miehei expressed in Pichia pastoris 

P.cyclopium expressed in P. pastoris. 

R. miehei + P. cyclopium 

Soybean oil Methanol Solvent free 

Water 28.6% wt 

12h, 30 °C, 

180 rpm 

68.5 

ND 

>95 

[138] 

Novozym 435 (1.96% wt) + Lipozyme TL IM (2.04% wt) Stillingia oil Methanol tert-butanol 

/acetonitrile 

20h, 40 °C, 

200 rpm 

96.4 [75] 

T. lanuginosus immobilized (25% wt) 

Lipozyme RM IM (25% wt) 

T. lanuginosus immobilized (20% wt) + RM IM (5% wt) 

Soybean oil Ethanol Solvent free 

Water 4% wt 

10h, 30 °C, 

200 rpm 

<80 

<40 

90 

[204] 

R. oryzae (10% wt) + C. Rugosa (10% wt) Soybean oil Methanol Solvent free 2h, 45 °C, 250 99.9 [201] 



Water 10% wt rpm, 130 bar 

Lipozyme TL IM (13.7% wt) 

Novozym 435 (13.7% wt) 

Lipozyme RM IM (13.7% wt) 

TL IM (4% wt) + Novozym 435 (8% wt) + RM IM (1.7% wt) 

Olive oil Ethanol Solvent free 

Water 4% wt 

18h, 35,9 °C, 

180 rpm 

<50 

<50 

<50 

95 

[203] 

Lipozyme TL IM (15% wt) 

Lipozyme RM IM (15% wt) 

TL IM (7.9% wt) + RM IM (7.1% wt) 

Palm oil Ethanol Solvent free 

Water 4% wt 

18h, 37.7 °C, 

180 rpm 

<50 

<50 

81 

[203] 
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 778 



7. Acyl acceptor and strategies to avoid lipases inactivation by methanol and glycerol 779 

7.1 Importance of the selection of acyl acceptor 780 

One of the important decisions in biodiesel production is the choice of the alcohol (acyl aceptor) which 781 

has a significant impact on the associated costs of the bioprocess, on the properties of the biodiesel, and 782 

on the catalyst [205]. The most common alcohols used are short-chain alcohols, namely methanol an 783 

ethanol. The choice depends on the availability of the alcohol and price in the biodiesel producer country. 784 

Nevertheless, methanol is the most common used acyl acceptor due to economic reasons [110]. However, 785 

the use of methanol in enzymatic biodiesel production is one of the bottlenecks of the process because of 786 

the inactivation caused in the majority of free and immobilized lipases, reducing the number of 787 

reutilization of the biocatalyst and subsequently increasing the cost of the process due to the frequent 788 

substitution of the biocatalyst. 789 

A deep state of the art of the molecular and kinetic effect of methanol has been made by [110]. There is 790 

not a single mechanism to describe this negative interaction and it can be considered as the sum of the 791 

effect of different factors such as solubility and miscibility of substrates and denaturation and inhibition 792 

of the biocatalyst. Two main different mechanisms has been proposed for this phenomena: (i) a high 793 

alcohol concentration causes a not correct folding of the lipase with subsequent irreversible deactivation 794 

[206], and (ii) the role of organic solvents acting as a competitive lipase inhibitors [207]. Blocking the 795 

access of the TAG to the biocatalyst and/or adsorption of alcohol onto polar immobilized support have 796 

also been proposed [18]. 797 

The tolerance of lipases to methanol depends on the source of lipase producer microorganism. Candida 798 

antactica lipase B (CALB) is an example of a lipase with low performance in enzymatic biodiesel 799 

production [3], conversely to Burkholderia sp. lipase which has a high stability in the presence of 800 

methanol [155, 208]. 801 

The approaches to overcome this problem are the immobilization of the biocatalyst (section 6.3) or the 802 

design of process strategies (section 7.2).  The use of protein engineering methods to improve the enzyme 803 

resistance to methanol, has not been fully explored and the reported results are rather scarce [110, 139]. 804 

The use of ethanol has several advantages compared with methanol as acyl acceptor: in terms of green 805 

product, ethanol is better when it is obtained from renewable sources and not from fossil fuel, it causes 806 

lower lipase inactivation and, in terms of biodiesel performance, FAEEs present some characteristics 807 

better than FAMEs although FAMEs have a higher maximum engine performance [18]. 808 



Recently, the use of a mixture at different ratios of both acyl acceptors has been tested in lipase-catalyzed 809 

biodiesel production. The different reactions rates for the acyl acceptors improved the solubility of them 810 

in the organic phase. In addition, the characteristics of the final biodiesel (a blend of FAMEs and FAEEs) 811 

have been also improved [209, 210]. 812 

It is known that the inactivation effect of acyl acceptor decreases and the miscibility in the oil increases 813 

with the increase in the number of carbon atoms of the alcohol [211, 212]. Not only long chain alcohols, 814 

but also secondary and branched alcohols have been used in biodiesel synthesis, being the preference for 815 

the alcohol specific for each lipase [3, 10, 18, 213]. However, although the obtained biodiesel properties 816 

are better when long-chain alcohols are used, the cost of them is the main drawback to substitute 817 

methanol and ethanol.  818 

Esters has also been proposed as acyl acceptor as an alternative to the alcohols. Methyl and ethyl acetate 819 

are the most common used esters [195, 197, 214]. High yields has been reported [195, 197], and 820 

triacetylglycerol is obtained as final product instead of glycerol [18] with no negative effect on lipases 821 

and with applications in many fields [195]. 822 

Solvents as dimethyl carbonate (DMC), have demonstrated to be potential candidates to acyl acceptors 823 

[39, 84]. 824 

Norjannah et al. (2016) [18] present a summary with the advantages and disadvantages of acyl acceptors 825 

in enzymatic reaction.  Reviews on biodiesel synthesis using different types of acyl acceptor can be found 826 

in the literature [3, 9, 18, 213]. 827 

 828 

7.2 Strategies to overcome the problem of lipase inactivation by methanol and glycerol. 829 

Different strategies have been implemented to overcome the problem of alcohol inactivation: 830 

The use of organic solvents is a common strategy to minimize the inactivation effect of acyls acceptors on 831 

biocatalyst and to improve the solubility between triacylglycerols and alcohols [213]. It also reduces mass 832 

transfer problems by decreasing the viscosity of the reaction media and favouring acyl migration 833 

phenomena. In some cases, the use of solvents also avoids the need for the stepwise alcohol addition. The 834 

selection of the solvent is correlated with its log P value.  Hydrophobic solvents such as petroleum ether, 835 

isooctane, n-hexane, n-heptane are the most common used with a lop P value around or higher than 4. 836 

However, Li et al. (2010) [75], working with commercial lipases in the methanolysis of vegetable oil, 837 

reported that the best results were obtained with solvents with a log P value in a range between 1.4-1.52. 838 



is The most suitable solvent was tert-butanol which minimized also lipase denaturation caused by 839 

glycerol [215]. Lower yields were obtained with more hydrophobic solvents (log P > 2). Nevertheless, 840 

with the objective to get a greener bioprocess, the use of solvent should be avoided for the negative 841 

effects that solvents provoke on the environment. 842 

The quality of the glycerol produced by lipase-catalyzed transesterification is higher than that obtained 843 

from alkaline catalysis. However, if glycerol adsorbs to the enzyme carrier it may cause lipase 844 

deactivation decreasing process efficiency [194, 216]. In the transesterification of soybean oil with 845 

methanol catalyzed by Lipozyme TL IM, iso-propanol was used for glycerol removal from the support 846 

between reuses, to improve the operational stability of the biocatalyst ([194]; Table 7).  847 

Another approach to overcome glycerol problem is the use of sn-1,3-regioselective lipases, instead of non 848 

regioselective lipases, to synthesize biodiesel (fatty acid alkyl esters). The final products are FAMEs and 849 

2-monoacylglycerols (2-MAG) [39, 110, 156, 158, 217, 218]. 850 

This strategy was first developed and patented by Luna et al. (2007) [217]: “Ecodiesel-100” is defined as 851 

a mixture of two parts of fatty acid ethyl esters (FAEEs) or FAMEs, and one part of MAG, with minor 852 

quantities of diacylglycerol (DAG) obtained by partial ethanolysis (or methanolysis) catalyzed by sn-1,3-853 

selective porcine pancreatic lipase. “Ecodiesel” is a glycerol-free biodiesel. This novel biofuel containing 854 

FAMEs/MAG or FAEEs/MAG blends presented similar physical properties to those of conventional 855 

biodiesel [219]. 856 

However, when sn-1,3 regioselective lipases are used and a maximum conversion of oil into FAMEs is 857 

desired, acyl migration can be promoted by the presence of silica in the reaction medium ([189]; Table 7) 858 

or by using some synthetic resins ([186]; Table 7). 859 

Since short chain alcohols have a negative impact on lipase stability reducing the transesterification 860 

yields, stepwise addition of methanol or ethanol, with the objective to minimize the contact between high 861 

concentrations of methanol and lipase,  is frequently carried out to protect the biocatalyst against alcohol 862 

inactivation [18, 82, 156, 158, 187, 193, 194, 197].  Generally in stepwise addition the concentration of 863 

methanol is lower than 1/3 molar equivalent. It is important to notice that the problem of solubility in 864 

solvent-free systems of acyl acceptor is higher at the beginning of the biocatalysis when TAGs are the 865 

major compounds. However, this solubility increases along the reaction because it is higher in FAMEs 866 

than in TAGs [110].  867 



Other novel approaches are the use of salt-solution based reaction systems [220], the use of supercritical 868 

carbon dioxide or dimethyl carbonate, or ion liquids, which are presented in section 3.2 869 

As previously commented, other approach to avoid biocatalyst inactivation by short-chain alcohols is the 870 

use of esters as alkyl donors, namely ethyl acetate, methyl acetate or dimethyl carbonate. In the 871 

production of fatty acid ethyl esters from jatropha, karanji or sunflower oils, catalyzed by Novozym 435, 872 

ethyl acetate was used as solvent and alkyl donor instead of ethanol. A high operational stability of 873 

Novozym 435 was observed in presence of ethyl acetate while a complete loss of activity was observed 874 

after the sixth batch when ethanol was used ([195]; Table 7). Using the same biocatalyst for FAMEs 875 

synthesis, carried out in batch stirred tank reactor or in batch packed bed reactor with recirculation, the 876 

best results in terms of productivity and operational stability were obtained when methyl acetate was used 877 

as alkyl donor ([197]; Table 7). Dimethyl carbonate (DMC) was successfully used as lipid extraction 878 

reagent, alkyl acceptor and reaction medium for biodiesel synthesis by in-situ esterification of the lipids 879 

rich in FFA from the heterotrophic microalgae Aurantiochytrium sp. [84] (Table 7). 880 

In the presence of high water contents in reaction media, methanolysis showed to be efficiently catalyzed 881 

by free Rhizopus oryzae lipase [167] or free Cryptococcus spp. S-2 yeast lipase [166] (Table 6). These 882 

results suggest that water prevents the inactivation of the enzyme caused by single addition of methanol 883 

[166, 167].  884 

Also, acyltransferases are interesting biocatalysts with great potential for industrial applications in green 885 

oleochemistry industry, as a novel alternative to the use of lipases. In this field, the lipase/acyltransferase 886 

CpLIP2, secreted by the yeast Candida parapsilosis, stands out for its great potential. This biocatalyst is 887 

one of the few enzymes that preferentially catalyzes alcoholysis over hydrolysis, when in aqueous or in 888 

biphasic aqueous/organic media [159, 221-228]. Undesirable hydrolysis reaction is limited by the 889 

competition between the alkyl acceptor (methanol) and water, favoring the short chain alcohol, even in 890 

systems with a high molar excess of water [228]. This acyltransferase is active in an acidic to neutral pH 891 

range (3-7), with an optimum for the alcoholysis reaction at pH of 6-6.5 [221] and temperature of 30 ºC. 892 

CpLIP2 is highly active towards long-chain unsaturated triacylglycerols [223]. CpLIP2 was immobilized 893 

on two synthetic resins (Accurel MP 1000 and Lewatit VP OC 1600) and successfully used as catalyst for 894 

the transesterification of crude jatropha oil with methanol, in a lipid/aqueous system. Both enzyme 895 

preparations presented high activity (80.5 % and 93.8 %, with CpLIP2 on Accurel MP 1000 or on Lewatit 896 



VP OC 1600, respectively) and batch operational stability along 5 consecutive 8 h batches ([159]; Table 897 

7).  898 

 899 

8. Mechanism of enzymatic esterification and transesterification.  900 

For biodiesel production the synthesis reactions of interest are esterification and transesterification 901 

(Figure 7) [7, 66]. Esterification is the reaction between a free fatty acid and an alcohol to produce an 902 

ester and release a molecule of water and transesterification refers to the reaction between a TAG and an 903 

alcohol where the ester group of the TAG is removed to form three molecules of fatty acid alkyl ester and 904 

one molecule of glycerol.  905 

The transesterification reaction follows several steps and three different kinetic models have been 906 

described for enzymatic transesterification [3, 7, 140, 229, 230]. The first mechanism is the direct 907 

alcoholysis of acylglycerols into fatty acid alkyl ester (Figure 7). In this mechanism, the first step is the 908 

action of the lipase on the ester bond of the TAG to produce a fatty acid alkyl ester and a DAG, which are 909 

then converted to a MAG, and a second fatty acid alkyl ester. In the final step, the lipase acts on the 910 

monoacylglycerol to produce glycerol and a third molecule of fatty acid alkyl ester [7].  911 

 912 

Figure 7. Lipase-catalyzed transesterification steps.  913 

 914 

The second mechanism is a two-steps process in each ester bond, starting with the hydrolysis to produce 915 

acylglycerols and free fatty acids and a subsequent esterification of the free fatty acids [3]. The third 916 

kinetic model presents a combination of direct alcoholysis and the two-step reaction of hydrolysis of 917 

acylglycerols followed by esterification of the free fatty acids [137, 231]. 918 



Lipase-catalyzed transesterification follows a Ping-Pong Bi-Bi mechanism [140, 229, 230] and has four 919 

steps [7, 229]. The mechanism (Figure 8) initiates with a nucleophilic addition to form the enzyme-920 

substrate complex, where the nucleophile is the oxygen in the O–H group on the enzyme. Then there is a 921 

proton transfer from the conjugate acid of the amine to the alkyl oxygen atom of the substrate, forming a 922 

glycerol moiety. When a triacylglycerol is the initial substrate, a diacylglycerol would be formed and 923 

when a diacylglycerol is the substrate, then a monoacylglycerol would be formed. In the third step, the 924 

oxygen atom from an alcohol molecule, usually methanol or ethanol, is added to the carbon atom of the 925 

C=O of the acyl enzyme intermediate to form the acylated enzyme–alcohol complex.  In the final step, 926 

the enzyme oxygen atom of the complex is eliminated and a proton is transferred from the conjugate acid 927 

of the amine, resulting in fatty acid methyl or ethyl ester depending on the alcohol used.  928 

 929 
Figure 8. Pong Bi-Bi mechanism with competitive inhibition from the nucleophile B. E: enzyme. A and 930 

B: substrates. P and Q: products. EAc and EacB: intermediate complex of enzyme and substrate. EB: 931 

inactive complex enzyme-substrate B. 932 

 933 

The previously described mechanism is based on the assumption that the first product of the reaction is 934 

the fatty acid ester followed by the glycerol moiety and that no alcohol or substrate inhibition is present. 935 

Al-Zuhair et al. [229] have shown that the first product of the reaction is the glycerol moiety and that the 936 

fatty acid ester is the final product. Since inhibition is a rather frequent problem in lipase-catalyzed 937 

biodiesel production, Al-Zuhair et al. [229] also proposed a kinetic model that considered both alcohol 938 

and substrate inhibition. This adapted model was capable of predicting the behavior of the 939 

transesterification of palm oil with methanol in n-hexane medium with immobilized Rhizomuchor miehei 940 

lipase as catalyst. Chersilp et al. [232] proposed three kinetic models for biodiesel production from palm 941 

oil and ethanol with immobilized Pseudomonas sp. lipase. These models considered the effect of 942 

substrates and products during the entire reaction. The kinetic study showed that the hydrolysis of the 943 

TAG ester bond and esterification of the free fatty acid occurred simultaneously instead of hydrolysis 944 

followed by esterification. In addition, they reported that the constant rates of palm oil esterification were 945 

higher than the rates of the hydrolysis reaction. Li et al. [231] used free lipases as catalysts for the 946 



reaction between soybean oil and methanol. As for lipase-catalyzed esterification [147], the system of Li 947 

et al. followed a Ping-Pong Bi-Bi mechanism with methanol inhibition, showing that the methanolysis 948 

reaction and the hydrolysis followed by esterification occurred simultaneously. Furthermore, the 949 

enzymatic rate constants showed that direct transesterification is the preferred pathway for this system.  950 

Similar results were found by Canet et al. [137] for the transesterification using immobilized lipases from 951 

Rhizopus oryzae where the reaction was also a combinations of direct alcoholysis with the two-step 952 

reaction of hydrolysis and esterification.  953 

 954 

9. Bioreactors types and operational strategies used in Biodiesel production  955 

The selection of the most suitable bioreactor for enzymatic transesterification has to take into account the 956 

considerations made in previous sections. Mainly these bioreactors work with immobilized lipases to 957 

increase the productivity and reduce the cost of the biocatalyst per ton of biodiesel and minimizing the 958 

problems associated to the scale-up of the process. 959 

Four different configurations of enzymatic bioreactors are described in the literature, working either in 960 

batch or in continuous mode:  stirred tank reactors (STRs), packed bed reactors (PBRs), fluidized-bed 961 

reactors (FBRs) and membrane reactors (MBRs) [3, 5, 110]. To select the best design and operation mode 962 

of the enzymatic bioreactor, the knowledge about kinetics, hydrodynamics and mass transfer of the 963 

bioprocess is necessary. Poppe et al., (2015) [5] present the main variables involved in the selection of the 964 

enzymatic bioreactor with immobilized enzymes. 965 

Most of the studies are batchwise but the implementation in continuous bioreactors is also described with 966 

very high operational stability results [154, 157, 196].  967 

STRs working in batch mode are the simplest configuration but, in most of the situations, it requires long 968 

reaction times  [101]. The break of the immobilized particles with enzyme lost to the reaction medium, 969 

due to mechanical agitation, is an associated problem. However, it can be avoided with the use of porous 970 

baskets containing the immobilized particles [233] or also replacing STRs by PBRs with recirculation.  971 

PBRs are the most common bioreactors used in continuous enzymatic biodiesel production. Generally, 972 

they offer better performance than STRs, mechanical shear stress is reduced, the technology is cheaper, 973 

the reutilization of the enzyme does not need a prior separation and it can work at lower enzyme-substrate 974 

ratio [110]. However, the formation of channelling due to the immiscibility of the substrates, lower yields 975 

compared with batch operational mode, flow rates limited to a compromise between pressure drop values, 976 

minimal diffusion layer, and higher mass transfer limitation problems are the main drawbacks of this 977 



configuration [5, 234]. A comparison of biodiesel yield in batch and continuous flow packed bed reactor 978 

is presented by Tran et al. (2014) [235].  979 

FBRs are an alternative of PBRs to avoid some of the drawbacks. Substrate is flown in the FBRs with up 980 

flow at an optimized flow rate let the fluidization of the biocatalyst, providing a free movement of the 981 

biocatalyst around the FBRs. With this configuration, mass transfer is improved, although lower yields 982 

are generally obtained. The size of the particles of the biocatalyst can be lower than in PBRs but other 983 

factors as the viscosity and the density of the substrates and biocatalyst have to be taking into account 984 

[236]. The scale up of this configuration is more complex than with PBRs [5]. 985 

An ultrafiltration membrane bioreactor is an adequate reactor to operate with reverse micellar medium. 986 

Although being more expensive than conventional reactors, it can integrate the biocatalysis, the 987 

downstream and the reuse of biocatalyst [237]. This type of reactor has been used in the production of 988 

alkyl esters by transesterification reaction using methanol, ethanol or butanol as acyl acceptors, using 989 

cutinases as biocatalyst. It worked continuously for more than 28 days with a productivity value of 500 990 

kg product·kg enzyme-1·day-1 [238]. 991 

A summary of an update of different bioreactors configurations, the source of lipase, the conversion or 992 

productivity reached, the acyl acceptor used and the stability of the biocatalyst shown in Lotti et al. 993 

(2015) [110] is presented in Table 9. 994 

In the last year, non-conventional reactors have been tested in biodiesel production.  Ultrasound systems 995 

are one of them. Basically, ultrasounds modify the temperature and pressure of the microenvironment, 996 

enhancing substrate dissolution, improving mass transfer, inducing conformational modifications in the 997 

protein and perturbed weak interactions. A save in energy compared with mechanical agitation is also 998 

reached. Thus, a reduction of reaction time, yield increasing, and the possibility to make chemo, regio and 999 

stereoselective reactions that in standard conditions are not possible, are the advantages of the ultrasound 1000 

technique [239]. This technology has been applied to enzymatic biodiesel production with higher 1001 

enzymatic activity and negligible loss of enzyme activity [120]. The studies has been mainly performed 1002 

with commercial lipases (Novozym 435, Lipozyme RM IM) using methanol or ethanol as acyl acceptor, 1003 

with conversions higher than 75 %, in solvent-free or in solvent media [239]. The production of FAMEs 1004 

from waste grease using C. antarctica B lipase as biocatalyst in an ultrasound system, reached a yield of 1005 

98.2 % after 20 min reaction time [240]. The synthesis of biodiesel from sunflower using Lipozyme TL-1006 



IM under an ultrasound field demonstrated that no excess of methanol is necessary in the reaction. In 1007 

addition, the reaction was favoured when the stoichiometric relation oil:methanol of 1:3 was used [241]. 1008 

Candida rugosa lipase immobilized onto functionalized magnetic nanoparticles (MNPs) was used in the 1009 

biolubricant production from castor oil in a magnetically stabilized fluidized bed reactor: 96.9 % methyl 1010 

ester yield was obtained after 24 hours of reaction. Also, after eight cycles of 24 h each, no significant 1011 

loss of activity was observed [242]. This reactor presents advantages comparing to conventional FBR 1012 

including lower pressure drop and better mass transfer [243]. 1013 

Candida rugosa lipase in a solvent-free system was also tested in the methanolysis of canola oil in 1014 

capillary channel reactors: the yield of methanolysis was improved up to 4-fold, compared with 1015 

conventional approaches [244]. 1016 



Table 9. Examples of processes for the lipase-catalyzed production of biodiesel in bioreactor 1017 
 1018 

Lipase Conversion/Productivity Reutilization Reactor Strategy Reference 

R. miehei 

Lipozyme IM 

79% 15 STR n- Hexane as solvent 
Alcoholysis 

[245] 

Candida cylindracea 98% 24 h STR Diesel or kerosene as 
solvent 
Methanol 

[246] 

C. antarctica 

Novozyme 435 

95.6% 1 STR Methanol stepwise 
 

[197] 

C. antarctica 

Novozyme 435 

99.8% 5 STR Methyl acetate [197] 

C. antarctica 

Novozyme 435 

96,2% 72 h PBR Methyl acetate [197] 

C. antarctica 

Novozyme 435 
99 % 20 cycles PBR Methanol, 10 passes per 

column 
[216] 

      
Fusarium solani Cutinase  500 g of product g biocatalyst-1 

day-1 
28 days using a cutinase 

mutant 
MBR Reverse micelles [238] 

C. rugosa 87% 50 h PBR Methyl acetate [247] 
NS88001 and C. 

antarctica 

Novozyme 435 

1.556 kg FAEEs kg catalyst-1 

h-1 
--- PBR Two-stage processes 

Ethanol 
[248] 

Burkholderia  67% --- PBR Methanol,  [235] 
C. antarctica 

Novozyme 435 

>80% 5 cycles STR Presence of tert-butanol. 
methanol 

[215] 

B. cepacea 67% --- PBR Methanol [235] 
CalleraTM 98% 24 STR ethanol [164] 
B. cepacea 87.6 % t1/2 = 478 h PBR ethanol [154] 
C. antarctica 

Novozyme 435 

96.2% Increased extracting 
glycerol 

PBR Methanol, extracting 
glycerol 

[249] 

B. cepacea 84% 5 days PBR Methanol [250] 
B. cepacea 97.3 t1/2 = 1540 h Two-stage PBR Ethanol, extracting 

glycerol 
[154] 

NS-40116 T. lanuginosus 

lipase  

8.5 g of product g biocatalyst-1 

h-1 
5 cycles CSTR 40 m3 Methanol added in 

continuos. 
[251] 



C. antarctica 

Novozyme 435 

98.1 
9.9 mol of ester g biocatalyst-1 

min-1 

15 days without loss of 
activity 

FBR Ethanol, extracting 
glycerol 

[252] 

C. rugosa and 

R. oryzae cells 

85-81% --- PBR n-hexane as solvent, 
methanol 

[253] 

B. cepacia 85% Very stable PBR methanol [235] 
Lipozyme TM IL 92% t1/2 = 45 cycles PBR Ethanol, extracting 

glicerol 
[254] 

Candida sp. 99-125 96% --- Rotating PBR Methanol [255] 
Recombinant R. oryzae 50.4 1 cycle STR 7 Methanol stepwise [256] 
Recombinant R. oryzae 73.6 More than 2 cycles PBR 7 Methanol stepwise [256] 
 1019 

 1020 



10. Economic evaluation and industrial scale production  1021 

Historically biodiesel price has been related to vegetable oil prices and to fossil diesel prices (Fig 9), but 1022 

also to tax incentives. However, as previously referred, the cost of the feedstock oil still represents 60-1023 

88% of the production cost of biodiesel [6-10, 257] (see also Fig. 10). The use of waste fats could reduce 1024 

biodiesel production costs and decrease GHG emissions [12, 258, 259]. 1025 

 1026 

 1027 

Figure 9. Historical biodiesel price and production in the US [19]. 1 US gal = 3.7854 L. 1028 

 1029 
Figure 10. Production cost of biodiesel. Based on data from Haas et al. (2006) [8] (left) and Skarlis  et al. 1030 

(2012) [257] (right).  1031 

 1032 



Sales of coproduced glycerol also improve biodiesel profits, but this implies an additional step of glycerol 1033 

purification. Glycerol purification is more difficult when alkali catalyst is used, but enzymatic catalysis 1034 

produces a cleaner glycerol. Glycerol has a wide range of applications including personal care, 1035 

pharmaceuticals, foods and beverages [260]. The global demand for glycerol was around 2 million tons in 1036 

2011 and is expected to reach 3 million tons by 2018, worthing an estimated USD $ 2 100 million [260]. 1037 

Removal of alcohol excess and water is also necessary to obtain biodiesel that complains with quality 1038 

standards. Figure 11 shows the scheme of a biodiesel production process with homogeneous catalysis and 1039 

basic purification steps. Models of biodiesel cost and local producer experiences indicate that capital 1040 

investment is pay back in about two years for alkali-catalyzed process. For feedstocks with high FFA 1041 

content, acid neutralization process is reported to be affordable [259]. However, lipase-catalyzed 1042 

processing or neutralization is becoming attractive for the industry as well because it allows for the use of 1043 

cheaper feedstocks. The influence of the enzymatic support on biodiesel economics has also been 1044 

evaluated. The ideal support should not retain glycerol, which is responsible for enzyme deactivation, and 1045 

because it is also a valuable byproduct [261].  1046 

 1047 

Tax incentives were a key factor in the development of biofuels industry in many countries. For instance 1048 

in USA, to ensure compliance, companies that refine, import or blend fossil fuels are periodically 1049 

required to demonstrate they have met their RFS quota (see section 2.2). Renewable identification 1050 

numbers (RINs) are credits used for compliance, and are the “currency” of the US RFS program. A RIN 1051 

is a 38-digit number that serves as a “proof-of-purchase” for companies to submit to the EPA as proof 1052 

that they have complied with terms of the RFS [262]. The ability for independent fuel marketers to sell 1053 

renewable fuels at lower prices while improving profit margins by selling RINs, has given biofuel 1054 

marketers independence of the fossil fuel market.  1055 

Argentina has rapidly become an important producer and exporter of biodiesel, in part due to preferential 1056 

tax regimes and exemption of taxes for biodiesel used in electricity generation. These tax incentives have 1057 

been renewed for 2017 under the 1326/2016 edict.   1058 

 1059 



 1060 

 1061 

Figure 11. Sheme of biodiesel production process with homogeneous catalysis. 1062 

 1063 

 1064 

 1065 

11. Conclusions  1066 

Nowadays, there are already some examples of enzymatic processes for biodiesel production 1067 

implemented at industrial scale and the number of pilot and industrial scale plants greatly increased in 1068 

recent years. In 2006 and 2007, two Chinese companies, Lvming Co Ltd. and Hainabaichuan Co. Ltd., 1069 

launched two enzymatic biodiesel production units, with a capacity of 10,000 and 20,000 t/year (doubled 1070 

to 40,000 t/year in 2008), respectively. The first biodiesel production unit uses waste cooking oil as 1071 

feedstock, and immobilized lipase of Candida sp. as biocatalyst. The second unit produces biodiesel 1072 

based on waste palm oil and uses the immobilized Candida antarctica lipase (Novozym 435) 1073 

commercialized by Novozymes A/S, Bagsvaerd, Denmark, as catalyst. In 2012, the American company 1074 

Piedmont Biofuels (North Carolina) established a new technology (FAeSTER) for a continuous biodiesel 1075 

production using immobilized or liquid enzyme [101]. Purolite (Bala Cynwyd, PA) and Transbiodiesel 1076 

(Shfar-Am Israel) and Sunho Biodiesel Corporation (Taipei, Taiwan) are also industrial producers of 1077 

enzymatic biodiesel [214]. 1078 

In spite of this trend, the chemical catalysis process still remains the most popular on an industrial scale 1079 

mainly due to the high cost of commercial lipases. Thus, it is necessary to improve the enzymatic 1080 



technology, increasing the productivity of the bioprocess and reducing the cost of the bioprocess. To 1081 

attain this goal, it is necessary to act in a multidisciplinary approach of Genetic engineering, Bioprocess 1082 

engineering, including the production of recombinant lipase in the most adequate cell factory, Enzyme 1083 

engineering and applied Biocatalysis. It is a fact that the approach to “create” by genetic engineering, a 1084 

lipase with a high tolerance to methanol, high biocatalyic performance and high resistance to work at 1085 

higher temperatures and under harsh conditions is not corresponding with the important advances get in 1086 

the other aspects. 1087 

Also, the use of low cost non-commercial biocatalysts, presenting both high transesterification activity 1088 

and operational stability, as an alternative to commercial biocatalysts, is a solution to reduce enzymatic 1089 

biodiesel production costs and making it competitive with chemical processes.  1090 

The price of biodiesel is highly affected by the market price fluctuation of oil feedstock. Thus the 1091 

commercial efficiency and competitiveness of biodiesel market needs the development of high-valued 1092 

product from the FAMEs as raw-material, under the concept of a biodiesel refinery [10]. 1093 

Other approach to minimize the cost of the global process is the production of heterologous lipases, using 1094 

the crude glycerol obtained in the same biodiesel industry, without high purification, as carbon source. 1095 

The presence of low methanol concentration and other possible contaminants jointly in the matrix of 1096 

crude glycerol is not a problem for P. pastoris, one of the most popular cell factories to produce 1097 

recombinant lipases. 1098 

In conclusion, enzymatic biodiesel, as a green alternative to chemical biodiesel, has a potential economic 1099 

growth in the near future. 1100 
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