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We review the apparent discrepancies between studies that report anti-inflammatory 
effects of cerium oxide nanoparticles (CeO2 NPs) through their reactive oxygen species- 
chelating properties and immunological studies highlighting their toxicity. We observe that 
several underappreciated parameters, such as aggregation size and degree of impurity, 
are critical determinants that need to be carefully addressed to better understand the 
NP biological effects in order to unleash their potential clinical benefits. This is because 
NPs can evolve toward different states, depending on the environment where they have 
been dispersed and how they have been dispersed. As a consequence, final charac-
teristics of NPs can be very different from what was initially designed and produced in 
the laboratory. Thus, aggregation, corrosion, and interaction with extracellular matrix 
proteins critically modify NP features and fate. These modifications depend to a large 
extent on the characteristics of the biological media in which the NPs are dispersed. As 
a consequence, when reviewing the scientific literature, it seems that the aggregation 
state of NPs, which depends on the characteristics of the dispersing media, may be 
more significant than the composition or original size of the NPs. In this work, we focus 
on CeO2 NPs, which are reported sometimes to be protective and anti-inflammatory, and 
sometimes toxic and pro-inflammatory.

Keywords: nanoparticles, cerium oxide, nanoparticle evolution, nanoparticle agglomeration, ion leaching, 
antioxidant activity, inflammation, immune response

inTRODUCTiOn

Nanotechnology has already qualified as the industrial revolution of the twenty-first century. 
Although its development is a logical continuation of the development of microelectronics and col-
loid chemistry, the beginning of the nano era corresponds, for most people, with Smalley’s synthesis 
of fullerene (C60) (1). Since then, organic nanomaterials (e.g., C60, carbon nanotubes, graphene) have 
garnered much interest, but have also generated concerns regarding toxicity (2–4). Meanwhile, the 
development of inorganic nanomaterials has caused far less controversy, and it is only in the past few 
years that some of these materials (e.g., TiO2, Ag, Fe3O4) have come under closer scrutiny to address 
human and environmental toxicity issues (5–7). It has also become increasingly common to examine 
the effects of a nanocomposite or nano-enabled products instead of the pristine nanoparticle (NP) 
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alone. Indeed, the effects of the “active ingredient” can be (and 
actually often are) deeply modified by the formulation of the final 
product and the properties of the media in which it is dispersed. 
This highlights the complexity of addressing the fate of a nanoma-
terial through its life cycle in a meaningful manner.

Cerium oxide nanoparticles (CeO2 NPs) have recently received 
much attention because of their excellent catalytic redox proper-
ties (8). In addition to being a rather chemically inert ceramic, a 
CeO2 nanocrystal has a fluorite-like structure where the unfilled 
4f electronic orbital confers it a variety of relevant catalytic prop-
erties when it reaches the nanoscale. Consequently, nanoceria has 
been used in the petrochemical industry and in catalytic exhaust 
converters for decades. CeO2 NPs have high capacity to buffer 
electrons in redox environments due to the ease of oxidation and 
reduction from Ce3+ to Ce4+ and vice versa (9, 10), followed by the 
capture or release of oxygen. As a consequence, they act as electron 
sponges in the presence of free radicals degrading thus reactive 
oxygen species (ROS) (11). In detail, inflammation and oxidative 
stress are interconnected processes that contribute decisively to 
the pathogenesis of many diseases, including highly prevalent, 
age-related disorders, such as obesity, cardiovascular disease, 
diabetes mellitus, cancer, chronic respiratory diseases, and neuro-
logical diseases. Mutual stimulation between oxidative stress and 
inflammation contributes decisively to the chronic nature of these 
diseases. Oxidative stress involves elevated intracellular levels of 
ROS, such as peroxides, superoxides, hydroxyl radicals, and sin-
glet oxygen, which have critical roles in physiological processes 
through the regulation of cell signaling cascades. Prolonged 
exposure to high ROS concentrations damages proteins, lipids, 
and nucleic acids, causing various metabolic complications.

Thus, CeO2 NPs in the size range of 3–50 nm have recently 
received increased attention for their participation in biochemi-
cal redox reactions, providing sites for free radical scavenging 
and reducing inflammation (12–14). Thus, CeO2 NPs have been 
reported to confer cellular protection, especially in the reduction 
of oxidative and nitrosative stress in living organisms, and are 
considered an alternative approach offering new opportunities 
for the treatment of physiopathological processes leading to 
chronic inflammation (15).

In this regard, most therapeutic CeO2 NPs applications are pro-
posed based on their ability to reduce ROS levels and consequently, 
the levels of most inflammatory mediators, such as inducible nitric 
oxide synthase, nuclear factor κβ, tumor necrosis factor-α, and 
interleukins (16–19). Indeed, CeO2 NPs were recently found to 
have multi-enzyme mimetic properties, including those related 
to superoxide dismutase (SOD), catalase, and oxidase (8). In this 
context, CeO2 NPs have potential applications in many different 
medical fields. For example, in cardiology, intravenously adminis-
tered CeO2 NPs in a transgenic murine model of cardiomyopathy 
were proved to reduce the myocardial oxidative stress, the endo-
plasmic reticulum stress, and suppress the inflammatory process, 
ensuring protection against progression of cardiac dysfunction 
(20). In oncology, antioxidant properties of CeO2 NPs were suc-
cessfully tested to protect cells from radiation-induced damage 
(21). In another study, CRL8798 cells (immortalized normal 
human breast epithelial cell line) and MCF-7 (a breast carcinoma 
cell line), were exposed to radiation and CeO2 NPs were reported 

to confer radioprotection to the normal human breast line but not 
to the tumoral one (22). In hepatology, CeO2 NPs were shown to 
display hepatoprotective effects against steatosis in rats with diet-
induced non-alcoholic steatohepatitis (23) and to reduce steatosis, 
portal pressure, and ameliorate systemic inflammatory biomark-
ers, attenuating the intensity of the inflammatory response in a 
model of rats with induced liver fibrosis. In ophtalmology, CeO2 
NPs are being tested to treat ocular diseases such as macular 
degeneration and glaucoma. The ability of CeO2 NPs to protect 
retinal neurons was shown for primary cell cultures of dissociated 
rat retinas injecting the suspension of CeO2 NPs into the vitreous 
of both eyes (9). Similarly, beneficial effects of the use of CeO2 
NPs have been found in the case of neurodegenerative diseases 
(24). In this studies, CeO2 NPs are shown to display SOD mimetic 
activity (25, 26), catalase mimetic activity (11, 27), and/or nitric 
oxide (⋅NO) scavenging abilities (17). Last, CeO2 NPs are also ame-
nable to local targeting and delivery, as shown in the works of Li  
et al., (28) and Xu et al (29).

POSiTive AnD neGATive  
eFFeCTS OF nPs

Obviously, the safe and effective use of these promising thera-
peutic NPs requires the precise assessment of their potential risks 
and unwanted side effects. Despite the vast range of publications 
that address the toxicity and safety of nanomaterials, results are 
still controversial, with different observed effects for similar NPs 
ranging from severely toxic effects—as in the study of Kovriznych 
et al. (30), which assess and compare the acute toxicity of 31 dif-
ferent nanomaterials to fish mature individuals of Danio rerio—to 
innocuous [e.g., Ref. (31)] or beneficial [e.g., Ref. (32, 33)]. CeO2 
NPs are no exception. While they have been reported many times 
to be safe and beneficial, protecting against oxidative stress (9, 13, 
21, 22, 34), other studies, mainly related to the toxicity of CeO2 
nanopowders employed in industry, reported in vitro and in vivo 
toxicity (35, 36). In addition, while some studies report CeO2 NP 
uptake by hepatocytes and anti-inflammatory effects in the liver 
(14, 37), others report macrophage (Kupffer cell) uptake and pro-
inflammatory effects (38).

At the source of these discrepancies, one can observe the 
diversity of the materials actually employed in the different stud-
ies, which are presented under the same name. For instance, most 
research regarding CeO2 NP toxicity has been performed with 
commercially available NPs (often supplied in dry aggregated 
form) in order to assess the consequences of occupational and 
environmental exposure. These are different materials from those 
produced by wet chemistry routes in the laboratory, where the 
NPs are always kept isolated and well dispersed. In addition, for 
these types of studies, administered doses are usually higher than 
those proposed in nanomedicine (Figures  1A,B). In addition 
to their different initial characteristics, these materials are often 
prone to aggregation when dispersed into biological fluids, such 
as complete cell culture medium or serum (5, 39). For instance, 
He et  al. (39) showed how intratracheally instilled CeO2 NPs 
into Wistar rats agglomerate and form sediments in the bron-
choalveolar medium. Consequently, the actual objects that cells 
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FiGURe 1 | Different aspect and stability of commercial and designed CeO2 nanoparticles (NPs). Different morphologies and sedimentation behavior of CeO2 
nanopowders (commercial, nominal size <25 nm) and CeO2 NPs synthesized in the laboratory after dispersion in TMAOH 1 mM, a good stabilizer of metal oxide 
NPs. (A,B) Representative TEM images CeO2 NPs and CeO2 nanopowders, respectively (scale bar = 100 nm); (C) UV-VIS spectroscopy measurements over time  
of both samples after resuspension in TMAOH 1 mM and at the same NP concentration.
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encounter may behave very differently from the initially designed 
and produced NPs (Figure 1C).

Comparing studies regarding nanomedicine and nanosafety, 
it seems that often the differently observed biological effects of 
NPs are related not only to its parental composition and purity 
but also to its final aggregation state (40), which is independent 
of the employed material and can be reproduced with other 
NPs. For instance, aggregates of TiO2 (41), Al2O3 (42), and Fe2O3 
(43) NPs show similar toxicity to CeO2 aggregates (37, 44), as 
well as CeO2 (45) or Au NPs (46) carrying cationic amphipathic 
molecules on their surfaces have been observed to be similarly 
toxic. Regarding aggregates, in the case of CeO2, Rogers et al. (44) 
evaluate how exposure to different concentrations of aggregated 
CeO2 NPs affects indices of whole animal stress and survivability 
in Caenorhabditis elegans. Results showed that CeO2 aggregates 
promoted strain-dependent decreases in animal fertility, a 
decline in stress resistance as measured by thermotolerance and 
shortened worm length. Moreover, chronic exposure of CeO2 NP 
aggregates was found to be associated with increased levels of ROS 
and heat shock stress response (HSP-4). Regarding surface state, 
Dowding et al. (45) prepared different samples of CeO2 NPs using 
identical precursor (Cerium nitrate hexahydrate) through similar 
wet chemical process but using different oxidizer/reducer: H2O2, 
NH4OH, or hexamethylenetetramine (HMT). Results showed 
that unlike the other CeO2 NPs preparations, HMT-CeO2 NPs 
were readily taken into endothelial cells and reduced cell viability 
at a 10-fold lower concentration than the others. This indicates 
that the biological effects of NPs depend not only on intrinsic 
but also extrinsic features, aspects related to the NP itself and 

to its history and environment. Thus, colloidal stability, which 
determines the agglomeration and sedimentation, depends on 
the concentration and nature of ions and molecules present in 
the media at a certain temperature. This affects the hydrodynamic 
radius, which depends on temperature and viscosity; NP cor-
rosion, which depends on the combined redox potential of the 
species present in the environment; and speciation of leached 
ions, which depends on the nature of the dispersing media 
(Figure 2A). The NP concentration will affect the kinetics of the 
previously coexisting phenomena.

In this context, interactions between NPs and the immune sys-
tem are of particular interest for both their efficient use and their 
safety in biomedical applications. NPs are foreign objects, sized 
within the range of that detected and managed by the immune 
system, which has a responsibility for categorizing invasion and 
providing an appropriate response (Figure 2B). For example, NPs 
may exacerbate immune responses by ordering and repetition of 
ligands (47–49), as well as by altering redox status, both increasing 
(50) and decreasing ROS and inflammatory mediator levels (14).

THe APPARenT COnTRADiCTiOn

Lack of understanding NP characteristics and their evolution 
inside biological media is recognized as one of the key points 
underpinning the abovementioned controversies (40). Thus, 
as with many other inorganic NPs employed in nanomedical 
research, CeO2 NPs evolve when in contact with physiological 
media (5, 51). This evolution may entail the loss of intended cata-
lytic activity, transforming beneficial NPs into deleterious ones. 
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FiGURe 2 | (A) Intrinsic and extrinsic properties of nanoparticles (NPs). Different properties of the NP, related to the NP itself (intrinsic) or to the NP behavior in  
the exposure media (extrinsic). For instance, we can design CeO2 NPs with specific sizes and shapes, but agglomeration in the exposure media leads to specific 
surfaces, concentrations, mobilities, etc., very different from the initially prepared NPs. As agglomerated NPs behave as a large particle, this makes the NP more 
immunogenic and affects the concentration of NPs in different parts of the body, where they are accumulated in organs of the MPS system. Importantly, for the 
(immuno)toxicity aspects, agglomerates of NPs are no longer on the nanometric regime of sizes and may have similar consequences as the incidental inorganic 
microparticles, extensively investigated during the last century: burning oil residues, silica from mining or asbestos have been found stacked in affected tissues, 
causing pathologies such as silicosis, asbestosis, and/or inflammatory reactions. Thus, in this example, even if CeO2 NPs are not toxic (and therapeutically 
beneficial) by themselves, they may be risky because they could be a source of toxic aggregates. (B) Graphical representative sizes of key entities capable  
of generating immune response and different NP morphologies and NP aggregates.
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The most significant alterations affecting the biological fate and 
effects of NPs when dispersed in biological media are: (i) agglom-
eration and aggregation of the NPs (5, 52, 53), (ii) formation of 
the NP protein corona as a result of the adsorption of proteins 
onto the inorganic surface (54, 55), and (iii) NP corrosion and/or  
dissolution into ionic species (56–59). Indeed, it has been pro-
posed that the higher toxicity of unstable preparations of NPs 
may not be due to the material per se but to its rapid aggregation 
into final micro- or macrometric sizes (5, 51) and the leaching 
of toxic ionic species into the solution (57). For instance, in the 
work of Kirchner et al. (57), the release of toxic Cd2+ ions from 
CdSe and CdSe/ZnS NPs and their stability toward aggregation 
were demonstrated to play an important role for the observed 
cytotoxic effects. Similarly, aggregation of NPs has been shown 

to clearly determine the exposure of NPs to cells. Xia et al. (50), 
comparing the toxicity induced by different ambient and manu-
factured NPs, showed a dramatic change in their state of aggrega-
tion, dispersibility, and charge during transfer from a buffered 
aqueous solution to cell culture medium and how it affects 
the observed cellular responses. Cho et  al., (60) studied how 
sedimentation affected the cellular uptake of gold NPs in in vitro 
experiments, dramatically altering their exposure and biological 
effects. Typically, in vitro experiments measure the uptake of NPs 
by exposing cells at the bottom of a culture plate to a suspen-
sion of NPs, and it is generally assumed that the suspension is 
well dispersed. But, if NPs sediment, their concentration on the 
cell surface may be higher than the initial bulk concentration, 
and this could lead to increased uptake by cells. Indeed, results 
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showed that cellular uptake of gold NPs mostly depended on the 
sedimentation and the diffusion velocities of the NPs.

Other NP transformations can also alter biological responses, 
leading to unexpected results. For example, Xue et al. (61) reported 
that CeO2 NPs can protect DNA from damage in Tris–HCl and 
sulfate buffers, but not in phosphate-buffered saline. A mecha-
nism of action was proposed: cerium phosphate is formed on the 
surface of the NPs, which interferes with redox cycling between 
Ce3+ and Ce4+. As a result, the antioxidant activity of CeO2 NPs 
is greatly affected by the external environment. Similarly, Perez 
et al. (62) observed that the antioxidant properties of CeO2 NPs 
were pH-dependent. They suggested that a high concentration 
of H+ interferes with the regeneration of Ce3+, resulting in a loss 
of antioxidant activity. However, disintegration of CeO2 in acidic 
media could also account for the observed effects, similar to NP 
disintegration observed in different media (57, 63).

Given these effects, when conducting studies involving NPs 
for safety or medicine, it is essential to understand the changes 
that take place with their insertion into biological media, from 
complete cell culture media, to full blood, or lymph, to the 
intracellular cytoplasm. This includes NP colloidal stability, 
vicinity interactions, chemical transformations, association with 
plasma proteins, interaction with components of the immune 
system, and traditional absorption, distribution, metabolism, 
and excretion studies adapted to the unique specifications of 
NPs. Additionally, NPs can be complex and composed of different 
entities, all of which can have different fates. As an example, in 
the work of Feliu et al. (64), the authors review a vast collection 
of recent scientific literature indicating that NPs in vivo should no 
longer be considered as homogeneous entities. They conceptu-
ally divide a NP into the inorganic core, the engineered surface 
coating, comprising of the ligand shell and optionally also bio-
conjugates, and the corona of adsorbed biological molecules. The 
authors found empirical evidence showing that all of these three 
described components may degrade individually in vivo. Due to 
this, the life cycle and biodistribution of the whole heterostruc-
ture is drastically modified.

COnCLUDinG ReMARKS

There is an increasing number of conflicting reports on the 
impact of CeO2 NPs on oxidative stress and inflammation, 

with some studies reporting the promotion of oxidative stress 
induced by immune system activation, and others reporting 
protective effects against inflammatory processes. To overcome 
this apparent contradiction, understanding the physicochemical 
transformations and evolution of the NPs in biological systems 
is imperative. Understanding these mechanisms will enable the 
design of nanomaterials that work more precisely in medicine 
and safely in society.

The majority of negative immune effects reported in the scien-
tific literature are related to NP aggregation and contamination, 
which cause biological effects independent of the composition, 
size, and shape of individual NPs. Generally, isolated, non-
contaminated NPs show no toxicity, while contaminated and 
aggregated NPs are often described as immunotoxic (65, 66). This 
is especially dramatic in the case of CeO2 NPs, which have been 
reported many times as anti-inflammatory or pro-inflammatory, 
often without a proper description of the material used or its 
purity (40).
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