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Analysis of the band structure of TiS3 single-layers suggests the possibility of changing their
physical behaviour by injecting electron carriers. The anisotropy of the valence and conduction
bands is explained in terms of their complex orbital composition. The nature of the Fermi surface
and Lindhard response function for different doping concentrations is studied by means of first-
principles DFT calculations. It is suggested that for electron doping levels x (number of electrons
per unit cell) ∼ 0.18-0.30e− the system could exhibit incommensurate charge or spin modulations
which, however, would keep the metallic state whereas systems doped with smaller x would be 2D
metals without any electronic instability. The effect of spin-orbit coupling in the band dispersion
is analysed. The DFT effective masses are used to study the plasmon spectrum from an effective
low energy model. We find that this material supports highly anisotropic plasmons, with opposite
anisotropy for the electron and hole bands.

I. INTRODUCTION

Since the discovery of graphene in 2004,1 there has
been a huge improvement in the fabrication and ma-
nipulation of layered materials.2 Recently, the discovery
that a monolayer of MoS2 changes its electronic prop-
erties with respect to the bulk3 brought much expecta-
tion in the scientific community towards the transition
metal chalcogenides (TMCs). The MX2 transition metal
dichalcogenides (TMDCs) have been thoroughly stud-
ied both experimentally2–5 and theoretically.6–9 Nowa-
days, TMCs with different chemical stoichiometries such
as the transition metal trichalcogenides (TMTCs) MX3

(Fig. 1) are also being intensely studied.10,11 Interest-
ingly, TiS3

12 has shown to have cleavage energies close
to that of graphite, showing that similar methods can be
used to fabricate TiS3 monolayers.13

The electronic structure of bulk group IVB TMTCs,
MX3 (M= Ti, Zr, Hf; X= S, Se, Te), has been the subject
of several theoretical studies14–19 but those concerning
slabs of different thicknesses are more scarce.12,13,20–23

These works have mostly dealt with the variation of the
band gap in single-layers when changing the nature of
both the transition metal and chalcogenide atoms or ap-
plying strain, the mechanical properties, and the role of
vacancies. Some interesting tendencies have already been
pointed out.10 For instance, among the semiconducting
members of this family (i) the single-layer band gap di-
minishes when the size of the chalcogenide increases, (ii)
the bulk indirect band gap may change to direct in the
single-layers (TiS3) or keep its indirect nature (TiSe3),
and (iii) the indirect band gap of ZrS3 and HfS3 can
undergo an indirect-to-direct band gap transition with
increasing tensile strain whereas the corresponding se-
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FIG. 1: Crystal structure of bulk group IVB TMTCs MX3

(a) showing the two proposed structure types A (b) and B
(c). The transition metal atoms are in a bicapped trigonal
prismatic environment which is more symmetric in the type
A structure. (d) Schematic Brillouin zone of the system.

lenides keep their indirect band gap.

From a more fundamental viewpoint the potential of
slabs with a few layers of group IVB TMTCs is still far
from being fully explored. The conduction band of the
semiconducting systems originates from the d orbitals
and, not surprisingly, the carrier mobility associated with
electrons in the pristine TiS3 single-layer seems to be
very anisotropic, with better mobility along the trigonal
prismatic chains.13 Therefore, it is expected that under
electron doping the system may become an anisotropic
conductor and thus be subject to the electronic instabil-
ities of pseudo-one-dimensional (pseudo-1D) conductors.
If this is the case, it would be interesting to see how
much 1D would be these doped single-layers, i.e. would
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they exhibit metal to insulator or metal to metal tran-
sitions? It may be expected that the trigonal prismatic
chains become more strongly coupled when the size of
the chalcogen atom increases. The doped system could
be then less 1D so that the physical behaviour of the
doped single-layers could be modulated by varying the
chalcogen atoms. At this point, let us remind that the
Zr and Hf tellurium compounds are already metallic even
without doping.24 In fact, bulk ZrTe3 exhibits a charge
density wave (CDW)25 at 63 K (whose origin is still de-
bated) and bulk superconductivity under pressure (Tc =
4 K at 5 GPa).26

The family of TMTCs with the TiS3 structure may
thus provide a challenging series of compounds whose
physical behavior under the form of single-layers or slabs
with few layers can provide interesting and new phe-
nomena besides the tunable optical properties. In the
present work we explore such possibilities by means of
first-principles density functional theory (DFT) calcula-
tions for TiS3 single-layers with different doping degrees.
We start with a detailed analysis of the electronic band
structure, in which the origin of the band anisotropy is
discussed in terms of the orbital character of the valence
and conduction bands. The results are used to study
the screening properties and possible sources of instabil-
ities of doped samples. We finally analyse the nature of
the plasmon modes for n and p doped samples, finding a
strong anisotropy in the spectrum, which is opposite for
the valence and the conduction band modes.

II. COMPUTATIONAL DETAILS

First principles calculations were carried out using a
numerical atomic orbitals approach to DFT,27,28 which
was developed for efficient calculations in large systems
and implemented in the Siesta code.29,30 We have used
the generalized gradient approximation (GGA) and, in
particular, the functional of Perdew, Burke and Ernz-
erhof.31 Only the valence electrons are considered in
the calculation, with the core being replaced by norm-
conserving scalar relativistic pseudopotentials32 factor-
ized in the Kleinman-Bylander form.33 The non-linear
core-valence exchange-correlation scheme34 was used for
all elements. We have used a split-valence double-ζ basis
set including polarization functions.35 The energy cut-
off of the real space integration mesh was set to 500 Ry.
To build the charge density (and, from this, obtain the
DFT total energy and atomic forces), the Brillouin zone
(BZ) for the bulk and monolayer was sampled with the
Monkhorst-Pack scheme36 using grids of (30×30×30) and
(30×30×1) k-points, respectively.

The Lindhard response function:

χ(q) = −
∑
i,j

∑
k

fF (εi(k))− fF (εj(k + q))

εi(k)− εj(k + q)
, (1)

where fF is the Fermi function, was obtained from the
computed DFT values of the band eigenvalues εi(k). The

integral over k-points of the BZ was approximated by a
direct summation over a regular grid of points. As the
Lindhard function is more sensitive to the accuracy of the
BZ integration than the total energy, especially in very
anisotropic systems, and/or in the presence of hot spots
in the band structure (e.g. saddle points with the corre-
sponding van Hove singularity in the DOS), the k-points
grid used for its calculation must be more dense. The
calculations are done, nevertheless, using the eigenval-
ues obtained in the DFT calculation for the coarser grid,
and interpolating their values in the denser grid, using a
post-processing utility available within the Siesta pack-
age. In this work, for the calculation of the Lindhard
function of the single layers, the BZ was sampled using
a grid of (90×90) k-points in the layer plane. The two
lower conduction bands, which are those becoming par-
tially filled for the electron doping levels considered in
this work, were those taken into account in the calcula-
tions.

For the structural relaxations, we maintain the known
symmetry of the crystal structure. For the bulk struc-
tures, as the weak interaction between layers is known to
be severely underestimated by the GGA functionals, we
have maintained the experimental value for the c lattice
parameter, while allowing the in-plane lattice parameters
and the internal atomic coordinates to vary.

We also performed calculations using the HSE0637

functional implemented in the Vienna ab initio simula-
tion package (VASP)38 in order to obtain the corrected
values of the gap. The plane wave cutoff was set to 340
eV. The Brillouin zone for these calculations was sam-
pled using a grid of (7× 10× 4) and (7× 10× 1) k-points
for the bulk and monolayer structures, respectively.

III. RESULTS AND DISCUSSION

A. Structural aspects

The MX3 layers of group IVB TMTCs (MX3) are built
up from trigonal prismatic MX3 chains in such a way
that two rectangular faces of an MX6 trigonal prism are
capped by X atoms of the neighboring chains (see Fig. 1).
Thus, every transition metal atom is coordinated to eight
chalcogen atoms, X. One of the three X-X distances of
the triangles is short and compatible with a single bond
X-X so that for electron counting purposes this X-X pair
must be considered as (X-X)2−. The system can thus be
formulated as M4+(X-X)2−X2− and should be a semicon-
ductor. Furuseth and coworkers39 found that these MX3

systems may have two structural variations, named type
A and type B (see Fig. 1). In the type A structure the tri-
angles and the two capping M-X distances are practically
symmetric with respect to a plane containing the M and
“isolated” X atoms of a chain. This plane is not really
a symmetry plane of the structure because of the mono-
clinic crystal structure. In the type B structure any trace
of this symmetrical situation is lost. Some compounds
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FIG. 2: Calculated band structures of the bulk (a) and single-layer (b) structures of TiS3. Γ = (0, 0, 0), B = (1/2, 0, 0),
A = (1/2, 1/2, 0), Y = (0, 1/2, 0), Z = (0, 0, 1/2), C = (0, 1/2, 1/2), E = (1/2, 1/2, 1/2) and D = (1/2, 0, 1/2) in units
of the reciprocal lattice vectors and the Fermi level is set at zero. The inset in (b) shows the only noticeable changes in the
band structure when the SOC is taken into account. The bands calculated with/without SOC coupling are shown in red/blue,
respectively.

TABLE I: Effective masses for the top of the valence band
and bottom of the conduction band of the TiS3 single-layer
in units of the electron rest mass (me−).

V.B. C.B.

Γ-B 0.3317 1.8718

Y-Γ 0.8333 0.5253

of this family were found to exhibit the type A struc-
ture (ZrSe3, ZrS3) whereas others the type B structure
(TiS3, ZrTe3).39 However, later work concerning one type
B structure (ZrTe3) showed that the structure was re-
ally of type A, casting doubts about the existence of two
different structure types.40 The inter and intrachain S-S
contacts are considerably different in the two structures,
so that the structural type can influence the location of
the top of the valence band which is mostly chalcogen-
based. Hence, we first decided to revisit the structure of
bulk TiS3 by looking in detail to this point. Geometry
optimizations with different starting geometries includ-
ing those of the type B structure led always to a type
A structure with geometrical parameters similar to those
reported by Jin et al.13 Thus, we confirm that TiS3 does
not exhibit type B structure but the more symmetric
type A and this is most likely the case for all TMTCs
of this group. The calculations reported in the follow-
ing sections use the bulk and single-layer DFT optimised
structure.

B. Nature of valence and conduction bands

Shown in Fig. 2 are the calculated band structures and
density of states (DOS) for the optimized structures of
TiS3 bulk (a) and single-layer (b). In our calculations
we find an indirect gap of 225 meV from Γ to Z for the
bulk, and a direct gap of 246 meV at Γ for the single
layer. The calculated effective masses of the top of the
valence band and bottom of the conduction band for the
TiS3 single-layer are shown in Table I. We find that the
mass anisotropy ratio, obtained from the effective masses
along the a and b crystallographic directions ma/mb, is
opposite for the valence and conduction bands, with re-
spective values of ∼ 0.4 and ∼ 3.56. All these results
are in good agreement with previous plane wave-based
DFT calculations.20–23 We have also checked that inclu-
sion of spin-orbit coupling (SOC) does not lead to any
substantial variation, as it can be seen in Fig. 2b (inset),
where we compare the electronic band structure in the
presence (red) and in the absence (blue) of SOC. Never-
theless it is important to notice that SOC leads to several
band avoided crossings. This is specially important for
the two branches of the valence band along the Γ-B direc-
tion, for which SOC leads to a sizeable splitting of ∼ 18
meV.

Because of the well known underestimation of these
band gaps when using the PBE functional20 we have re-
calculated the bulk and single-layer band structure us-
ing the HSE06 functional.37 The calculated gaps are 1.09
and 1.12 eV for the bulk and monolayer structures, re-
spectively. These values are in good agreement with the
experimental bulk value, ∼ 0.9 eV.41 The band struc-
tures calculated with the two functionals are practically
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identical except for an almost rigid shift of the empty
bands so that from now on our analysis is based on the
PBE type calculations.

It is important for our discussion to clearly grasp the
relationship between the nature of the valence and con-
duction bands and the structural parameters. Shown
in Fig. 3 is a fatband analysis of the single-layer band
structure. The orbitals are specified according to a lo-
cal system of axes such that the x-axis coincides with
the a-direction and the z-axis goes along the direction of
the chains, i.e., the b-direction. The top of the valence
band is mostly made of the S 3px orbitals and a smaller
contribution of the Ti 3dxy orbitals. In addition, the S
3px contribution comes only from the inner sulfur atoms
(i.e. those not forming S-S bonds; see Fig. 3). Thus,
the valence band concentrates in the inner part of the
layer and is mostly directed along the a-direction. Con-
sequently, the top of the valence band should exhibit very
weak interlayer interactions when the number of layers
increases. This is indeed what we obtain in our DFT cal-
culations for multilayer samples, shown in Fig. 4. Notice
that the edge of the upper valence band appears basically
degenerated for multilayer samples, whereas the second
valence band suffers a noticeable splitting into well sep-
arated subbands, the number of which depends on the
number of stacked layers. Since the main orbital con-
tribution to this band comes from S 3pz of both inner
and outer sulphur atoms, which play an essential role in
inter-layer hopping, this leads to a splitting of this band
in multilayer samples. In addition, the effective mass of
the hole carriers should be considerably smaller along the
a- than the b-direction of the layer, as shown in Table I.
The conduction band is strongly based on the Ti 3dz2 or-
bitals which point along the b-direction and this confers a
strong anisotropy to the electron carriers. However, the
conduction bands have also an important participation
of the Ti 3dx2−y2 and to a lesser extent from the S 3py

orbitals of the sulphur atoms of the outer part of the layer
(i.e. those implicated in the S-S bonds; see Fig. 3). Such
S 3py contribution is the responsible for the downward
shift of the valence band along the Γ-Z direction in the
bulk and it further leads to splitting of the conduction
band edges in multilayer samples, as it can be seen in Fig.
4. Of course, the effective mass of the electron carriers is
anisotropic and smaller along the b-direction (see Table
I).

C. Electron doping

The fatband analysis of the TiS3 band structure is chal-
lenging in that it highlights the possibility of altering the
physical behavior of TiS3 single-layers by injecting elec-
tron carriers in the conduction band through electric field
gating. The dominance of Ti 3dz2 orbitals in the con-
duction band points out toward a strongly anisotropic
metallic behavior (i.e. better conductivity along the b-
axis) with associated inherent electronic instabilities un-
der such conditions. However, one must bear in mind
that the number of carriers which can be injected by gat-
ing has some limitations. Assuming, for instance, doping
levels (x) similar to those attained in MoS2

42 it would
lead to x values of up to ∼ 0.3e− per unit cell (i.e. per
two TiS3 units). This would result with Fermi levels oc-
curring between the bottom of the conduction band and
the energy where the two lower conduction bands be-
come degenerate at the B point (see Fig. 2b). In view
of the non-negligible dispersion of the lower conduction
band along the a∗-direction, at least for low and inter-
mediate doping levels which will not lead to open Fermi
surfaces, it is not clear what will be the detailed topol-
ogy of the Fermi surface. In order to explore this issue we
have calculated the Fermi surface and Lindhard response
function for different doping levels. The atomic positions
were re-optimized for every value of x although it is not
expected that structural effects can play an important
role for these low doping levels.

The calculated band structure, Fermi surfaces and
Lindhard response function for several electron doped
TiS3 single-layer systems with doping levels x = 0.1 to
0.3e− are shown in Figs. 5a-d. In these figures we su-
perpose the calculated Fermi surface and the Lindhard
response function. The portions of the Fermi surface
originating from the lowest and second lowest conduction
bands are shown in red and green, respectively. As can
be seen from the almost identical calculated band struc-
tures, electron doping with these x values practically does
not alter the band structure. If the conduction band was
a perfect 1D system the Fermi surface would consist of
two parallel lines perpendicular to the b*-direction at ±
0.025b* (x = 0.1e−) and 0.05b* (x = 0.2e−). However,
this is very far from the computed results. From x = 0
to x = 0.1e− the Fermi surface is closed (Fig. 5a), mean-
ing that there are non-negligible inter-chain interactions.
The Fermi surface is an ellipse with the long axis along a*
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essentially because the slope of the band is larger along
b*. The Lindhard function has a somewhat broad region
with larger values for wave vectors corresponding to the
nesting of the locally flat borders of the ellipse at 0.22a*.
However, these values are relatively small and it is not
expected that they will lead to any instability. Thus,
for this doping interval the system should be a 2D metal
(except for very small values of x where the system may
exhibit activated conductivity because of the low den-
sity of carriers and the potential due to random sulfur
vacancies).

When x increases, the Fermi surface is still closed but
clear 1D features already appear. The shape of the el-
lipse changes in such a way that long flat portions occur
(see Fig. 5b for x = 0.2e−). This is due to the fact
that the density of carriers has increased and the Fermi
level is now reaching a region where the slope along the
chains direction (Γ-Y) strongly dominates over the slope
along the inter-chain direction (Γ-B), i.e. a region where
the electron gas already exhibits a pseudo-1D behaviour.
However, the Fermi surface is not made of two cosine-
like lines as it could be expected for such a case. This is
due to the fact that the coupling between chains is large
enough to outweigh the effect of the carrier increase and
the Fermi surface is ultimately closed even if the pseudo-
1D character inherent to the valence band already shows
up. The flat sections are well nested and lead to max-
ima of the Lindhard function which for x = 0.2e− occur
at ± 0.5a*±0.085b* (see Fig. 5b). Thus, for values of
x approaching 0.2e−, electronic instabilities partially de-
stroying the Fermi surface originating from these nesting

vectors can occur.

Following the previous reasoning one could expect that
for larger values of x the pseudo-1D character of the sys-
tem would clearly appear as an open and well nested
Fermi surface made of two cosine-like lines. Slightly
above 0.20e− the Fermi surface indeed becomes open but
the shape is not the expected one. That corresponding
to 0.25e− is shown in Fig. 5c. Note that for doping levels
just above x = 0.22e− the Fermi level cuts also the second
conduction band around the B point. For very low band
fillings this band exhibits similar curvature along the B-
Γ and the B-A directions so that a closed component
around the B point emerges (the green lines of the Fermi
surface). The shape of the portion originating from the
first band strongly reminds that of Fig. 5b but around
± 0.38a* exhibits two minima. In fact, there are these
regions between ± 0.38a* and B which are responsible for
the maxima of the Lindhard function, which exhibits two
arcs with maxima in the center, at ±0.05b. The Fermi
surface keeps this general shape until x values of 0.3e−

(Fig. 5d) and above. Except for the increase in the sep-
aration of the warped lines, the only difference is that
when the area of the closed portion around B increases,
the circle becomes an ellipse. The Lindhard function of
systems with doping levels between 0.22e− and 0.3e− is
the same although the separation of the arcs increases
with the doping (they occur at ± 0.02b* for x = 0.22e−

but ±0.085b* for x = 0.3e−). This nesting vector occurs
in the direction of the trigonal prismatic chains, b*, but
the modulus is smaller than it would be if the system was
really a pseudo-1D system (even if taking into account
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the contribution of the small closed part around B; see
Section III D). These results suggest that for values of x
between 0.22 and 0.3e− there could occur an instability
associated with this nesting vector which is very differ-
ent from that discussed for lower carrier concentrations.
This nesting vector would be responsible for the destruc-
tion of the flat portion of the Fermi surface around the
border of the Brillouin zone. Note than when the closed
portion of the Fermi surface around B appears, the Lind-
hard function has an additional contribution around the
center of the arcs due to partial nesting of this closed
part (for similar reasons as those discussed for Fig. 5a).
To summarize, we believe that systems doped with x
values around 0.18-0.2 e− and between 0.22-0.3e− could
exhibit two different types of incommensurate modula-
tions of the charge density wave (CDW) or spin density
wave (SDW) type which, however, would keep the metal-
lic state whereas systems doped with less than around
0.18-0.2 e− would be 2D metals without any electronic
instability.

D. Inter-chain coupling and the conduction band

As discussed above, the Fermi surfaces for the doping
levels considered here are different from those intuitively
expected meaning that the interchain interaction is not
a trivial one. As shown in Fig. 2b, the two lowest empty
bands exhibit the typical behavior along b* for a highly
dispersive band based on the Ti 3dz2 orbitals. The sepa-
ration of the two bands at Γ is around 0.3 eV which is non
negligible but not exceptionally strong. Looking at the
Γ–B direction (see Fig. 3) one notices that the two low-
est bands essentially result from a strong mixing of the
3dz2 and 3dx2−y2 orbitals, leading to a moderately dis-
persive and a dispersionless pair of bands, respectively.
However, in the close vicinity of B there is an avoided
crossing with a strongly dispersive 3dxy based pair of
bands. Thus, it appears that the nature of the lowest
conduction bands along the interchain direction (Γ–B)
changes significantly, acquiring 3dxy character in the last
part of the line and this is at the origin of the unexpected
behavior.

As it is well known,17,43 the fact that the sulfur tri-
angles are far from equilateral, does not only change the
electron counting but also induces an important rehy-
bridization of two of the three low-lying levels of the tran-
sition metal, 3dz2 and 3dx2−y2 . The reason is that these
levels try to minimize the antibonding interactions with
the S 3p levels. When the Ti atoms become eight coordi-
nated because of the two additional Ti-S bonds between
chains, one of these two levels becomes well separated
from the other Ti-based levels and spreads out to lead to
the two lowest bands of the undoped system. Depend-
ing on the degree of mixing between the two orbitals,
the resulting one can be described as 3dz2−y2 (for mod-
erate mixing) or 3dy2 (for a strong mixing). Analysis of
the fatbands and the detailed crystal orbitals clarify the

shape of the band structure in that zone. The two low-
est empty crystal orbitals of the undoped system at Γ
are schematically shown in Fig. 6a and b. The lowest
level is based on an out-of-phase combination of 3dz2−y2
orbitals. These orbitals make moderately stabilizing lat-
eral interactions with the 3py orbital of the non-bonded
S atoms of the two adjacent cells, which are at the same
level (the interactions marked in orange in Fig. 6). Half
of these interactions occur within the cell and half occur
between cells. When the phase changes from Γ to B, the
intercell interactions become antibonding, so that glob-
ally this band is non bonding between chains and con-
sequently the band goes up in energy. In principle, the
interaction between the 3py orbital of the inner S atom
of one chain and those of the bonded outer S atoms of
the two neighboring chains could also contribute to the
energy raising since the intracell overlap is positive both
in Γ and B but the intercell one changes to antibond-
ing in B. However, the distance between the two sulfur
atoms is large because the S atoms are located in planes
differing by half-b and the effect is small. In fact, there
is a shorter S–S interchain contact between the bonded S
atoms in second-neighboring chains along a. This π-type
interaction could also contribute to the energy raising
since they are in-phase at Γ but out-of-phase at B. How-
ever, this contribution turns out to be extremely weak as
shown by the fact that it also occurs for the next band
(see Fig. 6b) which is, nevertheless, very flat along Γ-B.
Thus, for around two thirds of the Γ to B traject, the
lowest conduction band behaves as resulting from a se-
ries of slightly coupled strongly 1D systems located in
the trigonal prismatic chains and the closed nature of
the Fermi surface is simply due to the joint effect of the
low density of carriers and the non-negligible interaction
between chains of 3dz2−y2 orbitals.

The next empty crystal orbital is based on an in-phase
combination of 3dy2 orbitals. An important difference
with the previous band is that now the 3py orbital of
the non-bonded S atoms practically does not mix into
this crystal orbital so that the different chains become
uncoupled and hence, the completely flat nature of this
band. Finally, near the B point a strongly descending
pair of bands based on the Ti 3dxy orbitals (see Fig. 6c),
which make strong interactions with the 3px orbitals of
the adjacent non bonded S atoms near Γ but not around
B, undergoes an avoided crossing with the lower pair of
bands. As a result, Ti 3dxy character is built up in the
two lower bands near the region of the B point stabilizing
the two lower bands. More importantly, the antibonding
interaction between the bonded S atoms of two successive
chains along a at Γ (see Fig. 6c) becomes bonding around
B. Thus, the avoided crossing brings about an effective
decrease of the inter-chain coupling in the region around
B. The abnormal shape of these bands in this region is
thus the result of the competition between destabilizing
interactions between the Ti and capping S atoms (see
Fig. 6a) and stabilizing direct S–S interactions of two
S–S bonded pairs in adjacent chains along the interlayer
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b)a) c)

FIG. 6: Schematic representation of the lowest (a), second lowest (b) crystal orbitals at Γ, and the strongly descending Ti 3dxy
based band at Γ (c). The triangles shown in green and orange are displaced by b/2 so that all atom-atom distances with the
same color occur in the same plane.

Conduction band Conduction band

Valence band Valence band

FIG. 7: Loss function for single layer TiS3 for the valence
and conduction bands, along the q1 and q2 axes, calculated
from the polarization function (4) at T = 0. The dashed lines
correspond to the analytic approximation (8).

direction. It is important to note that the slope of the
strongly descending pair of bands will increase when the
chalcogen atom is bulkier, i.e. for TiSe3 vs. TiS3, or
under some contraction along the a axis. In these cases
the bottom of the conduction band will most likely occur
around B. This will have a very strong influence both on
the Fermi surface of the electron doped system and the
optical properties.

E. Plasmons in Single-Layer TiS3

One of the most promising applications of the new fam-
ilies of 2D materials is their potential for optoelectron-
ics and nanoplasmonics.44,45 Plasmons are collective den-
sity oscillations of an electron liquid that occur in many

metals and semiconductors. Because of their single or
few layer structure, these collective modes in 2D materi-
als are highly confined, and can be tuned and manipu-
lated by external gate or chemical doping. Plasmons have
been studied in different 2D materials like graphene,46–50

silicene,51 TMDs,52,53 or black phosphorus.54 In this sec-
tion we study the plasmon spectrum of doped single-
layer TiS3. The zeros of the dynamical dielectric func-
tion ε(q, ω) yield the excitation spectrum of the plas-
mon modes of the electron liquid. The loss function,
defined as L(q, ω) = −=[1/ε(q, ω)], quantifies the spec-
tral weight of the plasmon mode. In the limit of zero
damping, L(q, ω) consists in a delta peak. The dielec-
tric function can be calculated, within the random phase
approximation (RPA) as55,56

ε(q, ω) = 1− V (q)Π0(q, ω) (2)

where V (q) is the Coulomb interaction

V (q) =
2πe2

εBq
(3)

where εB is the background dielectric constant and
Π0(q, ω) is the polarization function

Π0(q, ω) =
gs
V
∑
k

fF (k)− fF (k + q)

ξ(k + q)− ξ(k)− ~(ω + iη)
(4)

where gs = 2 is the spin degeneracy, V is the system size,
fF (k) = {exp[ξ(k)/kBT ]+1}−1 is the Fermi-Dirac distri-
bution function, and η is a phenomenological broadening.
Here we are interested on low energy intra-band plasmon
modes. Therefore, we neglect inter-band transitions in
the polarization (4) and consider the energy dispersion
within the effective mass approximation:

ξc,v(k) =
~2k21
2mc,v

1

+
~2k22
2mc,v

2

− µ (5)

where µ is the chemical potential, the superscript c(v) in-
dicates conduction (valence) band, and the corresponding
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effective masses have been obtained from the DFT band
structure and given in Table I.

As we have seen in the previous sections, single layer
TiS3 is a highly anisotropic material, with energy bands
dispersing very differently in the two crystallographic di-
rections. Therefore, we follow the scheme used by Low et
al. to study plasmons in black phosphorus,54 which is an-

other anisotropic 2D crystal that consists in P atoms ar-
ranged in a puckered honeycomb lattice. This procedure
has been later generalized to study plasmons in rotated
double layer systems,57 Coulomb drag in anisotropic van
der Waals heterostructures58 and 2D systems with merg-
ing Dirac points.59 Denoting q = q(cos θ, sin θ), we can
write the polarization function as

Π0(q, ω) =
g2D
2

∑
j=±1

∏
l=±1

√√√√1 + j
~(ω + iη)
~2q2f(θ)

2m1

− 2l

√
µ

~2q2f(θ)
2m1

− 1

 (6)

where g2D = md/π~2 is the 2D density of states (DOS),
in terms of the DOS mass md =

√
m1m2, and

f(θ) = cos2(θ) +
m1

m2
sin2(θ). (7)

Our results are shown in Fig. 7, where we plot the loss
function L(q, ω) for the valence and conduction bands
along the two crystallographic directions. As in the case
of black phosphorus,54,60 we observe a clear anisotropy
in the plasmon mode. However, contrary to black phos-
phorus, the plasmon anisotropy in TiS3 is opposite for
the valence and conduction bands. Indeed, one can
clearly observe that for electron (hole) doping, the plas-
mon dispersion is faster (slower) for wave-vectors q ‖ q̂2
(q ‖ q̂1), as seen by the slope of the corresponding modes
in Fig. 7. The anisotropy is more clearly seen in Fig. 8
where we show a cross section of the loss function in the
q1 − q2 plane for ~ω/µ = 0.2. The origin of the op-
posite anisotropy for the valence and conduction bands
originate from the opposite rate between the effective

masses m1/m2 for each band (see Table I). This can
be well understood from the different orbital character
of the valence and conduction band edges, as explained
in Sec. III B. In brief, the top of the valence band is
mostly made of the 3px orbitals of S coming only from
the inner sulfur atoms. This leads to a valence band dis-
persing mostly along the q1−direction (mv

1 < mv
2). On

the other hand, the conduction band is mainly based on
the dz2 orbitals of Ti directed along the q2−direction.
Therefore the effective masses of the electron carriers are
anisotropic with mc

1 > mc
2. This opposite rate between

the effective masses for the valence and conduction bands
leads at the end of the day to the different behaviour of
the collective plasmon modes that appear after electron
or hole doping.

The plasmon dispersion at long wavelengths presents
the standard ∼ √

q behaviour typical for 2D elec-

tron gases,55 with a correction that accounts for the
anisotropy54,57–59 and it can be well approximated by
the analytical expression

~ωpl(q) =

√√√√gse2µ

εb

[(
m2

m1

)1/2

cos2 θ +

(
m1

m2

)1/2

sin2 θ

]
q. (8)

The dispersion obtained from the approximation (8) is
shown by dashed grey lines in Figs. 7 and 8. One should
notice that the the plasmons are coherent outside the
particle-hole continuum, which is defined as the region
where =[Π0(q, ω)] 6= 0. The boundaries of the continuum
are defined by

~ω± =
~2q2

2m1
f(θ)± 2

√
~2q2
2m1

µf(θ). (9)

When the plasmon touches the continuum threshold, the

mode starts to be damped by decaying into electron-hole
pairs. One of the consequences of the anisotropy of the
spectrum is that the damping start to occur at different
ω − q rates depending on the direction of propagation.
We finally notice that the plasmon frequency presents the
standard

√
µ dependence with the chemical potential (see

Fig. 9), as expected for a plasmon in a 2D crystal, like in
the well known case of graphene.46–48 However, contrary
to graphene for which µ ∝ n1/2 where n is the carrier
density, in TiS3 we have µ ∝ n, leading to the expected
scaling relation ωpl ∝ n1/2, as in standard 2D electron
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Conduction Band Valence Band

FIG. 8: Cross section of the loss function L(q, ω) that show
the plasmon dispersion in single layer TiS3 for the valence
and conduction bands in the q1 − q2 plane, for ~ω/µ = 0.2
and T = 0. The dashed lines correspond to the analytic
approximation (8).

Conduction Band Valence Band

FIG. 9: Plasmon energies ~ωpl as a function of chemical
potential µ, calculated for a single layer TiS3 at a specific
q = 0.05a−1 along the a crystallographic direction, for the
conduction and valence bands, obtained from the loss func-
tion L(q, ω). The dashed lines correspond to the analytic
approximation (8).

gases,56 while ωpl ∝ n1/4 in graphene due its low energy
linear dispersion relation.

IV. CONCLUSIONS

In summary, we have used first-principles methods to
study the electronic properties of single layer TiS3. Care-
ful analysis of the DFT band structure points out the pos-
sibility of changing their physical behaviour by injecting
electron carriers. A study of the Fermi surface and Lind-
hard response function for different electron doping levels
shows that for electron doping levels x ∼ 0.18 − 0.30e−

(x being the number of electrons per unit cell) the sys-
tem could exhibit incommensurate charge or spin mod-
ulations which, however, would keep the metallic state.
In contrast, systems doped with smaller x would be 2D
metals without any electronic instability. The inter-chain
coupling between the different trigonal prismatic TiS3

chains influences the bottom states of the conduction
bands throughout a complex mixing of Ti 3dz2 , 3dxy and
3dx2−y2 orbitals as well as 3px orbitals of the bonded S-S
pairs. This leads to an unexpected shape of the Fermi

surface and Lindhard response function for a large part
of the carrier concentrations examined. We further find
that, while spin-orbit interaction does not produce any
significant modification of the valence and conduction
band states, it leads to several avoided band crossings
in the spectrum. Finally, we discuss the main features
of the plasmon spectrum in doped single layer TiS3 sam-
ples. By using a low energy effective mass theory model,
we find that plasmons in TiS3 are highly anisotropic. In-
terestingly, the anisotropy is opposite for the electron
and hole branches, which can be understood from the
different orbital nature of the valence and conduction
bands. We find that the mass anisotropy ratio is ∼ 0.4
for the valence band and ∼ 3.5 for the conduction band.
This anisotropy, which is opposite for the valence and
conduction bands, might be compared to the same di-
rectional anisotropy of black phosphorus, with ratios of
∼ 6.2 and ∼ 5.1 for the valence and conduction bands
respectively.61 Another measure of the anisotropy can be
obtained from the mobility ratios. In this case, it has
been experimentally shown that few layers TiS3 present
a highly temperature dependent ratio of ∼ 2.3 to 7.6
from room temperature to 25 K respectively,62 while the
anisotropy in the mobility of black phosphorus is of ∼ 1.5
and only weakly dependent on temperature.63

Our results show that TiS3 nanofilms are promising
platforms for future optoelectronics and nanoelectronics
applications, including field effect transistors or infrared
photodetectors. In particular, the strong anisotropy of
the electrical and optical properties of this material can
lead to novel functionalities for devices based on TiS3 like
high-performance transistors built along the light effec-
tive mass direction, or the directional focus of photocarri-
ers, as demonstrated in black phosphorus,64 but with the
additional feasibility in TiS3 to reverse the main direc-
tion of propagation by switching from n− to p−doping
and viceversa.
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J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda,
D. Sánchez-Portal, et al., Journal of Physics: Condensed
Matter 20, 064208 (2008).

31 J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review
Letters 77, 3865 (1996).

32 N. Troullier and J. L. Martins, Physical Review B 43, 1993
(1991).

33 L. Kleinman and D. M. Bylander, Physical Review Letters
48, 1425 (1982).

34 S. G. Louie, S. Froyen, and M. L. Cohen, Physical Review
B 26, 1738 (1982).

35 E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garćıa, and
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